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A try to prove Riemann’s Hypothesis

Robert Deloin1

Abstract

Riemann’s conjecture (1859) states that:

The real part of every non trivial zero of Riemann’s zeta function is 1/2.

The main contribution of this paper is to use the classical approach

to this conjecture whose the key idea is to provide a self-adjoint operator

whose real eigenvalues are the imaginary part of the non trivial zeros of

Riemann’s zeta function and whose existence, according to Hilbert and

Pólya, proves Riemann’s hypothesis.
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1 Introduction

In his book [1] of 1748, Leonhard Euler (1707-1783) proved what is now named

the Euler product formula. This product is the result of the infinite sum:

∑∞
n=1

1

ns
=
∏

p∈P(1− 1/ps)−1 for any integer variable s > 1
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where P is the infinite set of primes.

In his article [2] of 1859, Riemann (1826-1866) extended the Euler definition

to the complex variable s of the zeta function:

ζ(s) =
∏

p∈P(1− 1/ps)−1 for any complex variable s 6= 1

It is known that the trivial zeros of the function are the infinite set:

{s1} = −2m for all integers m > 0

Riemann’s hypothesis can be seen as stating that:

Probably, the infinite set of the non trivial zeros {s2} of ζ(s) can be written:

{s2} = 1
2

+ itn where tn is real.

This conjecture is the first point of the eighth unresolved problem (among 23)

that Hilbert listed in 1900 [3] as well as the second unresolved problem listed

in 2000 by The Clay Mathematics Institute [4].

2 Preliminary notes

2.1 Hilbert-Pólya statement

Circa 1914, Hilbert et Pólya [5], independently from each other, have orally

stated that Riemann’s hypothesis would be proved if it could be shown that

the imaginary parts tn of the non trivial zeros of the symmetrical xi function

ξ(s) derived from ζ(s), corresponded to the real eigenvalues of an unbounded

self-adjoint operator (here named Ĥξ) for which we could write:

Ĥξψk = Ekψk (1)

which is an equation of quantum physics where E is for energy.

So, the first and unique purely mathematical clue that we have is that this

operator should be a square matrix of infinite dimension with real eigenvalues.

This means that it could be written:

Ĥξ =



. . . . . . . . . . . . . . . . . .

. . . tn−1 0 0 0 . . .

. . . 0 tn 0 0 . . .

. . . 0 0 tn+1 0 . . .

. . . 0 0 0 tn+2 . . .

. . . . . . . . . . . . . . . . . .


all ti being real
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3 Proof of Riemann’s Hypothesis

The proof will be established in two steps:

The first one establishes only a conditional proof.

The second one establishes the unconditional proof.

3.1 Conditional proof of Riemann Hypothesis

Proof. By definition, a complex number s is written:

s = x+ iy where x and y are real and i =
√
−1

By changing the conventional basis of coordinates (x, y) of the complex plane

into the new one (x′ = 1
2
− x, y′ = y), these complex numbers can be written:

s′ = x′ + iy′ in the new basis

or:

s′ = (1
2
− x) + iy using the change in coordinates.

Condition. We suppose that the Ĥξ operator exists and that it contains the

infinitely many real eigenvalues tn coming from the non trivial zeros s2 of ζ(s).

Hypothesis. We then suppose that these non trivial zeros lie anywhere

in the complex plane with the two exceptions that they cannot lie on the real

axis x or x’ (reserved for trivial zeros s1), which gives:

y 6= 0 and y′ 6= 0

nor on the conventional critical line x = 1
2

that becomes the new imaginary

axis y′, which gives:

x 6= 1
2

and x′ 6= 0

Then, each non trivial zero s2 of ζ(s) could be written:

s2 = x′2 + iy′2 with x′2 6= 0 and y′2 6= 0

or, using the change in coordinates:

s2 = (1
2
− x2) + iy2 with x2 6= 1

2
and y2 6= 0

But using the fact that −x2 = i2x2, they can be written:

s2 = (1
2

+ i2x2) + iy2 = 1
2

+ i(y2 + ix2) with x2 6= 1
2

and y2 6= 0

or:

s2 = 1
2

+ it2 with t2 = y2 + ix2, x2 6= 1
2

and y2 6= 0
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and we get the result that the non trivial zeros can exist only when x2 = 0 to

have t2 real, a result that is false because it is known that all non trivial zeros

lie in the critical strip 0 < x = Re(s) < 1 that excludes x = 0.

We thus get the contradiction to our hypothesis that the quantity t2 =

y2 + ix2 is unable, when the critical line x2 = 1
2

is excluded, to provide any

real value tn 6= 0 to the operator Ĥξ. Therefore, as it is known on one hand

that infinitely many non trivial zeros do exist for ζ(s) and on the other hand

that they cannot lie on the x axis nor out of the critical line x = 1
2
, it proves

that they can only lie on this critical line. This, in turn, proves Riemann’s

hypothesis, conditionally to the existence of the Ĥξ operator.

3.2 Unconditional proof of Riemann’s Hypothesis

Proof. Now, as Riemann’s Hypothesis is conditionally proved, the Ĥξ operator

conditionally exists and contains the infinitely many real values tn of the non

trivial zeros {s2} of ζ(s).

To prove that the Ĥξ operator do exists, we will consider the new and larger

operator Ĥζ built with the zeros of both sets of zeros {s1} and {s2} of ζ(s)

as eigenvalues, an operator that also contains the real values tn but not as

eigenvalues:

Ĥζ =



. . . . . . . . . . . . . . . . . . . . . . . .

. . . −6 0 0 0 0 0 . . .

. . . 0 −4 0 0 0 0 . . .

. . . 0 0 −2 0 0 0 . . .

. . . 0 0 0 1
2

+ it1 0 0 . . .

. . . 0 0 0 0 1
2

+ it2 0 . . .

. . . 0 0 0 0 0 1
2

+ it3 . . .

. . . . . . . . . . . . . . . . . . . . . . . .


As this new operator contains the real values tn, it enables us, at any time but

if it exists, to rebuild the operator Ĥξ of Hilbert and Pólya. To simplify the

writing, we set: 
. . . . . . . . . . . .

. . . −6 0 0

. . . 0 −4 0

. . . 0 0 −2

 = (−2m)



Robert Deloin 5

and: 
1
2

+ it1 0 0 . . .

0 1
2

+ it2 0 . . .

0 0 1
2

+ it3 . . .

. . . . . . . . . . . .

 =
(
1
2

+ itn
)

so that Ĥζ can be written:

Ĥζ =

(
(−2m) (0)

(0)
(
1
2

+ itn
))

But the matrices (−2m) and
(
1
2

+ itn
)

representing the sets of zeros {s1} and

{s2} can symbolically be replaced by their parametric form:

−2m, m being a positive integer parameter
1
2

+ itn, tn being a real parameter

The sets {s1} and {s2} can then be considered as the two infinite sets of roots

of the polynomial of complex variable s:

P (s) = (s− s1)(s− s2) = s2 − (s1 + s2)s+ s1s2

P (s,m, t) = s2 − (−2m+ 1
2

+ itn)s− 2m(1
2

+ itn)

P (s,m, t) = s2 + (2m− (1
2

+ itn))s− 2m(1
2

+ itn)

which can be written either:

P (s,m, t) =
(
s2 s 1

)1 0 0

0 (2m− (1
2

+ itn)) 0

0 0 −2m(1
2

+ itn)


1

1

1

 (2)

or:

P (s,m, t) =
(

1 1 1
)1 0 0

0 (2m− (1
2

+ itn)) 0

0 0 −2m(1
2

+ itn)


s2s

1

 (3)

Equation (2) gives, by multiplying the first two matrices:

P (s,m, t) =
(
s2 (2m− (1

2
+ itn))s −2m(1

2
+ itn)

)1

1

1

 = EkψEk
(4)

when we set:
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Ek =
(
s2 (2m− (1

2
+ itn))s −2m(1

2
+ itn)

)
and:

ψEk
=

1

1

1


Now, as from (4) we also have:

P (s,m, t) =
(

1 (2m− (1
2

+ itn)) −2m(1
2

+ itn)
)s2s

1

 = HkψHk
(5)

when we set:

Hk =
(

1 (2m− (1
2

+ itn)) −2m(1
2

+ itn)
)

and:

ψHk
=

s2s
1

 = R̂

1

1

1

 = R̂ψEk

where R̂ is the 3-dimensional rotation matrix from the orthogonal basis ψHk

used to describe Hk to the orthogonal basis ψEk
used to describe Ek, and we

have:

HkψHk
= HkR̂ψEk

= EkψEk

Then, setting Ĥ = HkR̂, we get:

ĤψEk
= EkψEk

(6)

which is identical to equation (1). And the Ĥξ operator looked for by Hilbert

and Pólya can be built with the real values tn of the existing operator:

Ĥ = HkR̂ =
(

1 (2m− (1
2

+ itn)) −2m(1
2

+ itn)
)
R̂

As we can rebuild the self-adjoint operator Ĥξ linked to ζ(s) via the function

P (s,m, t) and the existing operator Ĥ, this self-adjoint operator Ĥξ do exists

and as we have proved earlier that Riemann hypothesis is true conditionally

to the existence of the Ĥξ operator, Riemann hypothesis is unconditionally

proved.

Remark. As Hk can also be written:
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Hk =
(

1 1 1
)1 0 0

0 (2m− (1
2

+ itn)) 0

0 0 −2m(1
2

+ itn)

 =
(

1 1 1
)
Â

when we set:

Â =

1 0 0

0 (2m− (1
2

+ itn)) 0

0 0 −2m(1
2

+ itn)

 (7)

we get from (3) and (2) that:

(
1 1 1

)
Â

s2s
1

 = P (s,m, t) =
(
s2 s 1

)
Â

1

1

1

 (8)

But, for any s = x+ iy, we have:

P (s,m, t) = s2 +
(
2m− (1

2
+ itn)

)
s− 2m

(
1
2

+ itn
)

= (x+ iy)2 +
(
2m− (1

2
+ itn)

)
(x+ iy)− 2m

(
1
2

+ itn
)

=
(
x2 − y2 + (2m− 1

2
)x+ ytn

)
+ i
(
−xtn + y(2m− 1

2
)
)
−m− 2mitn

=
(
x2 − y2 + (2m− 1

2
)x+ ytn −m

)
+ i
(
−xtn + y(2m− 1

2
)− 2mtn

)
and P (s,m, t) will be real only when:

−xtn + y(2m− 1
2
)− 2mtn = 0

and so, for all of the infinitely many lines in the complex plane such that:

y =
tn

2m− 1
2

x+
2mtn

2m− 1
2

where m and tn are the discrete values defined earlier

Then, for all the points of all these lines, we have:

P (s,m, t)lines =

(
x2 − y2 + (2m− 1

2
)x+ ytn

)
= V (x, y), a real value (9)

and therefore for the mono-term matrix (V(x,y)) we have:

(V (x, y)) = (V (x, y)) = (V (x, y))T (10)

where (V (x, y)) is the conjugate matrix of (V (x, y)) and (V (x, y))T is the

conjugate transpose of (V (x, y)). So, from (8), (9) and (10), we can write:
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P (s,m, t)lines = V (x, y) =
(

1 1 1
)
Â

s2s
1

 =

(s2 s 1
)
Â

1

1

1



T

which proves that the operator Â that also provides the real tn to Ĥξ, verifies

the equation of the observables in quantum physics, which is generally written:

< ψ1 | Â | ψ2 >=
(
< ψ2 | Â | ψ1 >

)T
where Â is a self-adjoint operator associated to a physical quantity A, <x| and

|x> are the bra and ket operators and ψ1 and ψ2 are the states of the physical

quantity A before and after the measuring of A.
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[5] Hilbert-Pólya conjecture, read on internet on February 25th, 2016 at:

https://en.wikipedia.org/w/index.php?

title=Hilbert%E2%80%93P%C3%B3lya conjecture&redirect=no


