Convergence of Proximal Point Algorithms of Mann and Halpern Hybrid Types to a Zero of Monotone Operators in CAT(0) Spaces

Yue Zhang¹ and Dingping Wu²

Abstract

In this paper, by the classic Mann-type and Halpern-type algorithms, on the basis of monotone operators with firmly nonexpansive property, we build Mann-Halpern type and Halpern-Mann type proximal point algorithms about a zero of monotone operators in Hadamard space, and prove strong convergence and Δ -convergence to a zero of monotone operators, respectively.

Mathematics Subject Classification(2010): 47H09,47H10

Keywords: Monotone operators, Mann-Halpern type, Halpern-Mann type, Proximal point algorithms, Hadamard space, Δ -convergence, Strong convergence

 $^{^1{\}rm College}$ of Applied Mathematics, Chengdu University of Information Technology. e-mail: $513595779@{\rm qq.com}$

 $^{^2{\}rm College}$ of Applied Mathematics, Chengdu University of Information Technology. e-mail: wdp68@163.com

1 Introduction

Let (X,d) be a metric space[11]. A geodesic path joining $x \in X$ to $y \in X$ (or, more briefly, a geodesic from x to y) is a map f from a closed interval $[0,l] \subset R$ to X such that f(0) = x, f(l) = y and d(f(t), f(t')) = |t - t'| for all $t, t' \in [0, l]$. In particular, f is an isometry and d(x,y) = l. The image α of f is called a geodesic (or metric) segment joining x and y. When it is unique this geodesic is denoted [x,y]. The space (X,d) is said to be a geodesic space if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each $x,y \in X$. A subset $Y \subseteq X$ is said to be convex if Y includes every geodesic segment joining any two of its points.

A geodesic space (X, d) is a CAT(0) space if it satisfies the following CN-inequality for $x, z_0, z_1, z_2 \in X$ such that $d(z_0, z_1) = d(z_0, z_2) = \frac{1}{2}d(z_1, z_2)$:

$$d^{2}(x, z_{0}) \leqslant \frac{1}{2}d^{2}(x, z_{1}) + \frac{1}{2}d^{2}(x, z_{2}) - \frac{1}{4}d^{2}(z_{1}, z_{2}).$$

A complete CAT(0) space is called a Hadamard space.

Berg and Nikolaev[3] introduced the concept of quasi-linearization in CAT(0) space X. They denoted a vector by \overrightarrow{ab} for $(a,b) \in X \times X$ and defined the quasi-linearization map $\langle \cdot, \cdot \rangle : (X \times X) \times (X \times X) \to R$ as follow:

$$\langle \overrightarrow{ab}, \overrightarrow{cd} \rangle = \frac{1}{2} [d^2(a,d) + d^2(b,c) - d^2(a,c) - d^2(b,d)],$$

for $a, b, c, d \in X$. We can verify $\langle \overrightarrow{ab}, \overrightarrow{ab} \rangle = d^2(a, b)$, $\langle \overrightarrow{ba}, \overrightarrow{cd} \rangle = -\langle \overrightarrow{ab}, \overrightarrow{cd} \rangle$, and $\langle \overrightarrow{ab}, \overrightarrow{cd} \rangle = \langle \overrightarrow{ae}, \overrightarrow{cd} \rangle + \langle \overrightarrow{eb}, \overrightarrow{cd} \rangle$ for all $a, b, c, d, e \in X$. For a space X, it satisfies the Cauchy-Schwarz inequality if

$$\langle \overrightarrow{ab}, \overrightarrow{cd} \rangle \leqslant d(a, b)d(c, d)$$

for all $a, b, c, d \in X$. It is known[3] that a geodesically connected metric space X is a CAT(0) space if and only if it satisfies the Cauchy-Schwarz inequality.

Ahmadi Kakavandi and Amini[1] introduced the concept of dual space of a complete CAT(0) space X based on a work of Berg and Nikolaev[4]. Also, we use the following notation:

$$\langle \alpha x^* + \beta y^*, \overrightarrow{xy} \rangle := \alpha \langle x^*, \overrightarrow{xy} \rangle + \beta \langle y^*, \overrightarrow{xy} \rangle,$$

for $\alpha, \beta \in R$, $x, y \in X$, and $x^*, y^* \in X^*$, where X^* is the dual space of X.

It is known that the subdifferential of every proper convex and lower semi-continuous function is maximal monotone in Hilbert spaces, and it satisfies the range condition. Ahmadi Kakavandi and Amini[1] also introduced the subdifferential of a proper convex and lower semi-continuous function on a Hadamard space X as a monotone operator from X to X^* .

By the application of the dual theory[1], H.Khatibzadch and S.Ranjbar[2] have showed that the sequences generated by the Mann-type and the Halpern-type proximal point algorithm containing the resolvent of a monotone operator which satisfies range condition are strong convergence and Δ -convergence to a zero of a monotone operator in a complete CAT(0) space, respectively. Hence, we build Mann-Halpern type and Halpern-Mann type proximal point algorithms about zeros of the subdifferential of proper convex and lower semi-continuous function in Hadamard space, and prove strong convergence and Δ -convergence to a zero of a monotone operator, respectively. Therefore, we improve and extend their results.

2 Preliminary

Definition 2.1. [4] Let $\lambda > 0$ and $A: X \to 2^{X^*}$ be a set-valued operator. The resolvent of A of order λ is the set-valued mapping $J_{\lambda}: X \to 2^X$ defined by $J_{\lambda}(x) := \{z \in X : [\frac{1}{\lambda} \overrightarrow{zx}] \in Az\}.$

Definition 2.2. [4] Let $T: C \subset X \to X$ be a mapping. We say that T is firmly nonexpansive if $d^2(Tx, Ty) \leq \langle \overrightarrow{TxTy}, \overrightarrow{xy} \rangle$ for any $x, y \in C$.

Let X be a Hadamard space with dual X^* and let $A: X \to 2^{X^*}$ be a multivalued operator with domain $D(A) := \{x \in X : Ax \neq \emptyset\}$, range $R(A) := \bigcup_{x \in X} Ax$, $A^{-1}(x^*) := \{x \in X : x^* \in Ax\}$ and graph $gra(A) := \{(x, x^*) \in X \times X^* : x \in D(A), x^* \in Ax\}$.

Definition 2.3. [4] Let X be a Hadamard space with dual X^* . The multivalued operator $A: X \to 2^{X^*}$ is:

(1) monotone if and only if, for all $x, y \in D(A)$, $x^* \in Ax$ and $y^* \in Ay$,

$$\langle x^* - y^*, \overrightarrow{yx} \rangle \geqslant 0;$$

(2) strictly monotone if and only if for all $x, y \in D(A)$, $x^* \in Ax$ and $y^* \in Ay$,

$$\langle x^* - y^*, \overrightarrow{yx} \rangle > 0;$$

(3) α -strongly monotone for $\alpha > 0$ if and only if, for all $x, y \in D(A)$, $x^* \in Ax$ and $y^* \in Ay$,

$$\langle x^* - y^*, \overrightarrow{yx} \rangle \geqslant \alpha d^2(x, y).$$

Definition 2.4. [4] Let X be a CAT(0) space, $x, y \in X$, we write $(1-t)x \oplus ty$ for the unique point z in the geodesic segment joining from x to y such that d(x,z) = td(x,y) and d(y,z) = (1-t)d(x,y). Set $[x,y] = \{(1-t)x \oplus ty : t \in [0,1]\}$. A subset C of X is called convex if $[x,y] \subset C$ for all $x,y \in C$.

Let X be a Hadamard space with dual X^* and let $f: X \to (-\infty, +\infty]$ be a proper function with efficient domain $D(f) = \{x; f(x) < +\infty\}$, then the subdifferential of f is the multifunction $\partial f: X \to 2^{X^*}$ defined by

$$\partial f(x) = \{x^* \in X^* : f(z) - f(x) \geqslant \langle x^*, \overrightarrow{xz} \rangle (z \in X)\},\$$

when $x \in D(f)$ and $\partial f(x) = \emptyset$, otherwise.

Lemma 2.5. [5] Let (X, d) be a CAT(0) space. Then, for all $x, y, z \in X$, and all $t \in [0, 1]$:

- $(1) d^2(tx \oplus (1-t)y, z) \leqslant td^2(x, z) + (1-t)d^2(y, z) t(1-t)d^2(x, y),$
- (2) $d(tx \oplus (1-t)y, z) \le td(x, z) + (1-t)d(y, z)$. In addition, by using (1) we have

$$d[tx \oplus (1-t)y, tx \oplus (1-t)z] \leqslant (1-t)d(y,z).$$

Lemma 2.6. [4] Let (X, d) be a CAT(0) space and $a, b, c \in X$. Then for each $\lambda \in [0, 1]$,

$$d^2(\lambda x \oplus (1-\lambda)y, z) \leqslant \lambda^2 d^2(x, z) + (1-\lambda)^2 d^2(y, z) + 2\lambda (1-\lambda)\langle \overrightarrow{xz}, \overrightarrow{yz} \rangle.$$

Lemma 2.7. [7] Let C be a closed convex subset of a complete CAT(0) space $X, T: C \to C$ be a nonexpansive mapping with a fixed point and $u \in C$. For each $t \in (0,1)$, set $z_t = tu \oplus (1-t)Tz_t$. Then z_t converges as $t \to 0$ to the unique fixed point of T, which is the nearest point to u.

Lemma 2.8. [6] Let C be a closed convex subset of a complete CAT(0) space $X, T: C \to C$ be a nonexpansive mapping with $F(T) \neq \emptyset$ and $\{x_n\}$ be a bounded sequence in C such that the sequence $\{d(x_n, Tx_n)\}$ converges to zero. Then

$$\lim_{n} \sup \langle \overrightarrow{up}, \overrightarrow{x_np} \rangle \leqslant 0,$$

where $u \in C$ and p is the nearest point of F(T) to u.

Lemma 2.9. [4] Let X be a CAT(0) space and J_{λ} is resolvent of the operator A of order λ . We have,

- (1) For any $\lambda > 0$, $R(J_{\lambda}) \subset D(A)$, $F(J_{\lambda}) = A^{-1}(0)$;
- (2) If A is monotone then J_{λ} is a single-valued and firmly nonexpansive mapping;
 - (3) If A is monotone and $\lambda \leqslant \mu$, then $d(x, J_{\lambda}x) \leqslant 2d(x, J_{\mu}x)$.

It is well known[4] that if T is a nonexpansive mapping on subset C of CAT(0) space X then F(T) is closed and convex. Thus, if A is a monotone operator on CAT(0) space X then, by parts (1) and (2) of lemma 2.9, $A^{-1}(0)$ is closed and convex.

Lemma 2.10. [8] Let (s_n) be a sequence of non-negative real numbers satisfying

$$s_{n+1} \leqslant (1 - \alpha_n)s_n + \alpha_n\beta_n + \gamma_n, n \geqslant 0,$$

where , (α_n) , (β_n) and (γ_n) satisfy the conditions:

- (1) $(\alpha_n) \subset [0,1], \sum_n \alpha_n = \infty$, or equivalently, $\prod_{n=1}^{\infty} (1 \alpha_n) = 0$;
- (2) $\limsup_{n} \beta_n \leq 0$;
- (3) $\gamma_n \geqslant 0 (n \geqslant 0), \sum_n \gamma_n < \infty$. Then, $\lim_n s_n = 0$.

Lemma 2.11. [9] Let (γ_n) be a sequence of real numbers such that there exists a subsequence (γ_{n_j}) of (γ_n) such that $\gamma_{n_j} < \gamma_{n_j+1}$ for all $j \ge 1$. Then there exists a nondecreasing sequence (m_k) of positive integers such that the following two inequalities:

$$\gamma_{m_k} \leqslant \gamma_{m_k+1} and \gamma_k \leqslant \gamma_{m_k+1}$$

hold for all (sufficiently large) numbers k. In fact, m_k is the largest number n in the set $\{1, 2, \dots, k\}$ such that the condition $\gamma_n < \gamma_{n+1}$ holds.

By the lemma 2.6 of S Saejung and P Yotkaew[10], we can similarly obtain the following lemma.

Lemma 2.12. Let (s_n) be a sequence of nonnegative real numbers, (α_n) be a sequence in (0,1) such that $\sum_n \alpha_n = \infty$, (t_n) be a sequence of real numbers, and (γ_n) be a sequence of nonnegative real numbers such that $\sum_n \gamma_n < \infty$. Suppose that

$$s_{n+1} \leqslant (1 - \alpha_n)s_n + \alpha_n t_n + \gamma_n, n \geqslant 1.$$

If $\limsup_{k\to\infty} t_{n_k} \leq 0$ for every subsequence (s_{n_k}) of (s_n) satisfying $\liminf_{k\to\infty} (s_{n_k+1} - s_{n_k}) \geq 0$, then $\lim_n s_n = 0$.

Proof. The proof is split into two cases.

- (1) There exists an $n_0 \in N$ such that $s_{n+1} \leqslant s_n$ for all $n \geqslant n_0$. It follows then that $\lim \inf_{n\to\infty} (s_{n+1}-s_n) = 0$. Hence $\limsup_{n\to\infty} t_n \leqslant 0$. The conclusion follows from lemma 2.10.
- (2) There exists a subsequence (s_{m_j}) of (s_n) such that $s_{m_j} < s_{m_j+1}$ for all $j \in N$. In this case, we can apply lemma 2.11 to find a nondecreasing sequence $\{n_k\}$ of $\{n\}$ such that $n_k \to \infty$ and the following two inequalities:

$$s_{n_k} \leqslant s_{n_k+1}$$
 and $s_k \leqslant s_{n_k+1}$

hold for all (sufficiently large) numbers k. Since $n_k \to \infty$, then for arbitrary $\varepsilon > 0$, there is a integer N > 0 such that $\gamma_{n_k} < \varepsilon$ for $n_k \geqslant N$. It follows from the first inequality that $\liminf_{k\to\infty} (s_{n_k+1} - s_{n_k}) = 0$. This implies that $\limsup_{k\to\infty} t_{n_k} \leqslant 0$. Moreover, by the first inequality again, we have

$$s_{n_k+1} \le (1 - \alpha_{n_k}) s_{n_k} + \alpha_{n_k} t_{n_k} + \gamma_{n_k} \le (1 - \alpha_{n_k}) s_{n_k+1} + \alpha_{n_k} t_{n_k} + \varepsilon,$$

this implies $\alpha_{n_k} s_{n_k+1} \leq \alpha_{n_k} t_{n_k} + \varepsilon$ for arbitrary $\varepsilon > 0$. By the arbitrariness of ε , we obtain

$$\alpha_{n_k} s_{n_k+1} \leqslant \alpha_{n_k} t_{n_k}$$
.

In particular, since each $\alpha_{n_k} > 0$, we have $s_{n_k+1} \leq t_{n_k}$. Finally, it follows from the second inequality that

$$\lim \sup_{k \to \infty} s_k \leqslant \lim \sup_{k \to \infty} s_{n_k+1} \leqslant \lim \sup_{k \to \infty} t_{n_k} = 0.$$

Hence $\lim_{n\to\infty} s_n = 0$. This completes the proof.

Lemma 2.13. [2] Suppose (X, d) is a metric space and $C \subset X$. Let $(T_n)_{n=1}^{\infty}$: $C \to C$ be a sequence of nonexpansive mappings with a common fixed point and (x_n) be a bounded sequence such that $\lim_n d(x_n, T_n(x_n)) = 0$. Then

$$\limsup_{n} \langle \overrightarrow{up}, \overrightarrow{T_n(x_n)p} \rangle \leqslant \limsup_{n} \langle \overrightarrow{up}, \overrightarrow{x_np} \rangle,$$

where $p \in \bigcap_{n=1}^{\infty} F(T_n)$.

Lemma 2.14. [1] Let $f: X \to (-\infty, +\infty]$ be a proper, lower semi-continuous and convex function on a Hadamard space X with dual X^* . Then

- (1) f attains its minimum at $x \in X$ if and only if $0 \in \partial f(x)$;
- (2) $\partial f: X \to 2^{X^*}$ is a monotone operator;
- (3) for any $y \in X$ and $\alpha > 0$, there exist a unique point $x \to X$ such that $[\alpha \overrightarrow{xy}] \in \partial f(x)$.

By the (3) of lemma 2.14, we obtain the subdifferential of a proper, lower semi-continuous and convex function satisfies the range condition.

Lemma 2.15. [4] Let $f: X \to (-\infty, +\infty]$ be a proper, lower semi-continuous and convex function on a Hadamard space X with dual X^* . Then

$$J_{\lambda}^{\partial f}x = \underset{z \in X}{Argmin} \{f(z) + \frac{1}{2\lambda}d^2(z,x)\}$$

for all $\lambda > 0$ and $x \in X$.

Lemma 2.16. [11] Let K be a closed convex subset of X, and let $f: K \to X$ be a nonexpansive mapping. Then the conditions (x_n) Δ -converges to x and $d(x_n, f(x_n)) \to 0$, imply $x \in K$ and f(x) = x.

3 Main Results

Theorem 3.1. Let X be a Hadamard space and X^* be the dual space of X. Let $f: X \to (-\infty, +\infty]$ be a proper convex and lower semi-continuous function, and ∂f is the subdifferential of f. Suppose (λ_n) is a sequence of positive real numbers such that $\lambda_n \ge \lambda > 0$, (α_n) is a sequence in [0,1] satisfied $\sum_n \alpha_n < \infty$, and (β_n) is a sequence in [0,1] satisfied $\lim_{n\to\infty} \beta_n = 0$ and $\sum_n \beta_n = \infty$. The sequence (x_n) generated by the following Mann-Halpern hybrid type algorithm:

$$\begin{cases} x_{0}, u \in X, \\ w_{n} = \underset{x \in X}{\operatorname{argmin}} \{ f(x) + \frac{1}{2\lambda_{n}} d^{2}(x, x_{n}) \}, \\ y_{n} = \alpha_{n} x_{n} \oplus (1 - \alpha_{n}) w_{n}, \\ z_{n} = \underset{y \in X}{\operatorname{argmin}} \{ f(y) + \frac{1}{2\lambda_{n}} d^{2}(y, y_{n}) \}, \\ x_{n+1} = \beta_{n} u \oplus (1 - \beta_{n}) z_{n}. \end{cases}$$
(3.1)

Then the sequence is convergent strongly to the nearest point of $\partial f^{-1}(0)$ to u.

Proof. By the lemma 2.15, the upper algorithm is equivalent to the following algorithm:

$$\begin{cases}
x_0, u \in X, \\
y_n = \alpha_n x_n \oplus (1 - \alpha_n) J_{\lambda_n} x_n, \\
x_{n+1} = \beta_n u \oplus (1 - \beta_n) J_{\lambda_n} y_n,
\end{cases}$$
(3.2)

where we use J_{λ_n} instead of $J_{\lambda_n}^{\partial f}$.

Since $\partial f^{-1}(0)$ is convex and closed. Set $p \in P_{\partial f^{-1}(0)}u$, we have

$$d(x_{n+1}, p) \leq \beta_n d(u, p) + (1 - \beta_n) d(J_{\lambda_n} y_n, p)$$

$$\leq \beta_n d(u, p) + (1 - \beta_n) \alpha_n d(x_n, p) + (1 - \beta_n) (1 - \alpha_n) d(J_{\lambda_n} x_n, p)$$

$$\leq \beta_n d(u, p) + (1 - \beta_n) d(x_n, p) \leq \max\{d(u, p), d(x_n, p)\}$$

$$\leq \dots \leq \max\{d(u, p), d(x_0, p)\},$$

which implies that (x_n) is bounded. Since $d(J_{\lambda_n}x_n, p) \leq d(x_n, p)$, then $(J_{\lambda_n}x_n)$ is also bounded.

By the lemma 2.5, we have

$$d^{2}(x_{n+1}, p) = d^{2}(\beta_{n}u \oplus (1 - \beta_{n})J_{\lambda_{n}}y_{n}, p)$$

$$\leqslant \beta_{n}^{2}d^{2}(u, p) + (1 - \beta_{n})^{2}d^{2}(J_{\lambda_{n}}y_{n}, p) + 2\beta_{n}(1 - \beta_{n})\langle \overrightarrow{up}, \overrightarrow{J_{\lambda_{n}}y_{n}p}\rangle$$

$$\leqslant \beta_{n}^{2}d^{2}(u, p) + (1 - \beta_{n})^{2}(\alpha_{n}^{2}d^{2}(x_{n}, p) + (1 - \alpha_{n})^{2}d^{2}(J_{\lambda_{n}}x_{n}, p))$$

$$+ 2(1 - \beta_{n})^{2}\alpha_{n}(1 - \alpha_{n})\langle \overrightarrow{x_{n}p}, \overrightarrow{J_{\lambda_{n}}x_{n}p}\rangle + 2\beta_{n}(1 - \beta_{n})\langle \overrightarrow{up}, \overrightarrow{J_{\lambda_{n}}y_{n}p}\rangle$$

$$\leqslant (1 - \beta_{n})((1 - 2\alpha_{n}(1 - \alpha_{n}))d^{2}(x_{n}, p)) + \beta_{n}^{2}d^{2}(u, p)$$

$$+ 2\beta_{n}(1 - \beta_{n})\langle \overrightarrow{up}, \overrightarrow{J_{\lambda_{n}}y_{n}J_{\lambda_{n}}x_{n}}\rangle + 2\beta_{n}(1 - \beta_{n})\langle \overrightarrow{up}, \overrightarrow{J_{\lambda_{n}}x_{n}p}\rangle$$

$$+ 2(1 - \beta_{n})^{2}\alpha_{n}(1 - \alpha_{n})\langle \overrightarrow{x_{n}p}, \overrightarrow{J_{\lambda_{n}}x_{n}p}\rangle$$

$$\leqslant (1 - \beta_{n})d^{2}(x_{n}, p) + \beta_{n}(\beta_{n}d^{2}(u, p) + 2(1 - \beta_{n})\langle \overrightarrow{up}, \overrightarrow{J_{\lambda_{n}}x_{n}p}\rangle$$

$$+ 2(1 - \beta_{n})d(u, p)d(y_{n}, x_{n})) + 2\alpha_{n}\langle \overrightarrow{x_{n}p}, \overrightarrow{J_{\lambda_{n}}x_{n}p}\rangle$$

$$\leqslant (1 - \beta_{n})d^{2}(x_{n}, p) + \beta_{n}(\beta_{n}d^{2}(u, p) + 2(1 - \beta_{n})\langle \overrightarrow{up}, \overrightarrow{J_{\lambda_{n}}x_{n}p}\rangle$$

$$+ 2(1 - \beta_{n})d(u, p)[\alpha_{n}d(x_{n}, x_{n}) + (1 - \alpha_{n})d(J_{\lambda_{n}}x_{n}, x_{n})])$$

$$+ 2\alpha_{n}\langle \overrightarrow{x_{n}p}, \overrightarrow{J_{\lambda_{n}}x_{n}p}\rangle$$

$$\leqslant (1 - \beta_{n})d^{2}(x_{n}, p) + \beta_{n}(\beta_{n}d^{2}(u, p) + 2(1 - \beta_{n})\langle \overrightarrow{up}, \overrightarrow{J_{\lambda_{n}}x_{n}p}\rangle$$

$$+ 2(1 - \beta_{n})d^{2}(x_{n}, p) + \beta_{n}(\beta_{n}d^{2}(u, p) + 2(1 - \beta_{n})\langle \overrightarrow{up}, \overrightarrow{J_{\lambda_{n}}x_{n}p}\rangle$$

$$+ 2(1 - \beta_{n})d^{2}(x_{n}, p) + \beta_{n}(\beta_{n}d^{2}(u, p) + 2(1 - \beta_{n})\langle \overrightarrow{up}, \overrightarrow{J_{\lambda_{n}}x_{n}p}\rangle$$

$$+ 2(1 - \beta_{n})d^{2}(x_{n}, p) + \beta_{n}(\beta_{n}d^{2}(u, p) + 2(1 - \beta_{n})\langle \overrightarrow{up}, \overrightarrow{J_{\lambda_{n}}x_{n}p}\rangle$$

$$+ 2(1 - \beta_{n})d^{2}(x_{n}, p) + \beta_{n}(\beta_{n}d^{2}(u, p) + 2(1 - \beta_{n})\langle \overrightarrow{up}, \overrightarrow{J_{\lambda_{n}}x_{n}p}\rangle$$

$$+ 2(1 - \beta_{n})d^{2}(x_{n}, p) + \beta_{n}(\beta_{n}d^{2}(u, p) + 2(1 - \beta_{n})\langle \overrightarrow{up}, \overrightarrow{J_{\lambda_{n}}x_{n}p}\rangle$$

$$+ 2(1 - \beta_{n})d^{2}(x_{n}, p) + \beta_{n}(\beta_{n}d^{2}(u, p) + 2(1 - \beta_{n})\langle \overrightarrow{up}, \overrightarrow{J_{\lambda_{n}}x_{n}p}\rangle$$

$$+ 2(1 - \beta_{n})d^{2}(x_{n}, p) + \beta_{n}(\beta_{n}d^{2}(u, p) + 2(1 - \beta_{n})\langle \overrightarrow{up}, \overrightarrow{J_{\lambda_{n}}x_{n}p}\rangle$$

$$+ 2(1 - \beta_{n})d^{2}(x_{n}, p) + \beta_{n}(\beta_{n}d^{2}(u, p) + 2(1 - \beta_{n})\langle \overrightarrow{up}, \overrightarrow{J_{\lambda_{n}}x_{n}p}\rangle$$

$$+ 2(1 - \beta_{n})d^{2}(x_{n}, p) + \beta_{n}(\beta_{n}d^{2}(u, p) + 2(1 - \beta_{n})$$

which implies

$$d^{2}(x_{n+1}, p) \leqslant (1 - \beta_{n})d^{2}(x_{n}, p) + \beta_{n}(\beta_{n}d^{2}(u, p) + 2(1 - \beta_{n})\langle \overrightarrow{up}, \overrightarrow{J_{\lambda_{n}}x_{n}p}\rangle$$
$$+ 2(1 - \beta_{n})(1 - \alpha_{n})d(u, p)d(J_{\lambda_{n}}x_{n}, x_{n})) + 2\alpha_{n}d(x_{n}, p)d(J_{\lambda_{n}}x_{n}, p).$$

By the lemma 2.12, it suffices to show that $\limsup_{k\to\infty}(\beta_{m_k}d^2(u,p)+2(1-\beta_{m_k})(1-\alpha_{m_k})d(u,p)d(J_{\lambda_{m_k}}x_{m_k},x_{m_k})+2(1-\beta_{m_k})\langle \overrightarrow{up},\overrightarrow{J_{\lambda_{m_k}}x_{m_k}p}\rangle)\leqslant 0$ for every subsequence $(d(x_{m_k},p))$ of $(d(x_n,p))$ satisfying $\liminf_{k\to\infty}(d(x_{m_k+1},p)-d(x_{m_k},p))\geqslant 0$. For this, suppose the subsequence $(d(x_{m_k},p))$ satisfied $\liminf_{k\to\infty}(d(x_{m_k+1},p)-d(x_{m_k},p))\geqslant 0$. Then

$$0 \leqslant \liminf_{k \to \infty} (d(x_{m_k+1}, p) - d(x_{m_k}, p))$$

$$\leqslant \liminf_{k \to \infty} (\beta_{m_k} d(u, p) + (1 - \beta_{m_k}) d(J_{\lambda_{m_k}} y_{m_k}, p) - d(x_{m_k}, p))$$

$$\leqslant \liminf_{k \to \infty} (\beta_{m_k} d(u, p) + (1 - \beta_{m_k}) d(y_{m_k}, p) - d(x_{m_k}, p))$$

$$\leqslant \liminf_{k \to \infty} (\beta_{m_k} d(u, p) + (1 - \beta_{m_k}) (\alpha_{m_k} d(x_{m_k}, p))$$

$$+ (1 - \alpha_{m_k}) d(J_{\lambda_{m_k}} x_{m_k}, p)) - d(x_{m_k}, p)$$

$$\leqslant \liminf_{k \to \infty} (\beta_{m_k} (d(u, p) - d(x_{m_k}, p)))$$

$$+ (1 - \beta_{m_k}) (1 - \alpha_{m_k}) (d(J_{\lambda_{m_k}} x_{m_k}, p) - d(x_{m_k}, p)))$$

$$\leqslant \limsup_{k \to \infty} (\beta_{m_k} (d(u, p) - d(x_{m_k}, p)))$$

$$+ \liminf_{k \to \infty} (1 - \beta_{m_k}) (1 - \alpha_{m_k}) (d(J_{\lambda_{m_k}} x_{m_k}, p) - d(x_{m_k}, p))$$

$$\leqslant \limsup_{k \to \infty} (1 - \beta_{m_k}) (1 - \alpha_{m_k}) (d(J_{\lambda_{m_k}} x_{m_k}, p) - d(x_{m_k}, p))$$

$$\leqslant \limsup_{k \to \infty} (1 - \beta_{m_k}) (1 - \alpha_{m_k}) (d(J_{\lambda_{m_k}} x_{m_k}, p) - d(x_{m_k}, p))$$

$$\leqslant \limsup_{k \to \infty} (1 - \beta_{m_k}) (1 - \alpha_{m_k}) (d(J_{\lambda_{m_k}} x_{m_k}, p) - d(x_{m_k}, p))$$

$$\leqslant \limsup_{k \to \infty} (1 - \beta_{m_k}) (1 - \alpha_{m_k}) (d(J_{\lambda_{m_k}} x_{m_k}, p) - d(x_{m_k}, p)) = 0,$$

hence, $\lim_{k\to\infty} (d(J_{\lambda_{m_k}}x_{m_k}, p) - d(x_{m_k}, p)) = 0$. Since J_{λ_n} is firmly nonexpansive, we have

$$d^{2}(J_{\lambda_{n}}x_{n},p) \leqslant \langle \overrightarrow{J_{\lambda_{n}}x_{n}p}, \overrightarrow{x_{n}p} \rangle = \frac{1}{2}(d^{2}(J_{\lambda_{n}}x_{n},p) + d^{2}(x_{n},p) - d^{2}(J_{\lambda_{n}}x_{n},x_{n})),$$

which implies $d^2(J_{\lambda_n}x_n,x_n) \leq d^2(x_n,p) - d^2(J_{\lambda_n}x_n,p)$. Then we can get

$$d^{2}(J_{\lambda_{m_{k}}}x_{m_{k}}, x_{m_{k}}) \leq d^{2}(x_{m_{k}}, p) - d^{2}(J_{\lambda_{m_{k}}}x_{m_{k}}, p),$$

by the boundedness of (x_{m_k}) , which implies $d(J_{\lambda_{m_k}}x_{m_k}, x_{m_k}) \to 0$. By the (3) of lemma 2.9, we obtain $d(J_{\lambda}x_{m_k}, x_{m_k}) \leqslant 2d(J_{\lambda_{m_k}}x_{m_k}, x_{m_k})$, which implies $d(J_{\lambda}x_{m_k}, x_{m_k}) \to 0$. Therefore, by the lemma 2.8, we have $\limsup_{k \to \infty} \langle \overrightarrow{up}, \overrightarrow{x_{m_k}p} \rangle \leqslant 0$, and by the lemma 2.13, we obtain

$$\limsup_{k \to \infty} \langle \overrightarrow{up}, \overrightarrow{J_{\lambda_{m_k}} x_{m_k} p} \rangle \leqslant 0.$$

Hence, we get $\limsup_{k\to\infty}(\beta_{m_k}d^2(u,p)+2(1-\beta_{m_k})(1-\alpha_{m_k})d(u,p)d(J_{\lambda_{m_k}}x_{m_k},x_{m_k})+2(1-\beta_{m_k})\langle\overrightarrow{up},\overrightarrow{J_{\lambda_{m_k}}x_{m_k}p}\rangle)\leqslant 0.$ By the boundedness of $(J_{\lambda_n}x_n)$ and (x_n) , we obtain $\sum_n 2\alpha_n d(x_n,p)d(J_{\lambda_n}x_n,p)<\infty$. Hence, by the lemma 2.13, we know $\lim_{n\to\infty}d(x_n,p)\to 0$. This completes the proof.

Theorem 3.2. Let X be a Hadamard space and X^* be the dual space of X. Let $f: X \to (-\infty, +\infty]$ be a proper convex and lower semi-continuous function, and ∂f is the subdifferential of f. Suppose (λ_n) is a sequence of positive real numbers such that $\lambda_n \geq \lambda > 0$, (α_n) is a sequence in [0,1] satisfied $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_n \alpha_n = \infty$, and (β_n) is a sequence in [0,1] satisfied $\lim_{n\to\infty} \sup \beta_n < 1$. The sequence (x_n) generated by the following Halpern-Mann hybrid type algorithm:

$$\begin{cases} x_{0}, u \in X, \\ w_{n} = \underset{x \in X}{\operatorname{argmin}} \{ f(x) + \frac{1}{2\lambda_{n}} d^{2}(x, x_{n}) \}, \\ y_{n} = \alpha_{n} u \oplus (1 - \alpha_{n}) w_{n}, \\ z_{n} = \underset{y \in X}{\operatorname{argmin}} \{ f(y) + \frac{1}{2\lambda_{n}} d^{2}(y, y_{n}) \}, \\ x_{n+1} = \beta_{n} y_{n} \oplus (1 - \beta_{n}) z_{n}. \end{cases}$$
(3.3)

Then the sequence is Δ -convergent to a point $p \in \partial f^{-1}(0)$.

Proof. By the lemma 2.15, the upper algorithm is equivalent to the following algorithm:

$$\begin{cases}
 x_0, u \in X, \\
 y_n = \alpha_n u \oplus (1 - \alpha_n) J_{\lambda_n} x_n, \\
 x_{n+1} = \beta_n y_n \oplus (1 - \beta_n) J_{\lambda_n} y_n,
\end{cases}$$
(3.4)

where we use J_{λ_n} instead of $J_{\lambda_n}^{\partial f}$.

Let $p \in \partial f^{-1}(0)$, we have

$$d(x_{n+1}, p) \leqslant \beta_n d(y_n, p) + (1 - \beta_n) d(J_{\lambda_n} y_n, p) \leqslant d(y_n, p)$$

$$\leqslant \alpha_n d(u, p) + (1 - \alpha_n) d(J_{\lambda_n} x_n, p) \leqslant \alpha_n d(u, p) + (1 - \alpha_n) d(x_n, p),$$

which implies $d(x_{n+1}, p) \leq \max\{d(u, p), d(x_0, p)\}$. Hence, (x_n) is a bounded sequence. Since $d(J_{\lambda_n}x_n, p) \leq d(x_n, p)$, then $(J_{\lambda_n}x_n)$ is also bounded. Let $\max\{d(u, p), d(x_0, p)\} = M$. By the assuming, for arbitrary $\varepsilon > 0$, there is a integer N > 0 such that we have $\alpha_n < \frac{\varepsilon}{M}$ for n > N. Therefore, for n > N, we obtain

$$d(x_{n+1}, p) \leqslant d(u, p) \cdot \frac{\varepsilon}{M} + d(x_n, p) \leqslant \varepsilon + d(x_n, p).$$

By the arbitrariness of ε , we get $d(x_{n+1}, p) \leq d(x_n, p)$, which implies existence of $\lim_{n} d(x_n, p)$. Hence, we have

$$0 = \lim_{n} [d(x_{n+1}, p) - d(x_n, p)]$$

$$\leq \lim_{n} \inf [\beta_n d(y_n, p) + (1 - \beta_n) d(J_{\lambda_n} y_n, p) - d(x_n, p)]$$

$$\leq \lim_{n} \inf [\alpha_n d(u, p) + (1 - \alpha_n) d(J_{\lambda_n} x_n, p) - d(x_n, p)]$$

$$\leq \lim_{n} \sup_{n} [\alpha_n d(u, p) + (1 - \alpha_n) d(J_{\lambda_n} x_n, p) - d(x_n, p)]$$

$$\leq \lim_{n} \sup_{n} [\alpha_n d(u, p) - \alpha_n d(x_n, p)]$$

$$= \lim_{n} \sup_{n} \alpha_n [d(u, p) - d(x_n, p)] = 0,$$

which means $\lim_{n} [\alpha_n d(u, p) + (1 - \alpha_n) d(J_{\lambda_n} x_n, p) - d(x_n, p)] = 0$. Hence, we obtain

$$\lim_{n} [d(J_{\lambda_n} x_n, p) - d(x_n, p)] = \lim_{n} \alpha_n [d(J_{\lambda_n} x_n, p) - d(u, p)] = 0.$$

Since J_{λ_n} is firmly nonexpansive, we have

$$d^{2}(J_{\lambda_{n}}x_{n},p) \leqslant \langle \overrightarrow{J_{\lambda_{n}}x_{n}p}, \overrightarrow{x_{n}p} \rangle = \frac{1}{2}(d^{2}(J_{\lambda_{n}}x_{n},p) + d^{2}(x_{n},p) - d^{2}(J_{\lambda_{n}}x_{n},x_{n})),$$

which implies $d^2(J_{\lambda_n}x_n, x_n) \leq d^2(x_n, p) - d^2(J_{\lambda_n}x_n, p)$. By the boundedness of (x_n) and $(J_{\lambda_n}x_n)$, we get

$$\lim_{n} d(J_{\lambda_n} x_n, x_n) = 0.$$

Thus, by the (3) of lemma 2.9, we obtain

$$d(J_{\lambda}x_n, x_n) \leqslant 2d(J_{\lambda_n}x_n, x_n),$$

which implies $\lim d(J_{\lambda}x_n, x_n) = 0$.

If subsequence (x_{n_j}) of (x_n) is Δ -convergent to $q \in X$, then we have $d(J_{\lambda}x_{n_j}, x_{n_j}) \to 0$. Hence, since J_{λ_n} is nonexpansive, by the lemma 2.16, we have $q \in \partial f^{-1}(0)$. This completes the proof.

The following theorem shows that the sequence is Δ -convergent for classic Ishikawa type algorithm.

Theorem 3.3. Let X be a Hadamard space and X^* be the dual space of X. Let $f: X \to (-\infty, +\infty]$ be a proper convex and lower semi-continuous function, and ∂f is the subdifferential of f. Suppose (λ_n) is a sequence of positive real numbers such that $\lambda_n \geq \lambda > 0$, and (α_n) , (β_n) are two sequences in [0,1] satisfied $\limsup_{n\to\infty} \alpha_n < 1$ and $\limsup_{n\to\infty} \beta_n < 1$, respectively. The sequence (x_n) generated by the following Ishikawa type algorithm:

$$\begin{cases} x_{0}, u \in X, \\ w_{n} = \underset{x \in X}{\operatorname{argmin}} \{ f(x) + \frac{1}{2\lambda_{n}} d^{2}(x, x_{n}) \}, \\ y_{n} = \alpha_{n} x_{n} \oplus (1 - \alpha_{n}) w_{n}, \\ z_{n} = \underset{y \in X}{\operatorname{argmin}} \{ f(y) + \frac{1}{2\lambda_{n}} d^{2}(y, y_{n}) \}, \\ x_{n+1} = \beta_{n} x_{n} \oplus (1 - \beta_{n}) z_{n}. \end{cases}$$
(3.5)

Then the sequence is Δ -convergent to a point $p \in \partial f^{-1}(0)$.

Proof. It is similar to theorem 3.2.

References

- [1] Ahmadi Kakavandi B, Amini M. Duality and subdifferential for convex functions on complete CAT(0) metric spaces.[J]. Nonlinear Analysis, 2010, 73(10):3450-3455.
- [2] Ranjbar S, Khatibzadeh H. Strong and Δ -Convergence to a Zero of a Monotone Operator in CAT(0) Spaces[J]. Mediterranean Journal of Mathematics, 2017, 14(2):56.

- [3] Berg I D, Nikolaev I G. Quasilinearization and curvature of Aleksandrov spaces[J]. Geometriae Dedicata, 2008, 133(1):195-218.
- [4] Khatibzadeh H, Ranjbar S. MONOTONE OPERATORS AND THE PROXIMAL POINT ALGORITHM IN COMPLETE CAT(0) METRIC SPACES[J]. Journal of the Australian Mathematical Society, 2016:1-21.
- [5] S. Dhompongsa, B. Panyanak. On Δ -convergence theorems in CAT(0) spaces[M]. Pergamon Press, Inc. 2008.
- [6] Khatibzadeh H, Ranjbar S. A variational inequality in complete CAT(0) s-paces[J]. Journal of Fixed Point Theory and Applications, 2015, 17(3):557-574.
- [7] Kirk W A. Geodesic Geometry and Fixed Point Theory. II[C]// 2003:113-142.
- [8] Xu H K. Iterative Algorithms for Nonlinear Operators[J]. Journal of the London Mathematical Society, 2002, 66(1):240-256.
- [9] Paul-Emile Maing. The viscosity approximation process for quasinonexpansive mappings in Hilbert spaces[J]. Computers and Mathematics with Applications, 2010, 59(1):74-79.
- [10] Saejung S, Yotkaew P. Approximation of zeros of inverse strongly monotone operators in Banach spaces[J]. Nonlinear Analysis Theory Methods and Applications, 2012, 75(2):742-750.
- [11] Kirk W A, Panyanak B. A concept of convergence in geodesic spaces[J]. Nonlinear Analysis Theory Methods and Applications, 2008, 68(12):3689-3696.