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Abstract. In this paper, we define the notion of 2-T -magnetic (respectively, 2-N -
magnetic and 2-B-magnetic) curve according to Frenet frame in Euclidean 3-space. Also
we obtain the 2-magnetic vector field V when the curve is a 2-T -magnetic (respectively,
2-N -magnetic and 2-B-magnetic) trajectory of V according to Frenet frame and give
some results and examples for 2-magnetic curves according to Frenet frame.

1. INTRODUCTION

The magnetic curves on a Riemannian manifold (M, g) are trajectories of charged par-
ticles moving on M under the action of a magnetic field F . A magnetic field is a closed
2-form F on M and the Lorentz force of the magnetic field F on (M, g) is a (1,1)-tensor
field Φ given by g(Φ(X), Y ) = F (X, Y ), for any vector fields X, Y ∈ χ(M). In dimension
3, the magnetic fields may be defined using divergence-free vector fields. As Killing vector
fields have zero divergence, one may define a special class of magnetic fields called Killing
magnetic fields.
Different approaches in the study of magnetic curves for a certain magnetic field and on

the fixed energy level have been rewieved by Munteanu in [8]. He has emphasized them
in the case when the magnetic trajectory corresponds to a Killing vector field associated
to a screw motion in the Euclidean 3-space. In [9], the authors have investigated the
trajectories of charged particles moving in a space modeled by the homogeneous 3-space
S2 × R under the action of the Killing magnetic fields.
In [13], the authors have classified all magnetic curves in the 3-dimensional Minkowski

space corresponding to the Killing magnetic field V = a∂x + b∂y + c∂z, with a, b, c ∈ R.
They have found that, these magnetic curves are helices in E31 and draw the most relevant
of them. In 3D semi-Riemannian manifolds, Özdemir et al. have determined the notions of
T -magnetic, N -magnetic andB-magnetic curves and give some characterizations for them,
where T, N an B are the tangent, normal and binormal vectors of the curve α, respectively
[10]. Also in [6], the authors have defined the notions of T -magnetic, N1-magnetic and
N2-magnetic curves according to Bishop frame {T,N1, N2} and ξ1-magnetic, ξ2-magnetic
and B-magnetic curves according to type-2 Bishop frame {ξ1, ξ2, B} in Euclidean 3-space.
They have given some characterizations about these magnetic curves. Furthermore, Kazan
and Karadağ have studied the magnetic pseudo null and magnetic null curves in Minkowski
3-space in [7].
In any 3D Riemannian manifold (M, g), magnetic fields of nonzero constant length are

one to one correspondence to almost contact structure compatible to the metric g. From
this fact, many authors have motivated to study magnetic curves with closed fundamental
2-form in almost contact metric 3-manifolds, Sasakian manifolds, quasi-para-Sasakian
manifolds and etc (see [2], [4], [5], [12]).
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On the other hand, the local theory of space curves has been studied by many mathe-
maticians by using Frenet-Serret theorem.
In this study, we define the notion of 2-T -magnetic (respectively, 2-N -magnetic and

2-B-magnetic) curve according to Frenet frame in Euclidean 3-space. Also we obtain the
2-magnetic vector field V when the curve is a 2-T -magnetic (respectively, 2-N -magnetic
and 2-B-magnetic) trajectory of V according to Frenet frame and give some results and
examples for 2-magnetic curves according to Frenet frame.

2. PRELIMINARIES

Firstly, we will recall Frenet-Serret formulae of a space curve in E3 Euclidean 3-space.
If T , N and B are unit tangent vector field, unit principal normal vector field and unit

binormal vector field of a space curve α, respectively, then {T,N,B} is called the moving
Frenet frame of α and the Frenet-Serret formulae is given by T ′

N ′

B′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 T
N
B

 , (2.1)

where

g(T, T ) = g(N,N) = g(B,B) = 1,

g(T,N) = g(N,B) = g(B, T ) = 0. (2.2)

Here κ and τ are curvature functions which are defined by κ = κ(t) = ‖T ′(t)‖ and
τ = τ(t) = −g(N(t), B′(t)) [3].
Now, we will give some informations about the magnetic curves in 3-dimensional semi-

Riemannian manifolds.
A divergence-free vector field defines a magnetic field in a three-dimensional semi-

Riemannian manifold M . It is known that, V ∈ χ(Mn) is a Killing vector field if and
only if LV g = 0 or, equivalently, ∇V (p) is a skew-symmetric operator in Tp(Mn), at each
point p ∈ Mn. It is clear that, any Killing vector field on (Mn, g) is divergence-free. In
particular, if n = 3, then every Killing vector field defines a magnetic field that will be
called a Killing magnetic field [1].
Let (M, g) be an n-dimensional semi-Riemannian manifold. Amagnetic field is a closed

2-form F on M and the Lorentz force Φ of the magnetic field F on (M, g) is defined to
be a skew-symmetric operator given by

g(Φ(X), Y ) = F (X, Y ), ∀X, Y ∈ χ(M). (2.3)

The magnetic trajectories of F are curves α on M that satisfy the Lorentz equation
(sometimes called the Newton equation)

∇α′α
′ = Φ(α′). (2.4)

The Lorentz equation generalizes the equation satisfied by the geodesics of M , namely
∇α′α

′ = 0.
Note that, one can define onM the cross product of two vectorsX, Y ∈ χ(M) as follows

g(X × Y, Z) = dvg(X, Y, Z), ∀Z ∈ χ(M).

If V is a Killing vector field onM , let FV = ıV dvg be the corresponding Killing magnetic
field. By ı we denote the inner product. Then, the Lorentz force of FV is

Φ(X) = V ×X.
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Consequently, the Lorentz force equation (2.4) can be written as

∇α′α
′ = V × α′ (2.5)

(for detail see [8], [10]).
Now, we will recall the notion of T -magnetic (respectively,N -magnetic andB-magnetic)

curve in Euclidean 3-space.

Definition 1. Let α : I ⊂ R −→ E3 be a curve in Euclidean 3-space and FV be a magnetic
field in E3. If the tangent vector field T (respectively, the normal vector field N and the
binormal field B) of the Frenet frame satisfies the Lorentz force equation ∇α′T = Φ(T ) =
V × T (respectively ∇α′N = Φ(N) = V ×N and ∇α′B = Φ(B) = V ×B), then the curve
α is called a T -magnetic (respectively, N-magnetic and B-magnetic) curve [11].

Proposition 1. Let α be a unit speed T -magnetic (respectively, N-magnetic and B-
magnetic) curve in Euclidean 3-space. Then, the Lorentz force according to the Frenet
frame is obtained as  Φ(T )

Φ(N)
Φ(B)

 =

 0 κ 0
−κ 0 ρ
0 −ρ 0

 T
N
B

 , (2.6)

where ρ is a certain function defined by ρ = g(ΦN,B), (respectively, Φ(T )
Φ(N)
Φ(B)

 =

 0 κ µ
−κ 0 τ
−µ −τ 0

 T
N
B

 , (2.7)

where µ is a certain function defined by µ = g(ΦT,B) and Φ(T )
Φ(N)
Φ(B)

 =

 0 γ 0
−γ 0 τ
0 −τ 0

 T
N
B

 , (2.8)

where γ is a certain function defined by γ = g(ΦT,N).) [11].

3. 2-MAGNETIC CURVES IN EUCLIDEAN 3-SPACE

In this section, we will investigate the 2-T -magnetic, 2-N -magnetic and 2-B-magnetic
curves in Euclidean 3-space (E3, g). Also, we obtain the magnetic vector field V when the
curve is a 2-T -magnetic, 2-N -magnetic and 2-B-magnetic trajectory of V and give some
results and examples for these curves.

3.1. 2-T -MAGNETIC CURVES IN EUCLIDEAN 3-SPACE.

Definition 2. Let α : I ⊂ R −→ E3 be a T -magnetic curve in Euclidean 3-space and
FV be a magnetic field in E3. If the tangent vector field T of the Frenet frame satisfies
the 2-Lorentz force equation ∇α′∇α′T = Φ(T ′) = V × T ′, then the curve α is called a
2-T -magnetic curve.

Proposition 2. Let α be a unit speed 2-T -magnetic curve according to Frenet frame in
Euclidean 3-space. Then, we have Φ(T ′)

Φ(N ′)
Φ(B′)

 =

 −κ2 κ′ κτ
0 −κ2 − τρ 0
κτ 0 −τρ

 T
N
B

 , (3.1)

where ρ is a certain function defined by ρ = g(Φ(N), B).
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Proof. Let α be a 2-T -magnetic curve according to Frenet frame in Euclidean 3-space
with the Frenet apparatus {T,N,B, κ, τ}. From the definition of the 2-T -magnetic curve
according to Frenet frame and from (2.1), we know that Φ(T ′) = −κ2T +κ′N +κτB. On
the other hand, since Φ(N ′) ∈ Sp{T,N,B}, we have Φ(N ′) = a1T +a2N +a3B. So, from
(2.1), (2.2) and (2.6) we get

a1 = g(Φ(N ′), T ) = −g(N ′,Φ(T )) = −g(−κT + τB, κN) = 0,

a2 = g(Φ(N ′), N) = −g(N ′,Φ(N)) = −g(−κT + τB,−κT + ρB) = −κ2 − τρ,
a3 = g(Φ(N ′), B) = −g(N ′,Φ(B)) = −g(−κT + τB,−ρN) = 0

and hence we obtain that, Φ(N ′) = (−κ2 − τρ)N.
Furthermore, from Φ(B′) = b1T + b2N + b3B, we have

b1 = g(Φ(B′), T ) = −g(B′,Φ(T )) = −g(−τN, κN) = κτ,

b2 = g(Φ(B′), N) = −g(B′,Φ(N)) = −g(−τN,−κT + τB) = 0,

b3 = g(Φ(B′), B) = −g(B′,Φ(B)) = −g(−τN,−ρN) = −τρ
and so, we can write Φ(B′) = (κτ)T − (τρ)B, which completes the proof. �
Proposition 3. Let α be a unit speed T -magnetic curve according to Frenet frame in
Euclidean 3-space. Then, the curve α is a 2—T -magnetic trajectory of a 2-magnetic vector
field V if and only if the 2-magnetic vector field V is

V = τT + κB (3.2)

along the curve α.

Proof. Let α be a 2—T -magnetic trajectory of a 2-magnetic vector field V according to
Frenet frame. Using Proposition 2 and taking V = aT + bN + cB; from Φ(T ′) = V × T ′,
we get

a = τ , c = κ, κ′ = 0; (3.3)
from Φ(N ′) = V ×N ′, we get

a = ρ, b = 0, c = κ (3.4)
and from Φ(B′) = V ×B′, we get

a = ρ, c = κ (3.5)

and so the 2-magnetic vector field V can be written by (3.2). Conversely, if the 2-magnetic
vector field V is the form of (3.2), then one can easily see that V × T ′ = Φ(T ′) holds. So,
the curve α is a 2-T -magnetic projectory of the 2-magnetic vector field V according to
Frenet frame. �
Corollary 1. If a curve α is a 2—T -magnetic trajectory of a 2-magnetic vector field V ,
then the curvature κ of α is constant and we have

ρ = τ = g(Φ(N), B). (3.6)

Proof. The proof is obvious from (3.3)-(3.5). �
From (2.1), (2.6) and (3.6), we can state the following corollary:

Corollary 2. If a curve α is a 2—T -magnetic trajectory of a 2-magnetic vector field V ,
then the Lorentz force Φ corresponds to covariant derivative along α in E3. Also, we have

Φ2(X) = Φ(X ′),

for ∀X ∈ {T,N,B}.
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Corollary 3. If a curve α is a 2—T -magnetic trajectory of a 2-magnetic vector field V ,
then we have

g(T,Φ(T ′)) + g(B,Φ(B′)) = g(N,Φ(N ′)) = −(κ2 + τ 2).

Proof. From (2.1) and Corollary 2, the proof follows. �

Example 1. Let us consider the curve

α(t) = (cos t, sin t, 1) , (3.7)

which is a unit speed circle in E3. Here, one can easily calculate its Frenet-Serret trihedra
and curvatures as

T = (− sin t, cos t, 0) ,

N = (− cos t,− sin t, 0) ,

B = (0, 0, 1) ,

κ = 1, τ = 0, (3.8)

respectively. Here, since the curvature of α is constant and from (3.6) and (3.8), one
can easily see that the curve α is a 2-T -magnetic curve for sin t 6= 1. Also from (3.2),
the 2-magnetic vector field V when the curve (3.7) is a 2-T -magnetic trajectory of the
2-magnetic vector field V according to Frenet frame (3.8) is

V = (0, 0, 1). (3.9)

Here, it can be seen that, from (3.8) and (3.9), ∇α′∇α′α
′ = V × T ′ satisfies. So, the

curve α is a 2-T -magnetic curve according to Frenet frame with the 2-magnetic vector
field (3.9).
When the curve α is 2-T -magnetic according to Frenet frame, the figure of α and V

can be drawn as Figure 1.

Figure 1: 2-T -magnetic curve α according to Frenet frame and the 2-magnetic vector
field V
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3.2. 2-N-MAGNETIC CURVES IN EUCLIDEAN 3-SPACE.

Definition 3. Let α : I ⊂ R −→ E3 be an N-magnetic curve in Euclidean 3-space and
FV be a magnetic field in E3. If the normal vector field N of the Frenet frame satisfies
the 2-Lorentz force equation ∇α′∇α′N = Φ(N ′) = V × N ′, then the curve α is called a
2-N-magnetic curve.

Proposition 4. Let α be a unit speed 2-N-magnetic curve according to Frenet frame in
Euclidean 3-space. Then, we have Φ(T ′)

Φ(N ′)
Φ(B′)

 =

 −κ2 0 κτ
−κ′ −κ2 − τ 2 τ ′

κτ 0 −τ 2

 T
N
B

 . (3.10)

Proof. Let α be a 2-N -magnetic curve according to Frenet frame in Euclidean 3-space
with the Frenet apparatus {T,N,B, κ, τ}. From the definition of the 2-N -magnetic curve
according to Frenet frame and from (2.1), we know that Φ(N ′) = −κ′T−(κ2+τ 2)N+τ ′B.
On the other hand, since Φ(T ′) ∈ Sp{T,N,B}, we have Φ(T ′) = a1T + a2N + a3B. So,
from (2.1), (2.2) and (2.7) we get, Φ(T ′) = (−κ2)T + (κτ)B.
Furthermore, from Φ(B′) = b1T + b2N + b3B, we have Φ(B′) = (κτ)T − (τ 2)B, which

completes the proof. �

Proposition 5. Let α be a unit speed N-magnetic curve according to Frenet frame in
Euclidean 3-space. Then, the curve α is a 2—N-magnetic trajectory of a 2-magnetic vector
field V if and only if the 2-magnetic vector field V is

V = τT − κ′

τ
N + κB = τT +

τ ′

κ
N + κB (3.11)

along the curve α.

Proof. Let α be a 2—N -magnetic trajectory of a 2-magnetic vector field V according to
Frenet frame. Using Proposition 4 and taking V = aT + bN + cB; from Φ(T ′) = V × T ′,
we get

a = τ , c = κ; (3.12)

from Φ(N ′) = V ×N ′, we get

a = τ , b = −κ
′

τ
=
τ ′

κ
, c = κ (3.13)

and from Φ(B′) = V ×B′, we get

a = τ , c = κ (3.14)

and so the 2-magnetic vector field V can be written by (3.11). Conversely, if the 2-
magnetic vector field V is the form of (3.11), then one can easily see that V ×N ′ = Φ(N ′)
holds. So, the curve α is a 2-N -magnetic projectory of the 2-magnetic vector field V
according to Frenet frame. �

Corollary 4. If the curve α is a 2—N-magnetic trajectory of a 2-magnetic vector field V ,
then we have

κ2 + τ 2 = constant. (3.15)

Proof. The proof is obvious from (3.13). �
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Example 2. Let us consider the curve

α(t) =

(
cos

t√
2
, sin

t√
2
,
t√
2

)
, (3.16)

which is a unit speed circular helix in E3. Here, one can easily calculate its Frenet-Serret
trihedra and curvatures as

T =
1√
2

(
− sin

t√
2
, cos

t√
2
, 1

)
,

N =

(
− cos

t√
2
,− sin

t√
2
, 0

)
,

B =
1√
2

(
sin

t√
2
,− cos

t√
2
, 1

)
,

κ = τ =
1

2
, (3.17)

respectively. Here, from (3.15), the curve α is a 2-N-magnetic curve. Also from (3.11),
the 2-magnetic vector field V when the curve (3.16) is a 2-N-magnetic trajectory of the
2-magnetic vector field V according to Frenet frame (3.17) is

V =

(
0, 0,

1√
2

)
. (3.18)

Here, it can be seen that, from (3.17) and (3.18), ∇α′∇α′N = V ×N ′ satisfies. So, the
curve α is a 2-N-magnetic curve according to Frenet frame with the 2-magnetic vector
field (3.18).
When the curve α is 2-N-magnetic according to Frenet frame, the figure of α and V

can be drawn as Figure 2.

Figure 2: 2-N-magnetic curve α according to Frenet frame and the 2-magnetic vector
field V
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3.3. 2-B-MAGNETIC CURVES IN EUCLIDEAN 3-SPACE.

Definition 4. Let α : I ⊂ R −→ E3 be a B-magnetic curve in Euclidean 3-space and
FV be a magnetic field in E3. If the binormal vector field B of the Frenet frame satisfies
the 2-Lorentz force equation ∇α′∇α′B = Φ(B′) = V × B′, then the curve α is called a
2-B-magnetic curve.

Proposition 6. Let α be a unit speed 2-B-magnetic curve according to Frenet frame in
Euclidean 3-space. Then, we have Φ(T ′)

Φ(N ′)
Φ(B′)

 =

 −κγ 0 κτ
0 −κγ − τ 2 0
κτ −τ ′ −τ 2

 T
N
B

 , (3.19)

where γ is a certain function defined by γ = g(Φ(T ), N).

Proof. Let α be a 2-B-magnetic curve according to Frenet frame in Euclidean 3-space
with the Frenet apparatus {T,N,B, κ, τ}. From the definition of the 2-B-magnetic curve
according to Frenet frame and from (2.1), we know that Φ(B′) = κτT − τ ′N − τ 2B. On
the other hand, since Φ(T ′) ∈ Sp{T,N,B}, we have Φ(T ′) = a1T + a2N + a3B. So, from
(2.1), (2.2) and (2.8) we get, Φ(T ′) = (−κγ)T + (κτ)B.
Furthermore, from Φ(N ′) = b1T + b2N + b3B, we have Φ(B′) = (−κγ − τ 2)N, which

completes the proof. �
Proposition 7. Let α be a unit speed B-magnetic curve according to Frenet frame in
Euclidean 3-space. Then, the curve α is a 2—B-magnetic trajectory of a 2-magnetic vector
field V if and only if the 2-magnetic vector field V is

V = τT + κB (3.20)

along the curve α.

Proof. Let α be a 2—B-magnetic trajectory of a 2-magnetic vector field V according to
Frenet frame. Using Proposition 6 and taking V = aT + bN + cB; from Φ(T ′) = V × T ′,
we get

a = τ , c = γ; (3.21)

from Φ(N ′) = V ×N ′, we get
a = τ , c = γ, b = 0 (3.22)

and from Φ(B′) = V ×B′, we get

a = τ , c = κ, τ ′ = 0 (3.23)

and so the 2-magnetic vector field V can be written by (3.20). Conversely, if the 2-
magnetic vector field V is the form of (3.20), then one can easily see that V ×B′ = Φ(B′)
holds. So, the curve α is a 2-B-magnetic projectory of the 2-magnetic vector field V
according to Frenet frame. �
Corollary 5. If the curve α is a 2-B-magnetic trajectory of a 2-magnetic vector field V ,
then the torsion τ of α is constant and we have

γ = κ = g(Φ(T ), N). (3.24)

Proof. The proof is obvious from (3.21)-(3.23). �
From (2.1), (2.8) and (3.24), we get
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Corollary 6. If a curve α is a 2—B-magnetic trajectory of a 2-magnetic vector field V ,
then the Lorentz force Φ corresponds to covariant derivative along α in E3. Also, we have

Φ2(X) = Φ(X ′),

for ∀X ∈ {T,N,B}.
Corollary 7. If a curve α is a 2—B-magnetic trajectory of a 2-magnetic vector field V ,
then we have

g(T,Φ(T ′)) + g(B,Φ(B′)) = g(N,Φ(N ′)) = −(κ2 + τ 2).

Proof. From (2.1) and Corollary 6, the proof follows. �
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