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Abstract

A k-uniform hypergraph H is a pair (V, ε), where V = {v1, v2, . . . , vn} is a set of
n vertices and ε is a family of k-subset of V called hyperedges. A cycle of length
l of H is a sequence of the form (v1, e1, v2, e2, . . . , vl, el, v1), where v1, v2, . . . , vl are
distinct vertices, and e1, e2, . . . , el are k-edges of H and vi, vi+1 ∈ ei, 1 ≤ i ≤ l, where
addition on the subscripts is modulo n, ei 6= ej for i 6= j. In this paper we show the
decomposition of complete 3-uniform hypergraph K3

2m into cycles of length m for m
be prime.
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1 Introduction

A k-uniform hypergraph H is a pair (V, ε), where V = {v1v2, . . . , vn} is a set of n
vertices and ε is a family of k-subset of V called hyperedges. If ε consists of all k-subsets
of V , then H is a complete k-uniform hypergraph on n vertices and is denoted by Kk

n. At
the same time we may refer a vertex vi to vi+n. A cycle of length l of H is a sequence of
the form

(v1, e1, v2, e2, . . . , vl, el, v1),

where v1, v2, . . . , vl are distinct vertices, and e1, e2, . . . , el are k-edges of H, satisfying

(i) vi, vi+1 ∈ ei, 1 ≤ i ≤ l, where addition on the subscripts is modular n, and

(ii) ei 6= ej for i 6= j. This cycle is known as a Berge cycle[1]. A decompostion of H
into cycles of length l is a partition of the hyperedges of H into cycles of length l.

A set of cycles of length l of complete 3-uniform hypergraph K3
n, say C1, C2, . . . , Cm,

is called decompostion into cycles of length l if
⋃m

i=1 ε(Ci) = ε(K3
n) and ε(Ci) ∩ ε(Cj) =

∅ for i 6= j. In this paper, we use combinatorial method to distinguish and give the
decomposition of complete hypergragh K3

2m into cycles of length m with m be prime.
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2 Results

For 1 ≤ r ≤ n

2
− 1, n = 2m, m is prime, let D = D2r ∪D1 ∪D2m, where

D2r = {(k1, k2) : (k1, k2) is ordered odd 2-partition of 2r},

D1 = {(k1, k2) : (k1, k2) is ordered even 2-partition of 2r and 1 ≤ k1 < k2 <
n−k1

2 },

D2m = {(k1, k2) : (k1, k2) is unordered even and 2k1 + k2 = 2m}.
Obviously,

| D2r |= r, | D1 |= 2 + 2(r − 7), | D2m |=
m− 1

2
.

| D1 |=
m∑
i=1

| D2i |=
m−1∑
i=1

i =
m(m− 1)

2
, | D2 |=

(m− 5)(m− 1)

6
, | D2m |=

(m− 1)

2

Let m > 3, m be prime, for any (k, l) ∈ D we consider two distinct sequence
C(i; k, l)(i = 0, 1) of triangles of V = {0, 1, . . . , 2m − 1} as follows: Given a (k, l) ∈ D
and integer j, define

C(i; k, l) = {eij : i = 0, 1; j = 0, 1, 2, . . . , m− 1} (mod 2m), (1)

eij = {i + j(k + l), i + j(k + l) + k, i + (j + 1)(k + l)} (mod 2m). (2)

Lemma 1 Let m > 3 be a prime, then for any (k, l) ∈ D, eij(k, l) = eij′ (k, l) if and

only if j ≡ j
′

(mod m) for i = 0, 1.

Proof. Put r = k + l, by definition it is easy to see that

eij+m = {i + (j + m)r, i + (j + m)r + k, i + (j + m + 1)r}

≡ {i + jr, i + jr + k, i + (j + 1)r} (mod m)

namely for i = 0, 1,
eij+m(k, r) ≡ eij(k, r) (mod m) .

Suppose eij(k, l) = eij′ (k, l) with 1 ≤ j, j
′ ≤ m− 1. Set t = j

′ − j, we consider two cases:

Case 1. When (k, l) ∈ D1 ∪D2m, we have that

{i + jr, i + jr + k, i + (j + 1)r} ≡ {i + j′r, i + j′r + k, i + (j′ + 1)r} (mod 2m),

which implies that {0, r, k} ≡ {t r, tr+k, (t+1)r} (mod 2m). If tr 6= 0 (mod 2m), (equiv-
alently, tl + k 6= k (mod 2m) and (t + 1)r 6= r (mod 2m)), then there are two subcases:

(i) tr ≡ k (mod 2m) tr + k ≡ r (mod 2m) and (t + 1)r ≡ 0 (mod 2m);

(ii) tr ≡ r (mod 2m) tr + k ≡ 0 (mod 2m) and (t + 1)r ≡ k (mod 2m).

Both cases imply that 3k ≡ 0 (mod 2m), a contradiction. It shows that tr ≡ 0 (mod 2m).

Recall that k and l are even, i.e., tr is even, so
tr

2
≡ 0 (mod m), which implies that j ≡ j

′

(mod m).

Case 2. When (k1, k2) ∈ D2r. We have

{i + jr, i + jr + k, i + (j + 1)r} ≡ {i + j′r, i + j′r + k, i + (j′ + 1)r} (mod 2m)
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which implies that {0, k, r} ≡ {tr, tr+k, (t+ 1)r} (mod 2m). If tr 6= 0 (mod 2m), (equiv-
alently, tr + k 6= k (mod 2m) and (t + 1)r 6= l (mod 2m), then there are two subcases:

(i) tr ≡ k (mod 2m), tr + k ≡ r (mod 2m) and (t + 1)r ≡ 0 (mod 2m);

(ii) tr ≡ r (mod 2m), tr + k ≡ 0 (mod 2m) and (t + 1)r ≡ k (mod 2m).

From (i) we have 3k ≡ 0 (mod 2m), a contradiction. From (ii) we have 3r ≡ 0
(mod 2m), a contradiction. It shows that tr ≡ 0 (mod 2m). Since (k, `) ∈ D2r, i.e., tr is

even, so
tr

2
≡ 0 (mod m), which implies that j ≡ j

′
(mod m).

Lemma 2. Let m > 3 be a prime and K3
2m is a complete 3-uniform hypergraph on

V = {0, 1, . . . , 2m − 1}, Then every edge sequence C(i; k, l) defined in (1) and (2) is a
cycle of length m for i = 0, 1.

Proof. For any (k, l) ∈ D by the definition of eij , and from Lemma 1, we can see that,
for any two edges ej ej ′ in C(i; k, l), we know exactly that ej 6= ej ′ if and only if j 6= j′

(mod m) and j = 0, 1, . . . ,m−1, so |C(i; k, l)| = m. For any (k, l) ∈ D, by the definition of
C(i; k, l), then eij∩ei(j+1) = {i+(j+1)(k+ l)} for j = 0, 1, . . . ,m−1 and each eij∩ei(j+1)

is different from other for different j. Suppose i + (j + 1)(k + l) ≡ i + (j
′
+ 1)(k + l)

(mod 2m) and 0 ≤ j, j′ ≤ m − 1 for i = 0, 1, then j(k + l) ≡ j
′
(k + l) (mod 2m), since

k+ l is even, so j ≡ j′ (mod m), i.e., {ej ∩ ej+1 j = 0, 1, . . . ,m−1} (mod m) are distinct
vertices of V. It satisfies the following two conditions:

(1) j(k + l) (mod m), (j + 1)(k + l) (mod m) ∈ ej . 0 ≤ j ≤ m− 1,

(2) ei 6= ej , for i 6= j.
Which proves that C(i; k, l) is a cycle of length m for i = 0, 1.

Lemma 3. Let (k, l) and (k
′
, l

′
) be two distinct pairs of D. Then C(i; k, l) ∩

C(i; k
′
, `

′
) = ∅ for i = 0, 1.

Proof. By the definition of C(i; k, l) , put the reduced residues modulo 2m equidistant-
ly and clockwise on a circle. Take three of them, say, a, b and c, then {a, b, c} ∈ C(i; k, l)
for some (k, l) ∈ D if and only if the spaces among the three elements are in turn
k, l and 2m − (k + l). Therefore, if ej(k, l) = e

′
j(k

′
, l

′
) then the cycle permutations

k, l, 2m− (k + l) = k
′
, l

′
, 2m− (k

′
+ l

′
). We now discuss the following cases

Case 1: Let (k, l), (k
′
l
′
) ∈ D2r. Note that there are only 2m− (k+ l) and 2m− (k

′
+ l

′
)

are even. We therefore obtain that k = k
′

and 2m− (k + l) = 2m− (k
′
+ l

′
), which yields

that (k, l) = (k
′
l
′
).

Case 2: Let (k, l), (k
′
l
′
) ∈ (Dm ∪D1). Suppose (k, l) 6= (k

′
l
′
). put k = l and k

′
= l, by

the define of Dm and D1 there are k < l < 2m−k
2 and k

′
< l

′
< 2m−k′

2 , such that k < l = k
′

and k
′
< l

′
= k, a contradiction. put k = 2m− k

′ − l
′

and k
′

= 2m− k − l.

Note that there are only 2m− (k + l) and 2m− (k
′
+ l

′
) are even. We therefore obtain

that k = k
′

and 2m− (k + l) = 2m− (k
′
+ l

′
), which yields that (k, `) = (k

′
l
′
).

Set r = k+ l, k, r = k+ l, then {k1, k1+k2,m−(2k1+k2 )} = {k, r− l, 2m−r}, namely
eij = {i + j(k1 + k2), i + j(k1 + k2) + k1, i + (j + 1)(k1 + k2)} (mod 2m) = {i + j l, i +
j r, i+ (j + 1) l} (mod 2m). Therefore, if eij(k, r) = eij′(k

′, r′), (or ej(k, r) = ej′(k
′, r′), or

ej(l, r) = ej′(l
′, r′)), then the cycle permutations (k, r− k, n− r) and (k′, r′− k′, n− r′)

(or (k, r, n−r) and (l′, r′−l′, n−r′) or (l, r−l, n−r) and (l′, r′−l′, n−r′)) are identical. We
only need consider this case, if ej(k, l ) = ej′(k

′, l′ ), then the cycles permute (k, r−k, n−r)
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= (k′, r′−k′, n−r′), i.e. C(k, l ) = C(k′, l′ ). For other two cases, the discussions are similar.
We now complete the proof by three cases.

Case 1: There are two subcases if k, k′ are odd:

(1) r and r′ are odd,

(2) r and r′ are even.

From the subcase (1) we know n− r, n− r′ are even, and either (i) k = k′, n− r = nr′

and r − k = r′ − k′ or (ii) k = k′, n − r = r′ − k′ and r − k = n − r′. By (i) we have
that (k, r) = (k′, r′), a contradiction. Sameness, (ii) implies that (k, l ), (k′, l′ ) ∈ D2 and
n = k + l + l′, therefore have k + l + l′ < n, a contradiction.

From the subcase (2), we have that n − r and n − r′ are odd, so we obtain that (i)
k = k′, r−k = r′−k′ and n−r = n−r′, or (ii) k = k′, r−k = n−r′ and n−r = r′−k′

or (iii) k = r′ − k′, r − k = n− r′ and n− r = k′, or (iv) k = r′ − k′, r − k = k′ and
n−r = n−r′ or (v) k = n−r′, r−k = r′−k′ and n−r = k′, or (vi) k = n−r′, r−k = k′

and n− r = r′ − k′.

By (i) we immediately have (k, l ) = (k′, r′) , a contradiction. By (ii), we have the
following: if (k, l), (k′, l′ ) ∈ D1, then (k, r) = (k′, r′), a contradiction. If (k, r)((k′, r′)) ∈
D2 , and (k′, r′)((k, r)) ∈ D2, without loss of generality assume (k, r) ∈ D1 and (k′, r′) ∈
D2, we obtain that r = l, a contradiction. If (k, l ), (k′, l′ ) ∈ D2, then l > n−k

2 , a
contradiction.

For (iii), (iv), (v) and (vi), the discussions are similar. Recall k are odd, so we have
ej(k, l ) = ej′(k

′, l′ ), which implies that, (k, r−k, n− r)=(k′, r′−k′, n− r′). i.e., C(k, l ) =
C(k′, l′ ).

Case 2. There are three subcases if k, k′ are even:

(1) r and r′ are odd;

(2) r and r′ are even;

(3) r (r′) is odd and r′ (r) is even.

For (1) we have that n − r and n − r′ are even, so (i) r − k = r′ − k′, k = k′ and
n− r = n− r′ or (ii) r − k = r′ − k′, k = n− r′ and n− r = k′.

By (i) we have (k, r) = (k′, r′), a contradiction. Sameness, (ii) implies that: if
(k, l), (k′, l′ ) ∈ D1, then (k, l ) = (k′, l′ ), a contradiction. If (k, l )((k′, l′ )) ∈ D2 , then
2n = r + r′ + k + k′), a contradiction. If (k, r)((k′, r′)) ∈ D2 , and (k′, l′ )((k, l )) ∈ D2,
without loss of generality we assume that (k, l ) ∈ D1 and (k′, l′) ∈ D2, we obtain that
n = 2k′ + l′, a contradiction.

For (2), we have n− r and n− r′ are odd, so we obtain (i) n− r = n− r′, k = k′ and
r − k = r′ − k′ or (ii) n− r = n− r′, k = r′ − k′ and r − k = k′.

By the subcase (i) we have that (k, l ) = (k′, l′ ), a contradiction. Sameness, the
subcases (ii) implies that (k, l ), (k′, l′ ) ∈ D2 and (k, l ) = (k, k′), (k′, l′ ) = (l, k ), therefore
implies k < l, l < k, a contradiction.

For (3), without loss of generality we assume that r is odd and r′ is even, we have that
n− r is even and n− r′ is odd, so we obtain (i) r − k = r′ − k′, k = k′ and n− r = n− r′

or (ii) r − k = r′ − k′, k = n− r′ and n− r = k′.
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The subcase (i) implies that (k′, l′ ) ∈ D2 and k′ = 2l′, a contradiction. The subcase
(ii), imply that (k, l ) ∈ D1, and n = 3k + l, a contradiction. Recall k, k′ are even, so we
have ej(k, l ) = ej′(k

′, l′ ), which implies that, (k, r − k, n − r)=(k′, r′ − k′, n − r′), i.e. ,
C(k, l ) = C(k′, l′ ).

Case 3. If k(k′) is odd and k′(k) is even. Without loss of generality we assume k is
odd and k′ is even. Then there are two subcases:

(1) r is odd and r′ is even;

(2) r and r′ are odd.

For (1), we have n−r is odd and n−r′ is even, so we obtain that (i) k = n−r′, r−k = k′

and n− r = r′ − k′ or (ii) k = n− r′r − k = r′ − k′ and n− r = k′.

By the subcase (i) we have that (k, l ), (k′, l′ ) ∈ D2, and 2n = 2k + l + 2k′ + l′, a contra-
diction. Sameness, the subcases (ii) implies that (k, l ), (k′, l′ ) ∈ D2 and n = k + l + l′,
therefore implies (k, l ), (k′, l′ ) ∈ D2, and r = k, a contradiction.

For (2), we have that n− r and n− r′ are even, so we obtain that (i) k = r′− k′,−k =
n− r′ and n− r = k′, or (ii) k = r′ − k′, r − k = k′ and n− r = n− r′.

By the subcase (i) we have that (k, l ) ∈ D2, and 2n = 2k+ l+2k′+ l′, a contradiction.
Sameness, the subcases (ii) implies that (k, l ) ∈ D2 and k = l′, k′ = l, a contradiction.
Recall k(k′) is odd and k′(k) is even, so we must have ej(k, l ) = ej′(k

′, l′ ), which implies
that, (k, r− k, n− r)=(k′, r′ − k′, n− r′), i.e., C(k, l ) = C(k′, l′ ). The proof is completed.
2

Theorem 1 Let n = 2m,m be prime, then the decomposition

K3
n =

⋃
(k, l )∈D

C(k, l )
⋃

(k, l )∈D2

C(l, k )

is a cycle of length m decomposition.

Proof. Let V = {0, 1, . . . , n − 1}. By Lemma 3, for any (k, l ) ∈ D, C(l, k ) is a
Hamilton cycle of K3

n. Therefore, we shall prove that

{C(k, l ), C(l, k ) : (k, l ) ∈ D }

is a decomposition of K3
n into Hamiltonian cycles. By lemma 1, |D2 | = n2−6n+5

12 , |D | =
n2−1
12 and by lemma 4, let (k, l ) and (k′, l′ ) be two distinct pairs of D, then the cycle

defined in (5) or (6) satisfying C(k, l ) ∩ C(k′, l′ ) = Ø or C(k, l ) ∩ C(l′, k′ ) = Ø or
C(l, k ) ∩ C(l′, k′ ) = Ø, and because | C(k, l ) |= n, | C(l, k ) |= n, so

| C(k, l ) | · | D | + | C(l, k ) | · | D2 |

= n · n
2 − 1

12
+ n · n

2 − 6n + 5

12

=
n (n− 1) (n− 2)

3!
,

which equals the size of | (K3
n) |, that is

K3
n =

⋃
(k,l )∈D

C(k, l )
⋃

(k,l )∈D2

C(l, k ).
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The proof is completed. 2
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