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The impact of COVID-19 pandemic on the smooth transition dynamics of 

broad-based indices volatilities in Taiwan 

 

Abstract 

This study adopts the smooth transition Generalized Autoregressive Conditional 

Heteroscedastic (GARCH) model to depict the influences of the Novel Coronavirus 

Disease (COVID-19) on the dynamic structure of the broad-based indices volatility in 

Taiwan. The empirical results show that the episode of the COVID-19 switches the 

volatility structure for the most of indices volatilities except two industrial sub-indices, 

the building materials and construction index and the trading and consumer goods 

index. Furthermore, we obtain the transition function for all indices volatilities and 

catch that their regime adjustment processes start prior to the outbreak of COVID-19 

pandemic in Taiwan except two industrial sub-indices, the electronics index and the 

shipping and transportation index. Additionally, the estimated transition functions 

show that the broad-based indices volatilities have U-shaped patterns of structure 

changes except the trading and consumer goods sub-indices. This study also 

calculated the corresponding calendar dates of regime change about dynamic 

volatility pattern. 
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Introduction 

 

  For the recent decade, global financial markets have suffered several dramatic 

shocks including the 911 attacks in 2001, subprime crisis in the fall of 2007, Lehman 

Brothers collapse on September 2008, 2009 European sovereign-debt crisis and 

2018-2019 US-China trade war etc. Most of these financial shocks could be directly 

attributed to equities or capital market decline. However, it is rare to observe that the 

infectious disease episodes cause the financial market turmoil. In addition, the 

volatility is widely used in asset pricing and hedge, risk management, portfolio 

selection and the other financial events. For this reason, we attempt to detect whether 

the COVID-19 pandemic incident will trigger the dynamic volatility changes. 

The COVID-19 pandemic distribute from a regional disease in East Asia to a global 

infectious disease. According to the outbreak situation from the World Health 

Organization (WHO) website, the confirmed cases are about 4 million, and confirmed 

deaths are about 300 thousand as of 10
th

 May 2020. In the face of this serious 

infection, many governments adopt entry restrictions, social distancing mandates and 

put on lockdown. However, the above containment policy might directly decrease the 

labor inputs and further harm the economic, as argued by Baldwin and Tomiura 

(2020). The characters of infectious disease episodes are dissimilar to that of 

economic crisis. Governments usually use the containment policy bringing economic 

damage to deal with the former mishap, but take the quantitative easing policy 

stimulating economic growth to handle the latter incident. Therefore, it is reasonable 

to comprehend the influences of the containment policy promulgated by infectious 

disease on dynamic volatility structure are significant or not. 

In this study, firstly, we apply the modified GARCH model with threshold variable 

to fit the broad-based indices volatility in Taiwan, since this model is easy to use as 
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the break time is certain.
1
 To avoid the biased estimates of regime-switching date, we 

further employ the smooth transition GARCH model (ST-GARCH for short) to 

capture the broad-based indices volatility. By the specification of the ST-GARCH 

model, we could effortlessly explore the regime break date for broad-based indices as 

the volatility structure change is truly being.  

  Generally speaking, the grave epidemic might lead to stocks plummet and market 

volatility surges. However, we discover that the COVID-19 pandemic switches the 

dynamic volatility from the high level to low case for the most of indices during our 

sample period. We conjecture that this phenomenon could be attributed to two factors. 

Firstly, the government seems succeeded in increasing the COVID-19 treatment 

efficiency and diminishing the spillover effect to economy. The relative evidences 

refer to the statistical data from Deep Knowledge Group website. Secondly, the event 

of US-China trade war dominated the indices volatility in Taiwan. According to the 

official statistical data, Taiwan gains the most trade diversion effects about 4.2 billion 

from the US-China trade war. For this reason, the impact of the US-China trade war 

drives the dynamic volatility in high regime. 

The rest of this paper is arranged as follows. In section 2 we introduce the related 

GRACH models and ST-GARCH model. The empirical analysis is reported in section 

3. Finally section 4 summarizes the results and presents the concluding remarks. 

 

2. Methodology 

2.1 Related GARCH models 

  One of the noted dynamic volatility model is the GARCH model that developed by 

Engle (1982) and Bollerslev (1986). The GARCH(1,1) model could be used to depict 

the dynamic volatility process, that is,  

                                                 
1
 We assume the threshold variable as the time of outbreak of the COVID-19. In Taiwan the date of 

outbreak of COVID-19 is 21
th

 January 2020. 
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where Rt denotes the underlying asset returns at time t, ht denotes the conditional 

volatility at time t, 2

1t  denotes the square residual at time t-1, and Ωt-1 denotes the 

information set at time t-1. The parameters, α0, α1 and β1, can be regarded as the 

inherent uncertainty level, short-run impact of volatility shocks, and long-run effect of 

volatility shocks, respectively. The specification of standard GARCH(1,1) model 

could not detect the nonlinear structural changes for dynamic volatility process. In 

this study, we concern about the influence of COVID-19 pandemic on the indices 

volatility process, therefore it is nature to incorporate a threshold variable into the 

equation (1). That is, 
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where Dt represents a threshold variable taking the value 1 post-outbreak and 0 

pre-outbreak. We consider three threshold terms, including a single threshold term and 

two cross-product terms, in the variance equation for capturing the complete 

processes. On the condition that the given break date contains correct and full 

information, the exogenous adjustment could be explored the data structure change. It 

means that inaccurate definition of break date could cause estimating results 

insignificant and biased.  

 

2.2 The smooth transition GARCH model 
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  From past study, using the endogenous variable to nonlinear volatility model is 

better to capture the structure change. The smooth transition model proposed by 

Granger and Teräsvirta (1993) and Lin and Teräsvirta (1994) can diagnose the break 

point by itself. A series of recently literature consider that combining the smooth 

transition method with GARCH model can obtain many benefits in parameter 

estimates of dynamic volatility model.
2
 The ST-GARCH  model provides relatively 

flexible approach to widen the volatility process with nonlinear regime changes. 

Furthermore, the ST-GARCH model could explicitly point out the true date of 

structure changes in the data generating process for volatility process. The generalized 

framework for examining the appropriateness of an estimated ST-GARCH type model 

is built by Lundbergh and Teräsvirta (2002). The ST-GARCH model can be illustrated 

as, 

 

yt = f(wt; φ) + εt , 

2/1)( tttt ghz  ,                                                    (3) 

 

where ht = η′st, gt = λ′stF(τt;γ,c), wt is a regressor vector in mean, φ is the coefficient 

vector, )1,0(~
iid

tz , st )',...,,,...,,1( 1

22

1 pttqtt hh   , η )',...,,,...,,( 110 pq  , λ = 

)',...,,,...,,( 110 pq  . In particular, 

 

1

1

)))(exp(1(),;( 



 
k

i

itt cF  c ,                                   (4) 

 

                                                 
2
 Also see Hagerud (1997), Gonzalez-Rivera (1998), Anderson et al. (1999), Lee and Degennaro 

(2000), Lundbergh and Teräsvirta (2002), Lanne and Saikkonen (2005), Medeiros and Veiga (2009), 

Chou et al. (2012) and Chen et al. (2017). 
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where t  denotes the transition variable at time t,   denotes the slope parameter 

( 0 ), ),...,,( 21 kcccc  denotes a location vector in which kccc  ...21 , and k 

is the number of transitions. This specification implies transitions between two 

regimes, 0),;( cF t   and 1),;( cF t  . 

 

  Lundbergh and Teräsvirta (2002) consider that the ST-GARCH model contains 

some vantages. Firstly, the timing decision for regime change in parameters is 

endogenesis in estimation and this decisive manner is more adaptable than artificially 

given a priori. Secondly, the specification of GARCH model with threshold variable 

belong to a special case as the slope parameter ( ) reaches to infinity. Finally, the 

transition function in equation (4) provides another flexible specification in modeling 

to determine the patterns of structural changes. For example, equation (4) reduces to a 

special case of a chow’s structural change as   and k = 1. In another case, if 

the slope parameter   and k = 2, equation (4) turn out to be a double step 

function. 

 

  On the basis of the suggestion from Lundbergh and Teräsvirta (2002), we examine 

the hypothesis of parameter constancy in GARCH model before estimation of the 

ST-GARCH model. Assuming the null model is gt = 0 and let ηx   /ˆˆ 1

t tt hh  under 

the null. Furthermore, we consider the transition variable to be time, tt  , in order 

to take an evaluation for the impacts of COVID-19 pandemic for the broad-based 

indices volatility in Taiwan. Let, 
t

i

it t sv , 
t

i

it t ŝˆ v , and )ˆ,ˆ,ˆ(ˆ
321
 tttit vvvv  for i = 1, 

2, and 3. 
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  The procedure of statistical test can be executed by an artificial regression as below. 

First, estimate the parameters of the conditional model under the null. Let 





T

t

tt hSSR
1

22

0 )1ˆ/ˆ( , and then regress )1ˆ/ˆ( 2 tt h  on tx  , tv ˆ  and collect the sum 

of squared residuals, 1SSR . The LM-version test statistic can be computed by 

010 /)( SSRSSRSSRTLM  . On the other hand, the F-version test statistic can be 

calculated by ))1/(//)(( 110 kqpTSSRkSSRSSRF  . We adopt the statistics 

to ascertain an appropriate k to specify the ST-GARCH models. The choosing 

criterion of k value is the smallest p-values. 

 

3. Data and empirical results 

 

  In this article, we concern about the broad-based indices volatility for the 

COVID-19 pandemic in Taiwan. We select several broad-based indices including 

TAIEX, Electronics (ELEC), Plastic and chemical (CHEM), Food (FOOD), Iron and 

steel (STEEL), Building materials and construction (BUILD), Tourism (TOUR), 

Finance and insurance (FIN), Trading and Consumer goods (TRAD), Biotechnology 

and medical care (BIO) and Shipping and transportation (SHIP). Daily data of 11 

broad-based indices for the period 2 April 2015 to 1 April 2020 are adopted and 

collected from Taiwan Stock Exchange (TWSE). In Figure 1, the daily closing prices 

for all broad-based indices are respectively graphed. The daily indices returns are 

calculated by taking the first difference of the logarithmic prices. Descriptive statistics 

for these daily indices returns are reported in Table 1. We separate the whole period 

into two sub-sample periods by the infections disease outbreaks of COVID-19. Most 

of the items of summary statistics for the pre- and post-outbreak phase seem different.  

It is necessary for us to check whether the difference is significantly existence or not. 

According to the significance of the Ljung-Box Q
2
 statistics for all indices returns, we 
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can infer that the GARCH family model is proper to fit them.  

 

 

[Figure 1] 

 

[Table 1] 

 

  In order to handle more easily for volatility data with structure change in it, we 

employ the modified GAHCH model with threshold variable. The threshold variable 

is embedded respectively in the intercept term, lagged squared residual term and 

lagged conditional variance term for the adaptability of model specification. Table 2 

expresses the parameter estimation results of this model. According to the significance 

of parameter estimates and Ljung-Box Q
2
 statistics, we can infer that the impacts of 

COVID-19 pandemic change the most of the indices volatilities except the TRAD 

industrial sub-indices. For the reason of explicitly point out the true date of volatility 

structure changes of COVID-19 pandemic, it is intuitive to employ an endogenous 

deciding framework, the ST-GARCH model. 

 

[Table 2] 

 

  Before using the ST-GARCH model to estimate, we have to test the parameter 

constancy by the LM test developed by Lundbergh and Teräsvirta (2002). We 

calculate the LM statistics for k = 1, 2, and 3. Furthermore we assume that the null 

model is standard GARCH(1,1) model. Table 3 reports that the parameter constancy is 

violated for all broad-based indices. That is to say the regime change in dynamic 

volatility process is certainly being against the corresponding GARCH model. In 
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addition, we also detect that the parameter, k = 2, has the smallest p-value for the most 

of broad-based indices except the TRAD sub-indices. Theses empirical results can 

support us to adopt the ST-GARCH(1,1) model with k =2 to diagnose the dynamic 

volatility process. Our detailed model specification is given by, 

 

ttR  , 

2/1)( tttt ghz  ,                                                    (5) 
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2
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1

)))(exp(1(),;( 



 
k

i

it ctF  c . We list the parameter estimates for the 

ST-GARCH(1,1) model in Table 4. Meanwhile, the estimated results for the 

GARCH(1,1) model are provided in Table 5 for the purpose of comparison. 

 

[Table 4] 

 

[Table 5] 

 

  Comparing the figures of parameter estimates in Table 4 and 5, we find that the 

existence of serial correlation up to the 10
th

 order in the standardized residuals and 

residuals squared for both models exhibit almost insignificant for all broad-based 

indices. In Table 4, the volatility persistent effect for regime 1 is stronger than that for 

regime 2 except the BUILD sub-indices. This finding indicates that the episode of the 

COVID-19 pandemic weaken the persistence of shocks for volatility. In addition, we 

observe that the volatility persistent effect of the GARCH model is relatively 
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excessive than that of the ST-GARCH model. Figure 2 plots the estimated transition 

function, F(t). Apart from F(t) for the TRAD sub-indices, the others display the 

U-shaped. In terms of regime specification, we define the upper regime as F(t) = 1, 

and the lower regime as F(t) goes to its minimum value. The minimum values of 

estimation of smooth transition function are zero for all broad-based indices.  

 

[Figure 2] 

 

  We use the persistence coefficients reported in Table 4 and 5 to measure the 

dynamic volatility half-life. This could be explained as the time taken for the dynamic 

volatility to move halfway back to its own unconditional volatility. All in all, the 

period of the outbreak of COVID-19 pandemic contains low volatility half-life. This 

finding implied that the impact of shocks has been rapidly reflected in unconditional 

volatility after the COVID-19 pandemic. 

 

[Table 6] 

 

  Our article also uses the estimation of location parameters, 1c  and 2c , to point out 

the relatively objective structure change date for the dynamic volatility process, which 

is shown in Table 7. The responses of volatilities changes for half of broad-based 

indices (TAIEX, CHEM, FOOD, STEEL, FIN and BIO) are happening before the 

episode of the COVID-19 in Taiwan. This finding indicates that employing the 

modified GARCH model with threshold variable to fit the volatility process might use 

a subjective and biased determination in break time. In addition, Table 7 also reports 

some intriguing phenomena that the impacts of the outbreak of COVID-19 pandemic 

seem inexistence for BUILD and TRAD. 
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[Table 7] 

 

  Figure 3 further shows the time varying unconditional volatility for all broad-based 

indices. We could explicitly displays the shifting pattern of volatility structure by this 

illustration. The dynamic unconditional volatilities for most of broad-based indices 

switch from a lower level to a higher case and then it goes back to a lower one. As to 

the graphs for the TRAD sub-indices in Figure 3, the switching pattern obviously 

differs from that of others. We infer that the unconditional volatility structure change 

for the TRAD could be attributed to the economy slowing during the period from 

August, 2018 through March, 2020. Furthermore, the TRAD sub-indices have high 

connection to the business indicators. In Table4 the large coefficients of slope 

parameter,  , could lead to all of the switching pattern experience sharper shifts. We 

clarify that the dynamic volatility process goes upwards by the US-China trade war 

during our sample period. Afterward, the outbreak of COVID-19 pandemic should 

rocket downwards the volatilities for broad-based indices including the TAIEX, ELEC, 

CHEM, FOOD, STEEL, TOUR, FIN, BIO and SHIP. The structure change of 

unconditional volatility for BUILD industrial sub-indices could be attributed to the 

adjustment of housing tax policy from government. 

 

[Figure 3] 

 

  The estimation of ST-GARCH model in this study also has some valuable 

implications. Firstly, the modified GARCH model with threshold variable seems 

appropriate for fitting the dynamic volatility process. However, using the ST-GARCH 

model to fit dynamic volatility process can obtain more precise estimates of the break 
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time dating. Lastly, the impacts of the outbreak of COVID-19 pandemic are really 

being and can switch the volatility structure of broad-based indices. 

 

4. Conclusion 

 

  In this study, we document that the impact of the outbreak of COVID-19 pandemic 

triggered structure change in volatility process for broad-based indices in Taiwan. 

This study employs the standard GARCH model, the modified GARCH model with 

threshold variable, and the ST-GARCH model to depict the dynamic volatility process, 

respectively.  

From the empirical results, we demonstrate statistically significant volatility 

structure change in Taiwan’s broad-based indices by the parameter estimates of both 

modified GARCH and ST-GARCH model. We find that the estimates of volatility 

persistent effect from the standard GARCH model could show the relatively higher 

value, as the dynamic volatility structure contains a regime change. The outbreak of 

COVID-19 pandemic weakens the persistence of shocks for volatility process and 

brings lower volatility half-life. Moreover, the estimates for the modified GARCH 

model with threshold variable might provide biased regime-switching date in the 

same situation. We also illustrate that the dynamic volatility structure for the most of 

broad-based indices embedded two regime change points by the LM test presented by 

Lundbergh and Teräsvirta (2002).  

This article uses the estimation results of ST-GARCH model to graph the time 

varying unconditional volatilities and to calculate the calendar day of break time for 

all broad-based indices. The patterns of unconditional volatility for the most of 

broad-based indices appear the similar inverted U-shaped. We infer that the upwards 

switching in volatility could be attributed to the US-China trade war, and the declines 

in volatility could be triggered by the outbreak of COVID-19 pandemic. The 
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empirical results show that the dynamic volatility switching dates are earlier than the 

outbreak of COVID-19 pandemic for the most of broad-based indices. 
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Table 1: Descriptive Statistics 

Before COVID-19 pandemic (2 April 2015 to 20 January 2020) 

 Mean St.D Skewness Kurtosis Maximum Minimum Q
2
(10) 

TAIEX  0.020 0.830 -0.870 6.358 3.518 -6.521 317.75* 

ELEC  0.028 1.000 -0.547 3.904 4.449 -6.868 273.76* 

CHEM  0.004 0.887 -0.881 7.783 4.085 -7.661 250.05* 

FOOD  0.031 0.941 -0.479 3.525 3.816 -6.611 247.41* 

STEEL  0.002 0.912  0.073 5.686 4.927 -5.613 242.22* 

BUILD  0.004 0.808 -1.340 14.291 4.197 -7.962 382.23* 

TOUR -0.016 0.978 -0.212 3.635 3.844 -6.768 309.68* 

FIN  0.018 0.834 -0.429 5.338 4.547 -5.062 287.92* 

TRAD  0.006 1.050 -0.986 6.803 3.873 -7.614 293.37* 

BIO -0.012 1.150 -1.044 6.467 4.081 -8.206 262.35* 

SHIP -0.031 0.939 -0.588 7.452 4.064 -8.076 271.37* 

After COVID-19 pandemic (21 January 2020 to 1 April 2020) 

TAIEX -0.515 2.370  0.041 1.077 6.173 -6.005 13.277 

ELEC -0.491 2.508  0.162 0.965 6.782 -6.173 11.907 

CHEM -0.622 2.460 -0.194 1.045 5.231 -7.105  46.364* 

FOOD -0.292 1.811  0.175 1.285 5.039 -4.480  9.188 

STEEL -0.500 1.866 -0.365 2.378 5.383 -5.443 11.382 

BUILD -0.468 2.326 -0.690 2.416 4.907 -8.168 10.137 

TOUR -0.776 2.873 -0.654 1.071 5.277 -8.435 11.124 

FIN -0.509 2.297 -0.128 1.759 6.300 -7.053 14.659 

TRAD -0.162 1.532 -1.193 1.781 2.583 -4.617  6.295 

BIO -0.464 2.711 -1.139 1.780 4.431 -9.280 19.563 

SHIP -0.685 2.368 -0.796 1.267 4.219 -7.683 12.627 

Notes: 

1. This table reports the descriptive statistics for the logarithmic stock returns before and after the starting of 

the COVID-19 pandemic. Q
2
(10) is the Ljung-Box test for serial correlation up to 10

th
 order in the squared 

standardized residuals. 

2. Return is defined as 100×[log(pt)-log(pt-1)]. Significant at the 1% level is denoted by *. 
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Table 2: The estimation of modified GARCH(1,1) model with threshold variables 
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 0̂  
1̂  

1̂  0̂  
1̂  2̂  Q(10) Q

2
(10) LogL 

TAIEX 0.060 0.097 0.827 0.294 0.184 -0.311 6.281 1.556 -1512.101 

 [<0.001] [<0.001] [<0.001] [0.034] [0.073] [0.008] [0.791] [0.999]  

ELEC 0.101 0.083 0.815 0.488 0.135 -0.281 7.317 2.106 -1738.132 

 [<0.001] [<0.001] [<0.001] [0.059] [0.121] [0.029] [0.695] [0.995]  

CHEM 0.052 0.089 0.853 0.255 0.199 -0.350 5.130 1.556 -1571.540 

 [<0.001] [<0.001] [<0.001] [<0.001] [0.019] [<0.001] [0.882] [0.999]  

FOOD 0.031 0.040 0.926 0.404 0.207 -0.567 19.428 2.745 -1658.020 

 [<0.001] [<0.001] [<0.001] [0.015] [0.023] [0.016] [0.035] [0.987]  

STEEL 0.016 0.070 0.915 0.189 0.200 -0.355 14.238 2.353 -1543.541 

 [<0.001] [<0.001] [<0.001] [<0.001] [0.001] [<0.001] [0.162] [0.993]  

BUILD 0.055 0.155 0.783 0.260 0.345 -0.411 21.992 2.105 -1426.792 

 [<0.001] [<0.001] [<0.001] [<0.001] [0.002] [<0.001] [0.015] [0.995]  

TOUR 0.131 0.097 0.782 0.424 0.221 -0.437 5.266 5.507 -1730.938 

 [<0.001] [<0.001] [<0.001] [0.004] [0.098] [0.016] [0.873] [0.855]  

FIN 0.037 0.125 0.834 0.173 0.200 -0.283 6.061 2.861 -1459.292 

 [<0.001] [<0.001] [<0.001] [0.004] [0.020] [0.001] [0.810] [0.985]  

TRAD 0.107 0.117 0.793 0.119 -0.160 0.225 8.800 3.204 -1756.537 

 [<0.001] [<0.001] [<0.001] [0.568] [0.030] [0.214] [0.551] [0.976]  

BIO 0.080 0.162 0.791 0.277 0.257 -0.298 16.478 6.144 -1817.726 

 [<0.001] [<0.001] [<0.001] [0.010] [0.012] [<0.001] [0.087] [0.803]  

SHIP 0.552 0.138 0.405 0.244 0.275 -0.172 16.844 12.581 -1693.704 

 [<0.001] [<0.001] [<0.001] [0.173] [0.038] [0.039] [0.078] [0.248]  

Notes: 

1. The number in brackets is p-value. Normality tests are based on the Bera-Jarque statistics. Q(10) is the Ljung-Box (1978) test for serial 

correlation up to the 10th order in the standardized residuals, Q2(10) is the Ljung-Box test for serial correlation up to 10th order in the 

squared standardized residuals. 

2. Before 20, Jan., 2020, the threshold variable Dt is 0. After 21, Jan., 2020, the threshold variable Dt is 1. 
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Table 3: LM tests of parameters constancy for k=1, 2, and 3 

 

0

10

SSR

SSRSSR
TLM


  

     k 

       1    2 3 

TAIEX      1.917 8.632 11.029 

      [0.590] [0.195] [0.472] 

ELEC      3.231 9.989 12.870 

      [0.357] [0.125] [0.351] 

CHEM      1.115 5.632 8.721 

      [0.774] [0.466] [0.776] 

FOOD      1.281 4.749 5.146 

      [0.733] [0.576] [0.856] 

STEEL      1.786 6.393 11.195 

      [0.618] [0.381] [0.700] 

BUILD      0.054 6.345 7.561 

      [0.997] [0.386] [0.705] 

TOUR      1.963 5.093 6.196 

      [0.580] [0.532] [0.826] 

FIN      4.116 14.180 15.826 

      [0.249] [0.028] [0.116] 

TRAD      0.659 1.893 4.414 

      [0.883] [0.929] [0.993] 

BIO      1.910  6.940 8.258 

      [0.591] [0.326] [0.643] 

SHIP      0.271  6.724 8.292 

      [0.965] [0.347] [0.666] 

Note: The number in brackets is p-value. 

 

 

 

 

 

 

 

 

 

 



18 

 

Table 4: The estimation of the ST-GARCH model 

1

1

11

2

11011

2

110

)))(exp(1()(

)(][







 





k

i

ii

ttttt

tt

ctF

tFhhh

R







 

 0̂  
1̂  

1̂  k̂  ̂  1̂c  2ĉ  0̂  
1̂  0̂  Q(10) Q

2
(10) LogL Regime 1 Regime 2 

TAIEX 0.059 0.147 0.760 2 17519.77 0.094 0.355 0.291 0.002 -0.167 6.051 2.948 -1497.197 0.907 0.742 

 [<0.001] [<0.001] [<0.001]  [0.937] [<0.001] [<0.001] [0.009] [0.961] [0.156] [0.811] [0.983]    

ELEC 0.162 0.052 0.814 2 1310.840 0.556 0.978 -0.121 0.049 0.042 7.829 3.320 -1733.604 0.957 0.866 

 [0.017] [0.002] [<0.001]  [0.915] [<0.001] [<0.001] [0.083] [0.061] [0.563] [0.645] [0.973]    

CHEM 0.029 0.093 0.868 2 17704.82 0.061 0.652 0.843 0.238 -0.665 5.806 1.454 -1541.703 0.961 0.534 

 [0.764] [0.295] [<0.001]  [0.103] [<0.001] [0.999] [0.011] [0.085] [0.010] [0.831] [0.999]    

FOOD 0.023 0.034 0.937 2 1492.512 0.027 0.357 0.406 0.148 -0.331 17.646 4.193 -1651.251 0.971 0.788 

 [0.001] [<0.001] [<0.001]  [0.725] [0.001] [<0.001] [0.086] [0.160] [0.078] [0.061] [0.938]    

STEEL 0.017 0.049 0.915 2 13299.46 0.151 0.357 0.279 0.184 -0.336 13.180 5.169 -1534.114 0.964 0.812 

 [0.005] [<0.001] [<0.001]  [0.826] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [0.214] [0.880]    

BUILD 0.345 0.220 0.566 2 6543.094 0.006 0.076 -0.229 0.029 0.017 23.812 1.525 -1422.122 0.786 0.832 

 [0.091] [0.013] [0.007]  [0.517] [0.365] [<0.001] [0.263] [0.746] [0.936] [0.008] [0.999]    

TOUR 0.016 0.017 0.951 2 3477.490 0.267 0.361 0.495 0.297 -0.655 7.187 5.427 -1720.584 0.968 0.610 

 [0.062] [0.157] [<0.001]  [0.027] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [0.708] [0.861]    

FIN 0.071 0.191 0.666 2 15799.67 0.094 0.357 0.321 -0.030 -0.053 7.459 3.365 -1426.526 0.857 0.774 

 [<0.001] [<0.001] [<0.001]  [0.878] [<0.001] [<0.001] [0.022] [0.644] [0.694] [0.682] [0.971]    

TRAD 0.184 0.147 0.703 1 238.701 0.672  -0.141 -0.067 0.182 7.392 2.910 -1755.774 0.965 0.850 

 [<0.001] [<0.001] [<0.001]  [0.744] [<0.001]  [0.007] [0.054] [0.016] [0.688] [0.983]    

BIO 0.170 0.249 0.595 2 20387.97 0.086 0.409 0.586 0.018 -0.103 20.027 6.859 -1799.619 0.844 0.759 

 [0.008] [0.036] [<0.001]  [0.975] [<0.001] [0.964] [0.097] [0.897] [0.606] [0.029] [0.739]    

SHIP 0.20 0.207 0.622 2 4697.755 0.067 0.366 0.557 -0.055 -0.091 9.560 0.797 -1587.503 0.829 0.683 

 [<0.001] [<0.001] [<0.001]  [0.982] [<0.001] [0.978] [0.292] [0.333] [0.754] [0.480] [0.999]    

Note: The number in brackets is p-value. Normality tests are based on the Bera-Jarque statistics. Q(10) is the Ljung-Box (1978) test for serial correlation up to the 10th order in the standardized residuals, Q2(10) is the Ljung-Box test for serial 

correlation up to 10th order in the squared standardized residuals. The regime 1 and 2 shows the upper and lower regime individually. 
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Table 5: The estimation of GARCH(1,1) model 

    

11

2

110

1 ,0~











ttt

ttt

tt

hh

hN

R







 

 0̂  
1̂  

1̂  Q(10) Q
2
(10) LogL Persistence 

TAIEX 0.057 0.128 0.810 6.800 1.850 -1520.700 0.938 

 [<0.001] [<0.001] [<0.001] [0.744] [0.997]   

ELEC 0.050 0.098 0.864 7.643 2.979 -1744.309 0.962 

 [0.001] [<0.001] [<0.001] [0.664] [0.982]   

CHEM 0.073 0.125 0.800 7.310 1.076 -1581.951 0.925 

 [<0.001] [<0.001] [<0.001] [0.696] [0.999]   

FOOD 0.064 0.071 0.863 16.568 2.863 -1665.322 0.934 

 [<0.001] [<0.001] [<0.001] [0.084] [0.984]   

STEEL 0.027 0.107 0.872 15.108 3.513 -1556.743 0.979 

 [<0.001] [<0.001] [<0.001] [0.128] [0.967]   

BUILD 0.075 0.213 0.715 24.751 1.824 -1434.666 0.928 

 [<0.001] [<0.001] [<0.001] [0.006] [0.998]   

TOUR 0.221 0.155 0.649 6.208 4.298 -1739.621 0.804 

 [<0.001] [<0.001] [<0.001] [0.797] [0.933]   

FIN 0.042 0.163 0.801 6.578 2.920 -1468.427 0.964 

 [<0.001] [<0.001] [<0.001] [0.795] [0.983]   

TRAD 0.118 0.129 0.775 7.754 3.291 -1758.215 0.904 

 [<0.001] [<0.001] [<0.001] [0.653] [0.974]   

BIO 0.101 0.213 0.739 18.784 5.163 -1825.177 0.952 

 [<0.001] [<0.001] [<0.001] [0.043] [0.880]   

SHIP 0.066 0.114 0.828 14.341 0.711 -1650.804 0.942 

 [<0.001] [<0.001] [<0.001] [0.158] [0.999]   

Notes: 

The number in brackets is p-value. Normality tests are based on the Bera-Jarque statistics. Q(10) is the 

Ljung-Box (1978) test for serial correlation up to the 10th order in the standardized residuals, Q2(10) is the 

Ljung-Box test for serial correlation up to 10th order in the squared standardized residuals. 
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Table 6: The estimation of volatility half-life for different regimes of ST-GARCH model 

 ST-GARCH model GARCH model 

Board-based indices   Regime 1 half-life Regime 2 half-life Half-life 

TAIEX 

ELEC 

CHEM 

FOOD 

STEEL 

BUILD 

TOUR 

FIN 

TRAD 

BIO 

SHIP 

 7 

16 

17 

24 

19 

3 

21 

4 

19 

4 

4 

2 

5 

1 

3 

3 

4 

1 

3 

4 

3 

2 

11 

18 

9 

10 

33 

9 

3 

19 

7 

14 

12 

Notes: The half-life could be calculated by )ln(5.0  ye . 

 

 

 

 

 

 



21 

 

Table 7: The estimation of location parameters and corresponding calendar dates 

Board-based indices 1c  Date 2c  Date 

TAIEX 

ELEC 

CHEM 

FOOD 

STEEL 

BUILD 

TOUR 

FIN 

TRAD 

BIO 

SHIP 

0.094 

0.556 

0.061 

0.027 

0.151 

0.006 

0.267 

0.094 

0.672 

0.086 

0.067 

July 6, 2016 

January 5, 2018 

January 22, 2016 

August 12, 2015 

April 14, 2017 

May 6, 2015 

October 29, 2018 

July 11, 2016 

August 8, 2018 

May 31, 2016 

March 1, 2016 

0.355 

0.978 

0.652 

0.357 

0.357 

0.076 

0.361 

0.357 

 

0.409 

0.366 

January 3, 2020 

February 25, 2020 

January 17, 2020 

January 15, 2020 

January 14, 2020 

April 13, 2016 

February 12, 2020 

January 13, 2020 

 

January 20, 2020 

January 31, 2020 
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Figure 1: Daily closing prices for broad-based indices over the period 2 April 2015 to 1 April 2020 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 

 

 

 

Figure 2: Estimated smooth transition functions for broad-based indices 
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Figure 3: Estimated unconditional variance under ST-GARCH model for broad-based indices 
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