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Abstract

In this paper, by the classic Mann-type and Halpern-type algorithm-
s, on the basis of monotone operators with firmly nonexpansive property,
we build Mann-Halpern type and Halpern-Mann type proximal point al-
gorithms about a zero of monotone operators in Hadamard space, and
prove strong convergence and A—convergence to a zero of monotone

operators, respectively.
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1 Introduction

Let (X, d) be a metric space[11]. A geodesic path joining z € X toy € X (or,
more briefly, a geodesic from z to y) is a map f from a closed interval [0,]] C R
to X such that f(0) =z, f(I) =y and d(f(¢), f(t')) = |t —t| for all ¢, ¢’ € [0,1].
In particular, f is an isometry and d(z,y) = [. The image « of f is called a
geodesic (or metric) segment joining x and y. When it is unique this geodesic
is denoted [z,y]. The space (X,d) is said to be a geodesic space if every two
points of X are joined by a geodesic, and X is said to be uniquely geodesic
if there is exactly one geodesic joining x and y for each x,y € X. A subset
Y C X is said to be convex if Y includes every geodesic segment joining any
two of its points.

A geodesic space (X, d) is a CAT(0) space if it satisfies the following C'N-
inequality for x, zo, 21, 20 € X such that d(zo, 21) = d(z0, 22) = %d(zl, Z9):

d*(z, z9) < %dQ(x, 21) + %d2(ac, 29) — ;ldQ(zl, 29).

A complete CAT(0) space is called a Hadamard space.

Berg and Nikolaev|3] introduced the concept of quasi-linearization in CAT(0)
space X. They denoted a vector by % for (a,b) € X x X and defined the
quasi-linearization map (-,-) : (X x X) x (X x X) — R as follow:

(ab, cd) = %[d2(a, d) + d2(b, ¢) — d(a, ¢) — (b, d)],

for a,b,c,d € X. We can verify (%, %) = d*(a,b), (%,&% = —(%,&%, and
(%, &?> = (@, zl> + <£, Ei) for all a,b,c,d,e € X. For a space X, it satisfies
the Cauchy-Schwarz inequality if

(ab, cd) < d(a, b)d(c, d)

for all a,b,c,d € X.It is known[3] that a geodesically connected metric space
X is a CAT(0) space if and only if it satisfies the Cauchy-Schwarz inequality.

Ahmadi Kakavandi and Amini[l] introduced the concept of dual space of
a complete CAT(0) space X based on a work of Berg and Nikolaev[4]. Also,

we use the following notation:

(ax™ + By*, 7)== ofa*, T) + Bly", ),
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for a, B € R, x,y € X,and x*,y* € X*, where X* is the dual space of X.

It is known that the subdifferential of every proper convex and lower semi-
continuous function is maximal monotone in Hilbert spaces, and it satisfies
the range condition. Ahmadi Kakavandi and Amini[l] also introduced the
subdifferential of a proper convex and lower semi-continuous function on a
Hadamard space X as a monotone operator from X to X*.

By the application of the dual theory[1], H.Khatibzadch and S.Ranjbar|2]
have showed that the sequences generated by the Mann-type and the Halpern-
type proximal point algorithm containing the resolvent of a monotone operator
which satisfies range condition are strong convergence and A—convergence
to a zero of a monotone operator in a complete CAT(0) space, respectively.
Hence, we build Mann-Halpern type and Halpern-Mann type proximal point
algorithms about zeros of the subdifferential of proper convex and lower semi-
continuous function in Hadamard space, and prove strong convergence and
A—convergence to a zero of a monotone operator, respectively. Therefore, we

improve and extend their results.

2 Preliminary

Definition 2.1. [/] Let A > 0 and A : X — 2% be a set-valued operator. The
resolvent of A of order X is the set-valued mapping Jy : X — 2% defined by
Jn(z):={z€ X : [%z?] € Az},

Definition 2.2. [j] Let T : C € X — X be a mapping. We say that T is
—
firmly nonexpansive if d*(Tz, Ty) < (TxTy, :@> for any x,y € C.

Let X be a Hadamard space with dual X* and let A : X — 2% be a
multivalued operator with domain D(A) := {z € X : Az # 0}, rangeR(A) :=
U,ex Az, A7H(2*) := {o € X : 2* € Az} and graph gra(A) = {(z,2*) €
X x X*:xe D(A),z* € Az}

Definition 2.3. [// Let X be a Hadamard space with dual X*. The multivalued
operator A : X — 2X7 is:
(1) monotone if and only if, for all x,y € D(A), * € Ax and y* € Ay,
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(2) strictly monotone if and only if for all x,y € D(A), z* € Ax and
yr e Ay,
<$* - y*7ﬁ> > Oa

(3) a—strongly monotone for a > 0 if and only if, for all z,y € D(A),
r* € Ax and y* € Ay,

(z* =y, &) > ad(z,y).

Definition 2.4. [/} Let X be a CAT(0) space, x,y € X, we write (1 —t)xdty
for the unique point z in the geodesic segment joining from x to y such that
d(z,z) =td(x,y) and d(y,z) = (1 — t)d(x,y). Set [z,y] ={(1—t)x Dty :t e
[0,1]}. A subset C of X is called convez if [x,y] C C for all z,y € C.

Let X be a Hadamard space with dual X* and let f : X — (—o0, +o0]
be a proper function with efficient domain D(f) = {z; f(z) < +o0o}, then the
subdifferential of f is the multifunction df : X — 2%~ defined by

Of(x) = {2" € X" f(2) = f(2) = (2", 7%) (z € X)},
when = € D(f) and 0f(z) = (), otherwise.

Lemma 2.5. [5] Let (X,d) be a CAT(0) space. Then, for all z,y,z € X, and
allt €0, 1]:

(1) d*(tz ® (1 —t)y, z) < td*(x,z) + (1 — t)d*(y, z) — t(1 — t)d?*(z, y),

(2) d(tx® (1 —t)y,z) < td(z,2) + (1 —t)d(y, 2). In addition, by using (1)
we have

dtz@ (1 —=t)y,te® (1 —1t)z] < (1 —t)d(y, 2).

Lemma 2.6. [4] Let (X,d) be a CAT(0) space and a,b,c € X. Then for each
A€ 0,1],

Pz @® (1 — Ny, 2) < NdP(x,2) + (1= V)2d%(y, 2) + 2X(1 — M) (22, 72).

Lemma 2.7. [7] Let C be a closed convez subset of a complete CAT(0) space
X, T:C — C be a nonexpansive mapping with a fixed point and uw € C. For
each t € (0,1), set zp = tu @ (1 — t)Tz. Then z; converges ast — 0 to the

unique fized point of T', which is the nearest point to u.
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Lemma 2.8. [6] Let C be a closed convez subset of a complete CAT(0) space
X, T :C — C be a nonexpansive mapping with F(T) # 0 and {x,} be a
bounded sequence in C' such that the sequence {d(x,,Tx,)} converges to zero.
Then

lim sup(iap, Z,p) < 0,

where u € C' and p is the nearest point of F(T) to u.

Lemma 2.9. [4] Let X be a CAT(0) space and Jy is resolvent of the operator
A of order \. We have,

(1) For any A > 0, R(J\) C D(A), F(J\) = A~Y0);

(2) If A is monotone then Jy is a single-valued and firmly nonexpansive
mapping;

(3) If A is monotone and X < i, then d(x, Jyx) < 2d(z, J,x).

It is well known[4] that if T' is a nonexpansive mapping on subset C of
CAT(0) space X then F(T) is closed and convex. Thus, if A is a monotone
operator on CAT(0) space X then, by parts (1) and (2) of lemma 2.9, A~1(0)

is closed and convex.

Lemma 2.10. /8] Let (s,) be a sequence of non-negative real numbers satis-
fying
Sni1 < (1= an)sn + anfy + Ya,n 2 0,

where , (o), (Bn) and (7v,) satisfy the conditions:
(1) (o) C [0,1], > v, = 00, or equivalently, []72 (1 — ay,) = 0;
(2) limsup,, 3, < 0;
(3) Y =2 0(n 20), > v < o0o. Then, lim,s, = 0.

Lemma 2.11. [9] Let () be a sequence of real numbers such that there ezists
a subsequence (Yn,;) of (Yn) such that vn, < Yn,41 for all j = 1. Then there
exists a nondecreasing sequence (my) of positive integers such that the following
two inequalities:

hold for all (sufficiently large) numbers k. In fact, my is the largest number n
in the set {1,2,--- |k} such that the condition ~y, < Yn+1 holds.

By the lemma 2.6 of S Saejung and P Yotkaew[10], we can similarly obtain
the following lemma.
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Lemma 2.12. Let (s,) be a sequence of nonnegative real numbers, (c,) be a
sequence in (0,1) such that ) a, = o0, (t,) be a sequence of real numbers,
and (v,) be a sequence of nonnegative real numbers such that ) v, < oo.
Suppose that

Spr1 < (1 — ap)sp + anty + Ynyn = 1.

Iflim supy,_, . tn, < 0 for every subsequence (sy, ) of (s,) satisfying liminfy_, o (Sp, +1—

Sp,,) = 0, then lim,s, = 0.

Proof. The proof is split into two cases.

(1) There exists an ng € N such that s,1 < s, for all n > ng. It follows
then that lim inf,, o (Sp+1—$,) = 0. Hence limsup,,_, ¢, < 0. The conclusion
follows from lemma 2.10.

(2) There exists a subsequence (sy,,) of (s,) such that s,,; < spy,41 for all
J € N. In this case, we can apply lemma 2.11 to find a nondecreasing sequence

{ni} of {n} such that n;, — oo and the following two inequalities:
Sny S Snp41 AN S < Syt

hold for all (sufficiently large) numbers k. Since ny — oo, then for arbitrary
¢ > 0, there is a integer N > 0 such that ~,, < ¢ for n, > N. It follows
from the first inequality that liminfy oo (Sn,+1 — Sn,) = 0. This implies that

lim sup;,_, tn, < 0. Moreover, by the first inequality again, we have
Snp+1 < (1 - ank)snk + anktnk + T < (1 - an)snk+l + anktnk +e,
this implies oy, Sy, +1 < Qp, by, + € for arbitrary € > 0. By the arbitrariness of
€, we obtain
anksnk—i—l < anktnk

In particular, since each «,, > 0, we have s, 1 < t,,. Finally, it follows from
the second inequality that
lim sup s; < lim sup s,,, 41 < lim supt,, = 0.
k—00 k—o00 k—o00

Hence lim,,_,».s, = 0. This completes the proof. O

Lemma 2.13. /2] Suppose (X,d) is a metric space and C C X. Let (T,,)22 :
C — C be a sequence of nonexpansive mappings with a common fixed point

and (x,) be a bounded sequence such that lim,d(z,, T, (z,)) = 0. Then

lim sup (up, T, (z,)p) < lim sup(up, Z.p),
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where p € (,—_, F(T,).

Lemma 2.14. [1] Let f : X — (—o00,400| be a proper, lower semi-continuous
and convex function on a Hadamard space X with dual X*. Then

(1) f attains its minimum at x € X if and only if 0 € Of(x);

(2) 0f : X — 2% is a monotone operator;

(3) for any y € X and o > 0, there exist a unique point x — X such that

[azg] € 9f (x).

By the (3) of lemma 2.14, we obtain the subdifferential of a proper, lower

semi-continuous and convex function satisfies the range condition.

Lemma 2.15. [}/ Let f : X — (—o00,400| be a proper, lower semi-continuous

and convex function on a Hadamard space X with dual X*. Then

1
JY e = Argmin{f(z) + —~d?(z,z)}
zeX 2\

forall A >0 and x € X.

Lemma 2.16. [11] Let K be a closed convex subset of X, and let f: K — X
be a nonezpansive mapping. Then the conditions (x,) A—converges to x and
d(xp, f(x,)) — 0, imply x € K and f(z) = x.

3 Main Results

Theorem 3.1. Let X be a Hadamard space and X* be the dual space of X. Let
f:X — (—o0,400] be a proper convex and lower semi-continuous function,
and Of is the subdifferential of f. Suppose (\,) is a sequence of positive real
numbers such that A, > X > 0, (ay,) is a sequence in [0, 1] satisfied ) ., o, < 00,
and (B,) is a sequence in [0,1] satisfied lim f, = 0 and ) B, = co. The
sequence (x,) generated by the following ]\T/L[Z;)Lon—Halpem hybrid type algorithm:

(

o, u € X,
wy, = argmin{ f(x) + p=d*(x, z,)},
reX "
Yn = Qpdp b (1 - an)wn7 (31)

zp = argmin{ f(y) + ﬁdQ(?/a Yn)},
yeX

Tpy1 = 5nu > (1 - 5n)zn
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Then the sequence is convergent strongly to the nearest point of df~(0) to u.
Proof. By the lemma 2.15, the upper algorithm is equivalent to the following
algorithm:

ZTo, U € X,

Yn = @y, ® (1 — ay) Iy, T, (3.2)

Tnt1 = Batt & (1 = Br)Jx, Yn,

where we use J,, instead of Jf:j .

Since 0f71(0) is convex and closed. Set p € Pys-1(gyu, we have

d(@p41,p) < Bud(u, p) + (1 = Bo)d(Jx,Yn, p)
< Bud(u,p) + (1 = Bp)and(zn, p) + (1 — Bu)(1 — a)d(Jx, Tn, p)
< Bud(u, p) + (1 = Bp)d(zn, p) < max{d(u,p), d(z,,p)}
< - < max{d(u, p), d(z0,p)},

which implies that (z,,) is bounded. Since d(Jy,zn,p) < d(zn,p), then (Jy,z,)
is also bounded.

By the lemma 2.5, we have

&*(2n11,p) = P(Bau® (1 = B,) I\, Yn, )
< B2, p) + (1= B)2d2(Jn, s P) + 28a(1 = Bo) (@b, T, ynD)
< B d* (u, p) + (1 = Bn)* (0’ d* (w0, p) + (1 — an)*d*(Jr, %0, D))
+2(1 = Bo)tn(1 = @) (@b, Tarn) + 28(1 — Ba) (@B, T, yab)
< (1= Bu) (1 = 20(1 = a,))d (2, p)) + B2d(u,p)
+28,(1 = Bo) (@, Tn g nn) + 2Bu(1 = Bu) T, T, )
+2(1 = Bu)2an(l — an)(Tab, Tn, 2ap)
< (1= B (0 p) + Bu(Bud? (. p) + 2(1 = B,) (@, T, 2uD)
+2(1 = Bo)d(u, p)d(yns 1)) + 2000 (T, T, )
< (1= B (0, p) + Ba(Bud? (. p) + 2(1 = B,) (@, T, 2uD)
+2(1 — B,)d(u, p)|and(zn, x,) + (1 — an)d(JIy, Tn, T4)])
+ 20, (T, T D)
< (1= B (i, p) + Bu(Bud? (. p) + 2(1 = B,) (@, T, 2uD)
+2(1 — 8,)(1 — ap)d(u, p)d(Jx, Tn, ) + 20,d (2, p)d( Iy, Tn, P),
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which implies

—
d2<In+1,p) < (1 - 6n)d2(l’mp) + Bn(ﬂnd2<u7p) + 2(1 - Bn)<@a J)\nefnp>
+ 2<1 - ﬁn)(l - an)d(uap)d(J/\nxna xn)) + Qand<xnap)d('])\n$n>p)'
By the lemma 2.12, it suffices to show that limsup(8,,, d*(u,p) + 2(1 —
k—o00

=
Buna) (L=t )d(w, D)A(In,,, T, ) +2(1 = B b, In,,, T, D)) <

subsequence (d(z, ,p)) of (d(x,, p)) satisfying lilgn inf(d(zm,+1,

0 for every

p)—=d(zm,,p)) >
0. For this, suppose the subsequence (d(z,, ,p)) satisfied hm mf(d(a:mkﬂ,p) —

d(zp,,p)) = 0. Then

< liminf(d(2m, 11, p) — d(Tm,, D))

k—o0

(
< liminf (B, d(u, p) + (1 = By )d( I, Ymys ) = d(@my 5 D))
(/Bmk ( ) (1 - /Bmk)d(ymk7p) d(‘rmkvp»
(5mkd( ) (1 - Bmk)(amk (xmkﬂp)

+ (1 - amk)d(‘])\mkxmk’p)) - d<xmkap))
< lim nf(B, (d(u. ) — d(y,.)

+ (1 = By ) (1 = @ )(d( I, T, P) — ATy, )
< lim SUP(Bmk (d(u,p) — d(mmk,p)))

k—o0

+ liminf(1 — B, ) (1 = am, ) (d(Jr,, Ty ) — d(2m,, D))

k—o0

= h}?_l)lnf( ﬁﬂ%)( amk)<d(‘])\mkxmk7p> - d<xmk’p))
< limsup(l = B, ) (1 = i, )(d( I, Ty P) — d(@y,, D))

k—o0

< limsup(l — B, ) (1 — am, ) (d(Tmy,, p) — (T, p)) = 0,

k—o0

hence, hm (d(JIx,n, Ty, P) — d(Timy, p)) = 0. Since Jy, is firmly nonexpansive,
k—o0
we have

d (J)\nxmp J)\nxnpw'ﬁ Jknxmp) +d (xmp> d (Jknxn,xn»’
which implies d?(Jy, Zn, Tp) < d*(xpn, p) — d*(Jy, Ty, p). Then we can get

d2(J)\mkxmk7 ka) < d2<xmk7p) - dQ(JAmkkavp)u
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by the boundedness of (z,,, ), which implies d(J,\mka:mk,xmk) — 0. By the
(3) of lemma 2.9, we obtain d(JxZm,, Tm,) < 2d(Jx,, Tmy, Tm, ), which implies

d(J T, , Tm, ) — 0. Therefore, by the lemma 2.8, we have lim sup(@, T, D) <
k—o00

0, and by the lemma 2.13, we obtain

—_—
lim sup(@, ;. Ty, D) < 0.

k—o00

Hence, we get lim sup(3,,, d*(u, p)+2(1— B, ) (1=, )d(u, p)d( Iy, Ty Ty )+

k—oo
2(1 — B, ) (U, rm, Tm,, D)) < 0. By the boundedness of (J,z,) and (z,), we
obtain ), 20,d(z,, p)d(Jx,zn,p) < co. Hence, by the lemma 2.13, we know
lim d(z,,p) — 0. This completes the proof.
n—oo
[

Theorem 3.2. Let X be a Hadamard space and X* be the dual space of X. Let
f: X — (=00, 400] be a proper convex and lower semi-continuous function,
and Of is the subdifferential of f. Suppose (\,) is a sequence of positive real
numbers such that A, = X > 0, (ay,) is a sequence in [0, 1] satisfied nhjr;(} a, =0

and ) o, =00, and (B,) is a sequence in [0, 1] satisfied limsup f,, < 1. The

n—oo

sequence (x,,) generated by the following Halpern-Mann hybrid type algorithm.:

(

To,u € X,
Wn = argmm{f(x) + %"CF(:U? xn)}7
zeX
Yn = apu ® (1 — )Wy, (3.3)

zn = argmind{ f(y) + ﬁnd%y, Yn)},
yeX

Tpny1 = 5nyn S (1 - ﬁn)zn

\

Then the sequence is A—convergent to a point p € Of~1(0).

Proof. By the lemma 2.15, the upper algorithm is equivalent to the following

algorithm:

o, u € X,
Yn = anu ® (1 — ay,)Jy, Tn, (3.4)
Tp4+1 = Bnyn S¥ (1 - ﬁn)JAny’m

where we use Jy, instead of ij .
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Let p € 9f71(0), we have

d(Tn11,0) < Bud(Yn, p) + (1 = Ba)d(Ir,Yn, p) < d(Yn, D)
< and( ) (1 - O‘n)d<*]>\nxnap) < and(u p) + (1 - an)d(ajn»p)v

which implies d(x,11,p) < max{d(u,p),d(xo,p)}. Hence, (z,) is a bounded
sequence. Since d(Jy,z,,p) < d(zn,p), then (Jy,z,) is also bounded. Let
max{d(u,p),d(zg,p)} = M. By the assuming, for arbitrary ¢ > 0, there is a
integer N > 0 such that we have a,, < ; for n > N. Therefore, for n > N,

we obtain

d('xn—i-lap) < d<u>p) M + d(xnap) €+ d(xnap)

By the arbitrariness of ¢, we get d(x,41,p) < d(z,, p), which implies existence

of limd(zx,, p). Hence, we have

0 = lim[d(zn+1,p) = d(wn, p)]
< lim inf[Byd(yn, p) + (1 = Ba)d(Jx,yn, p) = d(wn, p)]
< limninf[and(u,p) + (1 — a)d(JIn, Tn, p) — d(xy, p)]
< 1imnsup[04nd(u7p) + (1 = an)d(Jx, 20, p) — d(20, p)]

< lim sup|ay,d(u, p) — and(zp, p)]

n

= lim sup oy, [d(u, p) — d(zn, p)] = 0,

n

which means lim[a,d(u,p) + (1 — a,,)d(Jy, xn, p) — d(z,p)] = 0. Hence, we
obtain

Hm([d(Jy, %0, p) — d(2n, )] = lim &, [d(J, 0, p) — d(u,p)] = 0.
Since J), is firmly nonexpansive, we have
dQ(J)\nIn,p J)\nxnpvﬁ J)xnxnvp) +d2(xn7p) d (J)\n'rnaxn>>7

which implies d?(Jy, z, T,) < dQ(xn,p) — d*(Jy, Ty, p). By the boundedness of
() and (Jy,x,), we get

limd(Jy, zp, z,) = 0.
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Thus, by the (3) of lemma 2.9, we obtain
d<<])\xm xn) < 2d<<])\n~rn7 l’n),

which implies lim d(Jyz,,, z,,) = 0.

If subsequer?ce (zn,;) of (x,) is A—convergent to ¢ € X, then we have
d(JxTn;, Tn;) — 0. Hence, since Jy, is nonexpansive, by the lemma 2.16, we
have ¢ € 9f~1(0). This completes the proof. O

The following theorem shows that the sequence is A—convergent for classic

Ishikawa type algorithm.

Theorem 3.3. Let X be a Hadamard space and X* be the dual space of X . Let
f:X — (—o0,400] be a proper convex and lower semi-continuous function,
and Of is the subdifferential of f. Suppose (\,) is a sequence of positive real
numbers such that A\, > X > 0, and (o), (Bn) are two sequences in [0, 1]

satisfied limsup v, < 1 and limsup 8, < 1, respectively. The sequence (x,)
n—oo n—oo

generated by the following Ishikawa type algorithm:

(

To,u € X,

wy, = argg?(in{f(m) + 5@ (2, )},

Yn = Ty @ (1 — )Wy, (3.5)
50 = argmin{F(s) + (0.}

\

Then the sequence is A—convergent to a point p € 0f~1(0).

Proof. 1t is similar to theorem 3.2. [
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