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Abstract

In this paper we will examine the case  
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where coefficients  
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1  Introduction 

With series (1)  and (2)  when 
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are monotone coefficients  (
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) many authors have  come from Shah [1] , Bari [2] , Gaur [3] , but now  they continue to attract their attention.

It is , of paper, familiar that the cosine series for all 
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 save multiples of 
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  and the sine  series is convergent for all 
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 , and that they are the Fourier series of their sums when these are integrable.

It has also been proved that for the convergence of the series (1)  the necessary and sufficient condition is 
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 ,  and that a necessary and sufficient condition  for the uniform convergence of (2) is that 
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 ; more precisely , the condition is sufficient for the uniform convergence of the series and necessary for the continuity of its sum.
2  Preliminary Notes
That’s why, first of all, we’ll represent the main statements needed for representation of the results of this  paper.

Definition 2.1  A sequence 
[image: image14.wmf]{}

n

b

is quasi-monotone if  
[image: image15.wmf]0

n

b

>

, and 
[image: image16.wmf]0

n

nb

a

-

¯

 for some 
[image: image17.wmf]0

a

>

.
For 
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  we have a monotone non-increasing sequence  (
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)  .  If the terms 
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      form a quasi-monotone sequence ,  the series will called quasi - monotone .
Definition 2.2  Let  
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, we say that function 
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  with period 
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If
[image: image27.wmf]0

¯

n

b

 then that series (1) and (2) that they are the Fourier series of their sums 
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 when these are integrable.

Thus, studying the problem of when the series (1) and (2) represent the Fourier series, turns into the consideration of the integrable problem of C (x) and S (x).

The following affirmation gives necessary condition receptively  adequate that is necessary to complete Fourier coefficients in order that function belongs to class   
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 .

Theorem 2.3 ( Hardy- Littlewood ) ([2] p .657 ) . The necessary and sufficient condition that 
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  be the Fourier series of a function 
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In this paper we will take the case for p = 1 means in 
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So if

             
[image: image36.wmf]1

1

n

n

nb

¥

-

=

<+¥

å

      (
[image: image37.wmf]0

n

b

¯

)            (5)

then  
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 meaning (1) and (2) are Fourier series .
Theorem 2.4 ([1]).
Let 
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3  Main Results 

Based on theorem 2. we can prove the condition (5) when  
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 they are quasi-monotone   , which is the purpose of this paper.

Theorem 3.1  If
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Then the series
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are convergent for every  
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 , save possibly 
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  in the case of  (1).
Proof: Consider the series
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were 
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If we write with
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we apply in this sum  transformation of Abel and we have 
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For 
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     (see [2], p. 94  )

Given the condition b) of the theorem 2. the second collector on the right side of (9) tends to zero. 

So 
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If we use condition a) of theorem 2. it turns out that the right hand of the inequality (10) is a convergent series, so the series (7) is convergent, thus verifying the theorem. 

From this theorem we can observe that condition (5) is sufficient and necessary that series (2) be Fourier series. While for the serine (1) to be the Fourier series condition (5) is only sufficient

For example, the series
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is the Fourier series (see [2]) , but the condition 
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Let's prove that condition (5) is necessary for series (2) to be Fourier series
We need consider the interval 
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 is uniformly convergent , then for all sufficiently large 
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Choosing  
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for this interval , we have 
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Since sequence  {bn} is quasi-monotone , then  for any   ( > 0  exists constant   A > 0  such that
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Now by the following formula in [4] , for 
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Thus
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By the condition proved and above example flows directly this corollary .
Corollary 3.2  If the series (2) is a Fourier series such a series will be (1)
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