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Abstract This paper contains a new proof of Euler’s theorem, that the
only non-trivial integral solution, (α, β), of α2 = β3 + 1 is (±3, 2). This
proof employs only the properties of integers without recourse to ellip-
tic curves and is independent of the methods of algebraic number fields.
The advantage of our proof, over Euler’s and other known proofs of
this result, is that it charts a common path to a novel approach to the
solution of Catalan’s conjecture and indeed of any Diophantine equation.
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§1. Introduction. Catalan’s equation is given as αm = βn + 1,m, n ∈ N, whose
solutions are sought in integers. Catalan’s conjecture (1844) says that, apart from
the trivial integral solutions (α, β) = (0,−1), (±1, 0), the only non-trivial integral
solutions of the equation are (α, β) = (±3, 2) and that they occur precisely when
m = 2 and n = 3. We refer to [2.] for the history, developments and proof of
Mihǎilescu’s theorem (2002) which solved this conjecture after about 158 years.

The case of m = 2 and n = 3 had earlier been completely solved by Euler in
1738 ([2.] p. 118) by an elementary use of the method of infinite descent. Euler’s
method was elementary because his proof did not involve the use of objects outside
Z, as is done in some modern proofs of the same result on α2 = β3+1 ([2.] p. 19). In
addition to this, the known proof of Catalan’s conjecture, now called Mihǎilescu’s
theorem ([2.]) is not elementary, thereby isolating Euler’s case from other cases of
Catalan’s equation. The fact that all the modern proofs of Euler’s theorem did
not generalize to solving Catalan’s conjecture was also responsible for the delay in
the eventual solution of the conjecture and motivated us to seek a general platform
where the Catalan’s equation, αm = βn + 1, could be understood once and for all.

In this paper we give another elementary proof of Euler’s theorem and show
how our method of proof may lead to both an elementary proof of Catalan’s con-
jecture and a new parametrization of the integral solutions of Mordell equations,
α2 = β3 + k, k ∈ Z.
§2. Main results. Let fn : Z → Z, be given as fn(y) = (y + 10)n, n ∈ N, y ∈ Z.
We define an exact integer of power n as an integer which may be written as the
nth−power of some element of Z. In this sense −4 is an exact integer of power 1
only (since −4 = (−4)1), while 4 is an exact integer of powers 1 (since 4 = 41) and
2 (since 4 = (2)2). Our point of departure in the consideration of powers of integers
is to view the set of all exact integers of power n in terms of the polynomials, fn,
as assured by the following Lemma.



Lemma 2.1 ([3.], p. 3). Let E be the collection of all exact integers, explicitly
given as

E = {ξn : ξ ∈ Z>0 and n ∈ 2N} ∪ {ξn : ξ ∈ Z and n ∈ N \ 2N}.

Then the set E is in a one-to-one correspondence with the set {fn(y) : y ∈ Z, n ∈ N}.
Proof. Define ρ : {fn(y) : y ∈ Z, n ∈ N} → E as ρ(fn(y)) := ξn, with

ξ = 10 + y, y ∈ Z. ρ is a one-to-one correspondence. �
The constant 10 in fn may clearly be replaced with any other constant in Z,

while the definition of E is designed to take adequate care of the unnecessary repe-
tition of values brought about by the equality of (−m)2n and m2n, m ∈ Z, n ∈ N.
See [3.] for a constructive approach to defining fn. We now use the truth of the
above Lemma to transform the equation α2 = β3 + 1 as follows. Set α2 = f2(y)
and β3 = f3(y+a), y, a ∈ Z, a ̸= 0, to have f2(y) = f3(y+a)+1, which translates to

a3 + (30 + 3y)a2 + (300 + 60y + 3y2)a+ (901 + 280y + 29y2 + y3) = 0.

This is a cubic monic polynomial equation in a whose coefficients are polyno-
mials in Z[y] and whose solutions are sought in Z. We call it Catalan’s polynomial
equation of index (2, 3) (since it corresponds to the Catalan’s equation α2 = β3 +1)
and denote it by cy(a) = 0.

It has at least a real root, say a = −γ, γ ∈ R \ {0} which, since it is expected
above that a ∈ Z\{0}, implies that γ ∈ Z\{0}. The existence of γ in Z\{0} assures
us that the equation α2 = β3+1 has an integral solution pair (α, β), which could be
called trivial (when αβ = 0) or non-trivial (when αβ ̸= 0). Employing Euclid’s divi-
sion algorithm of the domain Z[X] (or of Q[X], in order to have uniquely determined
quotient and remainder polynomials, qy,γ(a) and rγ(y) respectively; [1.], p. 28), we
arrive at

cy(a) = a3 + (30 + 3y)a2 + (300 + 60y + 3y2)a+ (901 + 280y + 29y2 + y3)

= (a+ γ) · qy,γ(a) + rγ(y)

:= (a+ γ) · (a2 + ([30− γ] + 3y)a+ (300− 30γ + γ2 + 3[20− γ]y + 3y2))
+ ((901− 300γ + 30γ2 − γ3) + (280− 60γ + 3γ2)y + (29− 3γ)y2 + y3) = 0.

We expect that the remainder polynomial rγ(y), which is essentially cy(−γ),
satisfies

rγ(y) = (901− 300γ + 30γ2 − γ3) + (280− 60γ + 3γ2)y + (29− 3γ)y2 + y3 = 0,

since (a+ γ) is a factor of cy(a). Now rγ(y) = 0 is viewed as a cubic monic polyno-
mial equation in y whose coefficients are polynomials in Z[γ].

The important point to note on the roots of rγ(y) = 0 is this:

The above reformulation of Catalan’s equation, α2 = β3+1, requires that
we seek only integral roots, y, to rγ(y) = 0, for γ = −a ∈ Z \ {0}.

What then are the necessary and sufficient conditions for rγ(y) = 0 to have only
integral solutions? This is addressed in the following central result of the paper.
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We recall here, from [1.], p. 139, the fact that the discriminant, D := D(p3(y)),
of a monic cubic polynomial, p3(y) ∈ Z[y], always satisfies the congruence D ≡
0 or 1 (mod 4).

Theorem 2.2. rγ(y) = 0 has only integral solutions if, and only if, γ = 1.

Proof. Let γ = 1, then r1(y) = 630 + 223y + 26y2 + y3 = 0, which gives
y = −7,−9,−10 ∈ Z.

Conversely, let rγ(y) = 0 has only integral solutions, then the discriminant,
D(rγ(y)), computed to be

D(rγ(y)) = −(23− 36γ − 54γ2 + 4γ3 + 27γ4)

must necessarily be a perfect square of some integer.

Solving D(rγ(y)) ≡ 1 (mod 4) gives γ = 2n, n ∈ Z. However, D(r2n(y)) < 0, for
all n ∈ Z, hence D(r2n(y)) is not a perfect square of an integer for any n ∈ Z. In
the same way we solve D(rγ(y)) ≡ 0 (mod 4) to get γ = 2n+ 1, n ∈ Z. We observe
in this case that, since D(r2n+1(y)) < 0, for all n ∈ Z \ {0}, we would still not have
the expected perfect squared discriminant from D(r2n+1(y)) as long as n ∈ Z \ {0}.
Indeed D(rγ(y)) is a perfect square of some integer only at γ = 2(0) + 1 = 1. �

Remarks 2.3. Note that D(r1(y)) = 36. The deductions from Theorem 2.2
are that the integral solutions, (α, β), of Catalan’s equation, α2 = β3 + 1, have to
necessarily be consecutive integers, since

| α∓ β |= | ∓a |=| ±γ |=| ±1 |= 1

(where we add (respectively, subtract) when α ≤ 0 (respectively, α > 0)), and that
the integral values of y for which r1(y) = 0 are completely sufficient to solve the
(Catalan’s) equation in integers.

We now use this information to give a complete solution to α2 = β3+1 in Z×Z,
thereby giving another elementary proof of Euler’s result on this equation.

Corollary 2.4. The integral solution set of Catalan’s equation α2 = β3 + 1 in
Z× Z is precisely {(α, β) = (0,−1), (±1, 0), (±3, 2)}.

Proof. We refer to the above reformulation of α2 = β3+1, which by Theorem 2.2,
needs only be considered for γ = 1. Hence solving r1(y) = 630+223y+26y2+y3 = 0
gives y = −7,−9,−10. Therefore, when

y = −7:

α2 = f2(y) = f2(−7) = 9,
β3 = f3(y + a) = f3(−7− 1) = 8. Hence (α, β) = (±3, 2);

y = −9:

α2 = f2(y) = f2(−9) = 1,
β3 = f3(y + a) = f3(−9− 1) = 0. Hence (α, β) = (±1, 0);

y = −10:

α2 = f2(y) = f2(−10) = 0,
β3 = f3(y + a) = f3(−10− 1) = −1. Hence (α, β) = (0,−1). �
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It may be seen that our approach to the study of α2 = β3 + 1 is based only on
the exploration of in-built structure of the equation as brought out in Theorem 2.2.
In retrospect, we observe that only the properties of Z and Z[X] were employed in
our proofs. In our opinion, the exploitation of properties of Z and Z[X1, · · · , Xn] (or
of Q and Q[X1, · · · , Xn]), in which Xi ∈ Z (or Q), should be the only background
on which the solution of a Diophantine equation is sought. This is what makes the
equations Diophantine.

§3. Directions to Catalan’s conjecture and Mordell equations

(1.) Catalan’s polynomial equation, cy(a) = 0, its remainder polynomial, rγ(y),
and quotient polynomial, qy,γ(a), may equally prove indispensable in a system-
atic production and study of (non-integral) algebraic solutions of α2 = β3 + 1
in various quadratic fields (which, according to Theorem 2.2, must correspond to
γ = −a ∈ Z \ {0, 1}), as well as in the arithmetic and ideal theories of these fields.
A potent quest along this line is to find how many non-trivial solutions of α2 = β3+1
are in each of these number fields. The proof of this may be fashioned on our The-
orem 2.2 and may not easily be deductable from other proofs of Euler’s theorem.

(2.) Partial solutions of Catalan’s conjecture leading to the 2002 Mihǎilescu’s
theorem may also be subsumed under some properties of rγ(y), qy,γ(a) or their gen-
eralizations, say rn,γ(y), qn−1,y,γ(a), in αm = βn+1, m, n ∈ N. Indeed if we combine
Mihǎilescu’s theorem with Theorem 2.2 above, we may conclude that:

the generalization, rn,γ(y) = 0, of rγ(y) = 0 in αm = βn + 1 has only
integral solutions if, and only if, m = 2, n = 3 and γ = 1,

thus giving Mihǎilescu’s theorem an elementary outlook. An independent proof of
this statement, hence an elementary proof of Catalan’s conjecture, and the system-
atic study of the contributions of the roots of rn,γ(y) = 0 to other algebraic solutions
of the Catalan’s equation and the theory of their number fields may however have
to be deduced from a proper handling of the explicit expression for rn,γ(y).

(3.) The equation α2 = β3 + 1 may also be seen as a representative of members
of the family of Mordell equations, α2 = β3 + k, k ∈ Z, where the requirement for
the existence of integral solutions may be sought in the form γ = f(k) reminiscence
of Theorem 2.2, for some function f : Z → Z. The required discriminant, D(rγ,k(y)),
of the corresponding reminder polynomial equation

rγ,k(y) = (900+ k− 300γ +30γ2 − γ3) + (280− 60γ +3γ2)y+ (29− 3γ)y2 + y3 = 0,

of the Mordell polynomial equation, has been computed to be

D(rγ,k(y)) = −27k2 + (4 + 36γ + 54γ2)k − 4γ3 − 27γ4

and may be treated like we did D(rγ,1(y)) =: D(rγ(y)) in the proof of Theorem 2.2.
It is however clear, from Theorem 2.2, that f(1) = 1 and, from Theorem 14.2.3
of [1.], that f is going to be a function of functions. The structure and properties
of f may ultimately be exploited in further understanding the integral solutions of
α2 = β3 + k, k ∈ Z, which has been completely solved using a different approach in
[4.].

The ideas outlined in (1.)− (3.) may be employed to seek and study the solution
set and field theory of the equation αm = βn + k, m, n ∈ N, k ∈ Z.
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The above method of reducing Diophantine equations to equations involving
members of the Noetherian domain Z[X1, · · · , Xk] (or of Q[X1, · · · , Xk], with Xi ∈
Z (or Q)), which we termed Diophantine polynomials, is a natural technique to the
complete solution of any Diophantine equation (cf. [3.]) and is a candidate for the
much needed Galois theory of Diophantine equations.
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