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Abstract

A k-uniform hypergraph H is a pair (V,e), where V = {v1,v9,...,0,} is a set of
n vertices and ¢ is a family of k-subset of V' called hyperedges. A cycle of length
l of H is a sequence of the form (vy,eq,vs,€a,...,v;,€;,v1), where vy,vs,...,v; are
distinct vertices, and e, eq,...,e; are k-edges of H and v;,v;11 € €;,1 <14 <, where
addition on the subscripts is modulo n, e; # e; for ¢ # j. In this paper we show the
decomposition of complete 3-uniform hypergraph K3, into cycles of length m for m
be prime.
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1 Introduction

A k-uniform hypergraph H is a pair (V,e), where V = {vjve,...,v,} is a set of n
vertices and ¢ is a family of k-subset of V' called hyperedges. If € consists of all k-subsets
of V, then H is a complete k-uniform hypergraph on n vertices and is denoted by K*. At
the same time we may refer a vertex v; to v;4,. A cycle of length [ of H is a sequence of
the form

(’Ul, €1,02,€2,...,0, €], Ul),

where v1, v, ..., v; are distinct vertices, and ey, eq, ..., ¢; are k-edges of H, satisfying
(i) i, vi41 € e;, 1 < i <, where addition on the subscripts is modular n, and

(ii) e; # ej for i # j. This cycle is known as a Berge cycle[1]. A decompostion of H
into cycles of length [ is a partition of the hyperedges of H into cycles of length .

A set of cycles of length [ of complete 3-uniform hypergraph K32, say C1,Cs, ..., Cpy,
is called decompostion into cycles of length [ if | JI*; £(C;) = e(K3) and £(C;) Ne(Cj) =
() for i # j. In this paper, we use combinatorial method to distinguish and give the
decomposition of complete hypergragh Kg’m into cycles of length m with m be prime.



2 Results

n
For1 <r < 5~ 1, n = 2m, m is prime, let D = Ds, U D1 U Da,,, where

Dy, = {(k1,k2) : (K1, ko) is ordered odd 2-partition of 2r},

Dy = {(k1,k2) : (K1, k2) is ordered even 2-partition of 2r and 1 < k; < ko < ”_2]“ 1

Doy, = {(k1,k2) : (k1,k2) is unordered even and 2k; + ko = 2m}.
Obviously,
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Let m > 3, m be prime, for any (k,l) € D we consider two distinct sequence
C(i; k,1)(i = 0,1) of triangles of V' ={0, 1, ..., 2m — 1} as follows: Given a (k,l) € D
and integer j, define

C(i;k,l)={e;5: i=0,1;5=0,1,2, ..., m—1} (mod 2m), (1)
eij ={i+jk+1),i+jk+0)+ki+(G+1)(E+1)} (mod2m). (2)
Lemma 1 Let m > 3 be a prime, then for any (k,l) € D, e;;(k,l) = e, (k,1) if and
only if j =5 (mod m) for i =0, 1.
Proof. Put r = k + [, by definition it is easy to see that

Cijom ={t+ (G +m)r,i+ (G+m)r+k,i+ (G+m+1)r}

={i+jryi+jr+k,i+(j+1)r} (modm)
namely for ¢ = 0,1,
€ijym(k,7) = e;(k,r) (mod m) .
Suppose e;;(k,1) = eij/(k:,l) with 1 < j,j <m—1. Set t = j' — j, we consider two cases:
Case 1. When (k,l) € Dy U Da,,, we have that

{li+gryit+ir+ki+(G+Dry={i+5ri+ir+ki+ (' +1Dr} (mod2m),

which implies that {0, 7, k} = {tr, tr+k, (t+1)r} (mod 2m). If tr # 0 (mod 2m), (equiv-
alently, tl + k # k (mod 2m) and (¢t + 1)r # r (mod 2m)), then there are two subcases:
(i) tr =k (mod 2m) tr + k =r (mod 2m) and (¢t + 1)r =0 (mod 2m);
(ii) tr =7 (mod 2m) tr + k =0 (mod 2m) and (¢t + 1)r =k (mod 2m).
Both cases imply that 3k = 0 (mod 2m), a contradiction. It shows that tr =0 (mod 2m).
Recall that k and [ are even, i.e., tr is even, so % =0 (mod m), which implies that j = j'

(mod m).

Case 2. When (ki, k2) € Dy,. We have

{i+jri+ir+ki+G+Dry={i+5ri+ir+ki+ (G +1r} (mod2m)



which implies that {0, k, 7} = {tr,tr +k, (t+1)r} (mod 2m). If tr # 0 (mod 2m), (equiv-
alently, tr + k # k (mod 2m) and (¢t + 1)r # | (mod 2m), then there are two subcases:

(i) tr = k (mod 2m),tr + k =17 (mod 2m) and (¢t 4+ 1)r =0 (mod 2m);
(ii) tr =7 (mod 2m),tr + k =0 (mod 2m) and (¢t + 1)r =k (mod 2m).

Il
o

From (i) we have 3k = 0 (mod 2m), a contradiction. From (ii) we have 3r
(mod 2m), a contradiction. It shows that ¢tr =0 (mod 2m). Since (k,¢) € Dy, i.e., t

<
—-
w0

t ’
even, so g =0 (mod m), which implies that j = j (mod m).

Lemma 2. Let m > 3 be a prime and Kg’m is a complete 3-uniform hypergraph on
V =4{0,1,...,2m — 1}, Then every edge sequence C(i;k,l) defined in (1) and (2) is a
cycle of length m for i =0, 1.

Proof. For any (k,l) € D by the definition of e;;, and from Lemma 1, we can see that,
for any two edges e; e;/ in C(i;k,1), we know exactly that e; # e, if and only if j # j/
(mod m)and j =0,1,...,m—1,s0|C(i; k,1)| = m. For any (k,l) € D, by the definition of
C(isk,1), then e;;Ne;jp1y = {i+(F+1)(k+1)} for j = 0,1,...,m—1 and each e;;Ne;(;41)
is different from other for different j. Suppose i+ (j +1)(k+1) = i+ (j + 1)(k+1)
(mod 2m) and 0 < j,5' < m —1 for i = 0,1, then j(k +1) = j (k4 1) (mod 2m), since
k+11is even, so j = j' (mod m), i.e., {e;Nejr1 j=0,1,...,m—1} (mod m) are distinct
vertices of V. It satisfies the following two conditions:

(1) j(k+1) (mod m),(j +1)(k+1) (modm)€e;.0<j<m-—1,

(2) e; # ej, for i # j.
Which proves that C'(i; k,1) is a cycle of length m for i = 0, 1.

Lemma 3. Let (k,I) and (k',I') be two distinct pairs of D. Then C(i;k,1) N
C(isk' 0) =@ fori=0,1.

Proof. By the definition of C'(i; k, 1) , put the reduced residues modulo 2m equidistant-
ly and clockwise on a circle. Take three of them, say, a,b and ¢, then {a,b,c} € C(i; k,1)
for some (k,1) € D if and only if the spaces among the three elements are in turn
k, I and 2m — (k 4+ 1). Therefore, if e;(k,l) = e;(k/,l') then the cycle permutations
k,2m — (k+1) =k ,I',2m — (K +1'). We now discuss the following cases

Case 1: Let (k,1), (k'l') € Dy,. Note that there are only 2m — (k+1) and 2m — (k' +1')
are even. We therefore obtain that & = k" and 2m — (k+1) = 2m — (k' +1'), which yields
that (k1) = (k'I').

Case 2: Let (k, 1), (K'l') € (D U Dy). Suppose (k,1) # (kK'l'). put k=1 and k' =1, by
the define of D,,, and D; there are k < [ < w and k' <1 < Qm;k ,such that k < [ =k
and k' <1 = k, a contradiction. put k = 2m — K =1 and k' =2m —k — 1.

Note that there are only 2m — (k+1) and 2m — (k' 1) are even. We therefore obtain
that k= k" and 2m — (k4 1) = 2m — (k' +1'), which yields that (k,¢) = (k'l').

Set r =k+1, k,r=k+1, then {k1, k1 +ko,m— (2k1+k2)} = {k,r—1,2m —r}, namely
€jj = {l —i—j(lﬁ + kg),i —l—j(kl + k‘g) + k1,7 + (] + 1)(]€1 + kg)} (mod 2m) = {Z + 40+
jrii+(7+1)1} (mod 2m). Therefore, if e;;(k,r) = e (K, '), (or e;j(k,r) =ej (K, '), or
ej(l,r) = ej(I',r")), then the cycle permutations (k,r—k,n—r) and (kK',7" —k n—1')
(or (k,r,n—r)and (I, =U',n—7") or (I,r—I,n—7r) and (I, —1I',n—7")) are identical. We
only need consider this case, if e;(k,1) = e;/(k’,1"), then the cycles permute (k,r—k,n—r)



= (K',r"=K n—r"),ie. C(k,l)=C(K,I"). For other two cases, the discussions are similar.
We now complete the proof by three cases.

Case 1: There are two subcases if k, k' are odd:
(1) r and 7" are odd,
(2) r and " are even.

From the subcase (1) we know n —r, n —r’ are even, and either (i) k = k', n —r = nr’
andr—k=7"—Kor(i)k=K,n—r=1"—kK and r—k =n—1". By (i) we have
that (k,r) = (K',r'), a contradiction. Sameness, (ii) implies that (k,1), (k’,l') € Dy and
n =k + 1+, therefore have k + [ + 1’ < n, a contradiction.

From the subcase (2), we have that n — r and n — ' are odd, so we obtain that (i)
k=kK,r—k=r'—Kandn—r=n—r"or (ii) k=k,r—k=n—1"andn—r=1"—F
or (i) k=r"—K,r—k=n—r"and n—r=%k, or (iv)k=7"—F, r—k=F and
n—r=n—r" or (v)k=n—r'r—k=r'—k andn—r =4k, ,or (vi)k=n—1", r—k=F
and n—r=r"—Fk.

By (i) we immediately have (k, 1) = (k',7’) , a contradiction. By (ii), we have the
following: if (k,1), (k’,l') € Dy, then (k, r) = (K/,r’), a contradiction. If (k,r)((k',7")) €
Dy, and (K',r")((k,r)) € D2, without loss of generality assume (k,r) € Dy and (k',r') €
Dy, we obtain that r = [, a contradiction. If (k,1),(k’,l') € Do, then | > "gk, a
contradiction.

For (iii), (iv), (v) and (vi), the discussions are similar. Recall k are odd, so we have
ej(k,1) = ey (K, 1I"), which implies that, (k,r —k,n—r)=K,r'—k',n—1"). ie., C(k,1) =
C(kK',1I").

Case 2. There are three subcases if k, k' are even:

(1) r and 7’ are odd;

(2) r and 7’ are even;

(3) r (1) is odd and 7’ (r) is even.

For (1) we have that n —r and n — 7’ are even, so (i) r —k =1 — k', k = k' and
n—r=n—1r"or(i)r—k=r" -k, k=n—1r"andn—r==F.

By (i) we have (k,r) = (K',r"), a contradiction. Sameness, (ii) implies that: if
(k,0),(K',l") € Dy, then (k,1) = (K',l'), a contradiction. If (k,l)((k',l")) € Dy, then
2n =71+ 1 + k+ k'), a contradiction. If (k,7)((k',7")) € Do, and (K, I")((k,l)) € Do,
without loss of generality we assume that (k,l) € Dy and (K,l') € Ds, we obtain that
n = 2k’ + ', a contradiction.

For (2), we have n — r and n — 7’ are odd, so we obtain (i) n —r =n — ',k = k" and
r—k=r"—kKor(i)n—r=n—1k=r"—FKandr—k=F.

By the subcase (i) we have that (k,1) = (K,l'), a contradiction. Sameness, the
subcases (ii) implies that (k,1), (k',l') € Dy and (k,1) = (k, k"), (K',I") = (I, k), therefore
implies k < I, | < k, a contradiction.

For (3), without loss of generality we assume that r is odd and ' is even, we have that
n —ris even and n —r’ is odd, so we obtain (i) r —k=+r'"—K k=F andn—r =n—1'
or (i)r—k=r -k k=n—r"andn—r=F.



The subcase (i) implies that (k',1') € Dy and k' = 2I’, a contradiction. The subcase
(ii), imply that (k,1) € Dy, and n = 3k + [, a contradiction. Recall k, k" are even, so we
have ej(k,l) = ey (k',1"), which implies that, (k,7 —k,n —7r)=(k',7" —k',n—1"), ie. ,
Ck,l)=C(K ).

Case 3. If k(K') is odd and k/(k) is even. Without loss of generality we assume k is
odd and k' is even. Then there are two subcases:

(1) ris odd and 7’ is even;
(2) r and 7’ are odd.

For (1), we have n—r is odd and n—7' is even, so we obtain that (i) k = n—r/,r—k =k’
andn—r=r"—Kor(ii)k=n—r'r—k=r"—kK andn—r==%.
By the subcase (i) we have that (k,1),(k',I') € Do, and 2n = 2k + 1 + 2k’ + ', a contra-

diction. Sameness, the subcases (ii) implies that (k,1), (kK',') € Dy and n = k+1+ 1,
therefore implies (k,1), (k’,l') € Dy, and r = k, a contradiction.

For (2), we have that n —r and n — 1’ are even, so we obtain that (i) k =+ — k', —k =
n—r'andn—r=~kF,or (i) k=r'"—K,r—k=FKandn—r=n—1r"

By the subcase (i) we have that (k,l) € D, and 2n = 2k +1+ 2k’ +1’, a contradiction.
Sameness, the subcases (ii) implies that (k,l) € D9 and k = I',)k’ = [, a contradiction.
Recall k(k') is odd and k/(k) is even, so we must have e;(k,1) = e;(k’,1"), which implies
that, (k,r —k,n—r)=K,r" =k ,n—1"), ie., C(k,l)=C(K,I"). The proof is completed.
O

Theorem 1 Let n = 2m,m be prime, then the decomposition
K= |J ek 1)y |J < k)
(k, 1)eD (k, 1)eDo

is a cycle of length m decomposition.

Proof. Let V = {0,1,...,n — 1}. By Lemma 3, for any (k,l) € D, C(l,k) is a
Hamilton cycle of K3. Therefore, we shall prove that

{C(k,1),C(Lk): (k1) e D}

is a decomposition of K2 into Hamiltonian cycles. By lemma 1, | Dy | = %, |D| =
”2151 and by lemma 4, let (k,1) and (k’,l') be two distinct pairs of D, then the cycle
defined in (5) or (6) satisfying C(k,1) N C(K',l') = @ or C(k, 1) NC{I',K') = O or

C(l,k)nC(',K') =, and because | C(k,l) |=n,| C(l,k) |=n, so

| CE D [ DI+CUE) -] D

n?—1 n?—6n+5
12 12
n(n—1)(n—2)
N 3! ’

which equals the size of | (K3) |, that is

K= cki) |J cuk)

(k,l)eD (k,l)eD2



The proof is completed. O
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