Decomposition of complete 3-uniform Hypergraphs into cycles of length $n / 2$

Chunlei $\mathrm{Xu}^{a, b}$ and Jirimutu ${ }^{a, b}$ and Bagenna Tai ${ }^{c}$
${ }^{a}$ College of Mathematics
${ }^{b}$ Insititution of Discrete Mathematics
${ }^{c}$ College of computer Science and Technology
Inner Mongolia National University for Nationalites
Tongliao 028043, P. R. China

January 17, 2017

Abstract

A k-uniform hypergraph H is a pair (V, ε), where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a set of n vertices and ε is a family of k-subset of V called hyperedges. A cycle of length l of H is a sequence of the form $\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{l}, e_{l}, v_{1}\right)$, where $v_{1}, v_{2}, \ldots, v_{l}$ are distinct vertices, and $e_{1}, e_{2}, \ldots, e_{l}$ are k-edges of H and $v_{i}, v_{i+1} \in e_{i}, 1 \leq i \leq l$, where addition on the subscripts is modulo $n, e_{i} \neq e_{j}$ for $i \neq j$. In this paper we show the decomposition of complete 3 -uniform hypergraph $K_{2 m}^{3}$ into cycles of length m for m be prime.

Keywords: Hypergraph, Cycle, Hamilton Cycle.

1 Introduction

A k-uniform hypergraph H is a pair (V, ε), where $V=\left\{v_{1} v_{2}, \ldots, v_{n}\right\}$ is a set of n vertices and ε is a family of k-subset of V called hyperedges. If ε consists of all k-subsets of V, then H is a complete k-uniform hypergraph on n vertices and is denoted by K_{n}^{k}. At the same time we may refer a vertex v_{i} to v_{i+n}. A cycle of length l of H is a sequence of the form

$$
\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{l}, e_{l}, v_{1}\right),
$$

where $v_{1}, v_{2}, \ldots, v_{l}$ are distinct vertices, and $e_{1}, e_{2}, \ldots, e_{l}$ are k-edges of H, satisfying
(i) $v_{i}, v_{i+1} \in e_{i}, 1 \leq i \leq l$, where addition on the subscripts is modular n, and
(ii) $e_{i} \neq e_{j}$ for $i \neq j$. This cycle is known as a Berge cycle[1]. A decompostion of H into cycles of length l is a partition of the hyperedges of H into cycles of length l.

A set of cycles of length l of complete 3 -uniform hypergraph K_{n}^{3}, say $C_{1}, C_{2}, \ldots, C_{m}$, is called decompostion into cycles of length l if $\bigcup_{i=1}^{m} \varepsilon\left(C_{i}\right)=\varepsilon\left(K_{n}^{3}\right)$ and $\varepsilon\left(C_{i}\right) \cap \varepsilon\left(C_{j}\right)=$ \emptyset for $i \neq j$. In this paper, we use combinatorial method to distinguish and give the decomposition of complete hypergragh $K_{2 m}^{3}$ into cycles of length m with m be prime.

2 Results

For $1 \leq r \leq \frac{n}{2}-1, n=2 m, m$ is prime, let $D=D_{2 r} \cup D_{1} \cup D_{2 m}$, where
$D_{2 r}=\left\{\left(k_{1}, k_{2}\right):\left(k_{1}, k_{2}\right)\right.$ is ordered odd 2-partition of $\left.2 r\right\}$,
$D_{1}=\left\{\left(k_{1}, k_{2}\right):\left(k_{1}, k_{2}\right)\right.$ is ordered even 2-partition of $2 r$ and $\left.1 \leq k_{1}<k_{2}<\frac{n-k_{1}}{2}\right\}$,
$D_{2 m}=\left\{\left(k_{1}, k_{2}\right):\left(k_{1}, k_{2}\right)\right.$ is unordered even and $\left.2 k_{1}+k_{2}=2 m\right\}$.
Obviously,

$$
\begin{gathered}
\left|D_{2 r}\right|=r,\left|D_{1}\right|=2+2(r-7),\left|D_{2 m}\right|=\frac{m-1}{2} . \\
\left|D_{1}\right|=\sum_{i=1}^{m}\left|D_{2 i}\right|=\sum_{i=1}^{m-1} i=\frac{m(m-1)}{2},\left|D_{2}\right|=\frac{(m-5)(m-1)}{6},\left|D_{2 m}\right|=\frac{(m-1)}{2}
\end{gathered}
$$

Let $m>3, m$ be prime, for any $(k, l) \in D$ we consider two distinct sequence $C(i ; k, l)(i=0,1)$ of triangles of $V=\{0,1, \ldots, 2 m-1\}$ as follows: Given a $(k, l) \in D$ and integer j, define

$$
\begin{gather*}
C(i ; k, l)=\left\{e_{i j}: i=0,1 ; j=0,1,2, \ldots, m-1\right\} \quad(\bmod 2 m), \tag{1}\\
e_{i j}=\{i+j(k+l), i+j(k+l)+k, i+(j+1)(k+l)\} \quad(\bmod 2 m) . \tag{2}
\end{gather*}
$$

Lemma 1 Let $m>3$ be a prime, then for any $(k, l) \in D, e_{i j}(k, l)=e_{i j^{\prime}}(k, l)$ if and only if $j \equiv j^{\prime}(\bmod m)$ for $i=0,1$.

Proof. Put $r=k+l$, by definition it is easy to see that

$$
\begin{aligned}
e_{i j+m}= & \{i+(j+m) r, i+(j+m) r+k, i+(j+m+1) r\} \\
& \equiv\{i+j r, i+j r+k, i+(j+1) r\} \quad(\bmod m)
\end{aligned}
$$

namely for $i=0,1$,

$$
e_{i j+m}(k, r) \equiv e_{i j}(k, r) \quad(\bmod m) .
$$

Suppose $e_{i j}(k, l)=e_{i j^{\prime}}(k, l)$ with $1 \leq j, j^{\prime} \leq m-1$. Set $t=j^{\prime}-j$, we consider two cases:
Case 1. When $(k, l) \in D_{1} \cup D_{2 m}$, we have that

$$
\{i+j r, i+j r+k, i+(j+1) r\} \equiv\left\{i+j^{\prime} r, i+j^{\prime} r+k, i+\left(j^{\prime}+1\right) r\right\} \quad(\bmod 2 m),
$$

which implies that $\{0, r, k\} \equiv\{t r, t r+k,(t+1) r\}(\bmod 2 m)$. If $t r \neq 0(\bmod 2 m)$, (equivalently, $t l+k \neq k(\bmod 2 m)$ and $(t+1) r \neq r(\bmod 2 m)$), then there are two subcases:
(i) $t r \equiv k(\bmod 2 m) t r+k \equiv r(\bmod 2 m)$ and $(t+1) r \equiv 0(\bmod 2 m)$;
(ii) $t r \equiv r(\bmod 2 m) t r+k \equiv 0(\bmod 2 m)$ and $(t+1) r \equiv k(\bmod 2 m)$.

Both cases imply that $3 k \equiv 0(\bmod 2 m)$, a contradiction. It shows that $t r \equiv 0(\bmod 2 m)$. Recall that k and l are even, i.e., $t r$ is even, so $\frac{t r}{2} \equiv 0(\bmod m)$, which implies that $j \equiv j^{\prime}$ $(\bmod m)$.

Case 2. When $\left(k_{1}, k_{2}\right) \in D_{2 r}$. We have

$$
\{i+j r, i+j r+k, i+(j+1) r\} \equiv\left\{i+j^{\prime} r, i+j^{\prime} r+k, i+\left(j^{\prime}+1\right) r\right\} \quad(\bmod 2 m)
$$

which implies that $\{0, k, r\} \equiv\{t r, t r+k,(t+1) r\}(\bmod 2 m)$. If $t r \neq 0(\bmod 2 m)$, (equivalently, $t r+k \neq k(\bmod 2 m)$ and $(t+1) r \neq l(\bmod 2 m)$, then there are two subcases:
(i) $\operatorname{tr} \equiv k(\bmod 2 m), t r+k \equiv r(\bmod 2 m)$ and $(t+1) r \equiv 0(\bmod 2 m)$;
(ii) $t r \equiv r(\bmod 2 m), t r+k \equiv 0(\bmod 2 m)$ and $(t+1) r \equiv k(\bmod 2 m)$.

From (i) we have $3 k \equiv 0(\bmod 2 m)$, a contradiction. From (ii) we have $3 r \equiv 0$ $(\bmod 2 m)$, a contradiction. It shows that $t r \equiv 0(\bmod 2 m)$. Since $(k, \ell) \in D_{2 r}$, i.e., tr is even, so $\frac{t r}{2} \equiv 0(\bmod m)$, which implies that $j \equiv j^{\prime}(\bmod m)$.

Lemma 2. Let $m>3$ be a prime and $K_{2 m}^{3}$ is a complete 3-uniform hypergraph on $V=\{0,1, \ldots, 2 m-1\}$, Then every edge sequence $C(i ; k, l)$ defined in (1) and (2) is a cycle of length m for $i=0,1$.

Proof. For any $(k, l) \in D$ by the definition of $e_{i j}$, and from Lemma 1, we can see that, for any two edges $e_{j} e_{j^{\prime}}$ in $C(i ; k, l)$, we know exactly that $e_{j} \neq e_{j}$, if and only if $j \neq j^{\prime}$ $(\bmod m)$ and $j=0,1, \ldots, m-1$, so $|C(i ; k, l)|=m$. For any $(k, l) \in D$, by the definition of $C(i ; k, l)$, then $e_{i j} \cap e_{i(j+1)}=\{i+(j+1)(k+l)\}$ for $j=0,1, \ldots, m-1$ and each $e_{i j} \cap e_{i(j+1)}$ is different from other for different j. Suppose $i+(j+1)(k+l) \equiv i+\left(j^{\prime}+1\right)(k+l)$ $(\bmod 2 m)$ and $0 \leq j, j^{\prime} \leq m-1$ for $i=0,1$, then $j(k+l) \equiv j^{\prime}(k+l)(\bmod 2 m)$, since $k+l$ is even, so $j \equiv j^{\prime}(\bmod m)$, i.e., $\left\{e_{j} \cap e_{j+1} j=0,1, \ldots, m-1\right\}(\bmod m)$ are distinct vertices of V . It satisfies the following two conditions:
(1) $j(k+l)(\bmod m),(j+1)(k+l)(\bmod m) \in e_{j} .0 \leq j \leq m-1$,
(2) $e_{i} \neq e_{j}$, for $i \neq j$.

Which proves that $C(i ; k, l)$ is a cycle of length m for $i=0,1$.
Lemma 3. Let (k, l) and $\left(k^{\prime}, l^{\prime}\right)$ be two distinct pairs of D. Then $C(i ; k, l) \cap$ $C\left(i ; k^{\prime}, \ell^{\prime}\right)=\varnothing$ for $i=0,1$.

Proof. By the definition of $C(i ; k, l)$, put the reduced residues modulo $2 m$ equidistantly and clockwise on a circle. Take three of them, say, a, b and c, then $\{a, b, c\} \in C(i ; k, l)$ for some $(k, l) \in D$ if and only if the spaces among the three elements are in turn k, l and $2 m-(k+l)$. Therefore, if $e_{j}(k, l)=e_{j}^{\prime}\left(k^{\prime}, l^{\prime}\right)$ then the cycle permutations $k, l, 2 m-(k+l)=k^{\prime}, l^{\prime}, 2 m-\left(k^{\prime}+l^{\prime}\right)$. We now discuss the following cases

Case 1: Let $(k, l),\left(k^{\prime} l^{\prime}\right) \in D_{2 r}$. Note that there are only $2 m-(k+l)$ and $2 m-\left(k^{\prime}+l^{\prime}\right)$ are even. We therefore obtain that $k=k^{\prime}$ and $2 m-(k+l)=2 m-\left(k^{\prime}+l^{\prime}\right)$, which yields that $(k, l)=\left(k^{\prime} l^{\prime}\right)$.

Case 2: Let $(k, l),\left(k^{\prime} l^{\prime}\right) \in\left(D_{m} \cup D_{1}\right)$. Suppose $(k, l) \neq\left(k^{\prime} l^{\prime}\right)$. put $k=l$ and $k^{\prime}=l$, by the define of D_{m} and D_{1} there are $k<l<\frac{2 m-k}{2}$ and $k^{\prime}<l^{\prime}<\frac{2 m-k^{\prime}}{2}$, such that $k<l=k^{\prime}$ and $k^{\prime}<l^{\prime}=k$, a contradiction. put $k=2 m-k^{\prime}-l^{\prime}$ and $k^{\prime}=2 m-k-l$.

Note that there are only $2 m-(k+l)$ and $2 m-\left(k^{\prime}+l^{\prime}\right)$ are even. We therefore obtain that $k=k^{\prime}$ and $2 m-(k+l)=2 m-\left(k^{\prime}+l^{\prime}\right)$, which yields that $(k, \ell)=\left(k^{\prime} l^{\prime}\right)$.

Set $r=k+l, k, r=k+l$, then $\left\{k_{1}, k_{1}+k_{2}, m-\left(2 k_{1}+k_{2}\right)\right\}=\{k, r-l, 2 m-r\}$, namely $e_{i j}=\left\{i+j\left(k_{1}+k_{2}\right), i+j\left(k_{1}+k_{2}\right)+k_{1}, i+(j+1)\left(k_{1}+k_{2}\right)\right\}(\bmod 2 m)=\{i+j l, i+$ $j r, i+(j+1) l\}(\bmod 2 m)$. Therefore, if $e_{i j}(k, r)=e_{i j^{\prime}}\left(k^{\prime}, r^{\prime}\right)$, (or $e_{j}(k, r)=e_{j^{\prime}}\left(k^{\prime}, r^{\prime}\right)$, or $\left.e_{j}(l, r)=e_{j^{\prime}}\left(l^{\prime}, r^{\prime}\right)\right)$, then the cycle permutations $(k, r-k, n-r)$ and $\left(k^{\prime}, r^{\prime}-k^{\prime}, n-r^{\prime}\right)$ (or $(k, r, n-r)$ and $\left(l^{\prime}, r^{\prime}-l^{\prime}, n-r^{\prime}\right)$ or $(l, r-l, n-r)$ and $\left(l^{\prime}, r^{\prime}-l^{\prime}, n-r^{\prime}\right)$) are identical. We only need consider this case, if $e_{j}(k, l)=e_{j^{\prime}}\left(k^{\prime}, l^{\prime}\right)$, then the cycles permute $(k, r-k, n-r)$
$=\left(k^{\prime}, r^{\prime}-k^{\prime}, n-r^{\prime}\right)$, i.e. $C(k, l)=C\left(k^{\prime}, l^{\prime}\right)$. For other two cases, the discussions are similar. We now complete the proof by three cases.

Case 1: There are two subcases if k, k^{\prime} are odd:
(1) r and r^{\prime} are odd,
(2) r and r^{\prime} are even.

From the subcase (1) we know $n-r, n-r^{\prime}$ are even, and either (i) $k=k^{\prime}, n-r=n r^{\prime}$ and $r-k=r^{\prime}-k^{\prime}$ or (ii) $k=k^{\prime}, n-r=r^{\prime}-k^{\prime}$ and $r-k=n-r^{\prime}$. By (i) we have that $(k, r)=\left(k^{\prime}, r^{\prime}\right)$, a contradiction. Sameness, (ii) implies that $(k, l),\left(k^{\prime}, l^{\prime}\right) \in D_{2}$ and $n=k+l+l^{\prime}$, therefore have $k+l+l^{\prime}<n$, a contradiction.

From the subcase (2), we have that $n-r$ and $n-r^{\prime}$ are odd, so we obtain that (i) $k=k^{\prime}, r-k=r^{\prime}-k^{\prime}$ and $n-r=n-r^{\prime}$, or (ii) $k=k^{\prime}, r-k=n-r^{\prime}$ and $n-r=r^{\prime}-k^{\prime}$ or (iii) $k=r^{\prime}-k^{\prime}, r-k=n-r^{\prime}$ and $n-r=k^{\prime}$, or (iv) $k=r^{\prime}-k^{\prime}, r-k=k^{\prime}$ and $n-r=n-r^{\prime}$ or (v) $k=n-r^{\prime}, r-k=r^{\prime}-k^{\prime}$ and $n-r=k^{\prime}$, or (vi) $k=n-r^{\prime}, r-k=k^{\prime}$ and $n-r=r^{\prime}-k^{\prime}$.

By (i) we immediately have $(k, l)=\left(k^{\prime}, r^{\prime}\right)$, a contradiction. By (ii), we have the following: if $(k, l),\left(k^{\prime}, l^{\prime}\right) \in D_{1}$, then $(k, r)=\left(k^{\prime}, r^{\prime}\right)$, a contradiction. If $(k, r)\left(\left(k^{\prime}, r^{\prime}\right)\right) \in$ D_{2}, and $\left(k^{\prime}, r^{\prime}\right)((k, r)) \in D_{2}$, without loss of generality assume $(k, r) \in D_{1}$ and $\left(k^{\prime}, r^{\prime}\right) \in$ D_{2}, we obtain that $r=l$, a contradiction. If $(k, l),\left(k^{\prime}, l^{\prime}\right) \in D_{2}$, then $l>\frac{n-k}{2}$, a contradiction.

For (iii), (iv), (v) and (vi), the discussions are similar. Recall k are odd, so we have $e_{j}(k, l)=e_{j^{\prime}}\left(k^{\prime}, l^{\prime}\right)$, which implies that, $(k, r-k, n-r)=\left(k^{\prime}, r^{\prime}-k^{\prime}, n-r^{\prime}\right)$. i.e., $C(k, l)=$ $C\left(k^{\prime}, l^{\prime}\right)$.

Case 2. There are three subcases if k, k^{\prime} are even:
(1) r and r^{\prime} are odd;
(2) r and r^{\prime} are even;
(3) $r\left(r^{\prime}\right)$ is odd and $r^{\prime}(r)$ is even.

For (1) we have that $n-r$ and $n-r^{\prime}$ are even, so (i) $r-k=r^{\prime}-k^{\prime}, k=k^{\prime}$ and $n-r=n-r^{\prime}$ or (ii) $r-k=r^{\prime}-k^{\prime}, k=n-r^{\prime}$ and $n-r=k^{\prime}$.

By (i) we have $(k, r)=\left(k^{\prime}, r^{\prime}\right)$, a contradiction. Sameness, (ii) implies that: if $(k, l),\left(k^{\prime}, l^{\prime}\right) \in D_{1}$, then $(k, l)=\left(k^{\prime}, l^{\prime}\right)$, a contradiction. If $(k, l)\left(\left(k^{\prime}, l^{\prime}\right)\right) \in D_{2}$, then $\left.2 n=r+r^{\prime}+k+k^{\prime}\right)$, a contradiction. If $(k, r)\left(\left(k^{\prime}, r^{\prime}\right)\right) \in D_{2}$, and $\left(k^{\prime}, l^{\prime}\right)((k, l)) \in D_{2}$, without loss of generality we assume that $(k, l) \in D_{1}$ and $\left(k^{\prime}, l^{\prime}\right) \in D_{2}$, we obtain that $n=2 k^{\prime}+l^{\prime}$, a contradiction.

For (2), we have $n-r$ and $n-r^{\prime}$ are odd, so we obtain (i) $n-r=n-r^{\prime}, k=k^{\prime}$ and $r-k=r^{\prime}-k^{\prime}$ or (ii) $n-r=n-r^{\prime}, k=r^{\prime}-k^{\prime}$ and $r-k=k^{\prime}$.

By the subcase (i) we have that $(k, l)=\left(k^{\prime}, l^{\prime}\right)$, a contradiction. Sameness, the subcases (ii) implies that $(k, l),\left(k^{\prime}, l^{\prime}\right) \in D_{2}$ and $(k, l)=\left(k, k^{\prime}\right),\left(k^{\prime}, l^{\prime}\right)=(l, k)$, therefore implies $k<l, l<k$, a contradiction.

For (3), without loss of generality we assume that r is odd and r^{\prime} is even, we have that $n-r$ is even and $n-r^{\prime}$ is odd, so we obtain (i) $r-k=r^{\prime}-k^{\prime}, k=k^{\prime}$ and $n-r=n-r^{\prime}$ or (ii) $r-k=r^{\prime}-k^{\prime}, k=n-r^{\prime}$ and $n-r=k^{\prime}$.

The subcase (i) implies that $\left(k^{\prime}, l^{\prime}\right) \in D_{2}$ and $k^{\prime}=2 l^{\prime}$, a contradiction. The subcase (ii), imply that $(k, l) \in D_{1}$, and $n=3 k+l$, a contradiction. Recall k, k^{\prime} are even, so we have $e_{j}(k, l)=e_{j^{\prime}}\left(k^{\prime}, l^{\prime}\right)$, which implies that, $(k, r-k, n-r)=\left(k^{\prime}, r^{\prime}-k^{\prime}, n-r^{\prime}\right)$, i.e. , $C(k, l)=C\left(k^{\prime}, l^{\prime}\right)$.

Case 3. If $k\left(k^{\prime}\right)$ is odd and $k^{\prime}(k)$ is even. Without loss of generality we assume k is odd and k^{\prime} is even. Then there are two subcases:
(1) r is odd and r^{\prime} is even;
(2) r and r^{\prime} are odd.

For (1), we have $n-r$ is odd and $n-r^{\prime}$ is even, so we obtain that (i) $k=n-r^{\prime}, r-k=k^{\prime}$ and $n-r=r^{\prime}-k^{\prime}$ or (ii) $k=n-r^{\prime} r-k=r^{\prime}-k^{\prime}$ and $n-r=k^{\prime}$.

By the subcase (i) we have that $(k, l),\left(k^{\prime}, l^{\prime}\right) \in D_{2}$, and $2 n=2 k+l+2 k^{\prime}+l^{\prime}$, a contradiction. Sameness, the subcases (ii) implies that $(k, l),\left(k^{\prime}, l^{\prime}\right) \in D_{2}$ and $n=k+l+l^{\prime}$, therefore implies $(k, l),\left(k^{\prime}, l^{\prime}\right) \in D_{2}$, and $r=k$, a contradiction.

For (2), we have that $n-r$ and $n-r^{\prime}$ are even, so we obtain that (i) $k=r^{\prime}-k^{\prime},-k=$ $n-r^{\prime}$ and $n-r=k^{\prime}$, or (ii) $k=r^{\prime}-k^{\prime}, r-k=k^{\prime}$ and $n-r=n-r^{\prime}$.

By the subcase (i) we have that $(k, l) \in D_{2}$, and $2 n=2 k+l+2 k^{\prime}+l^{\prime}$, a contradiction. Sameness, the subcases (ii) implies that $(k, l) \in D_{2}$ and $k=l^{\prime}, k^{\prime}=l$, a contradiction. Recall $k\left(k^{\prime}\right)$ is odd and $k^{\prime}(k)$ is even, so we must have $e_{j}(k, l)=e_{j^{\prime}}\left(k^{\prime}, l^{\prime}\right)$, which implies that, $(k, r-k, n-r)=\left(k^{\prime}, r^{\prime}-k^{\prime}, n-r^{\prime}\right)$, i.e., $C(k, l)=C\left(k^{\prime}, l^{\prime}\right)$. The proof is completed.

Theorem 1 Let $n=2 m$, m be prime, then the decomposition

$$
K_{n}^{3}=\bigcup_{(k, l) \in D} C(k, l) \bigcup_{(k, l) \in D_{2}} C(l, k)
$$

is a cycle of length m decomposition.

Proof. Let $V=\{0,1, \ldots, n-1\}$. By Lemma 3, for any $(k, l) \in D, C(l, k)$ is a Hamilton cycle of K_{n}^{3}. Therefore, we shall prove that

$$
\{C(k, l), C(l, k):(k, l) \in D\}
$$

is a decomposition of K_{n}^{3} into Hamiltonian cycles. By lemma $1,\left|D_{2}\right|=\frac{n^{2}-6 n+5}{12},|D|=$ $\frac{n^{2}-1}{12}$ and by lemma 4 , let (k, l) and $\left(k^{\prime}, l^{\prime}\right)$ be two distinct pairs of D, then the cycle defined in (5) or (6) satisfying $C(k, l) \cap C\left(k^{\prime}, l^{\prime}\right)=\varnothing$ or $C(k, l) \cap C\left(l^{\prime}, k^{\prime}\right)=\varnothing$ or $C(l, k) \cap C\left(l^{\prime}, k^{\prime}\right)=\varnothing$, and because $|C(k, l)|=n,|C(l, k)|=n$, so

$$
\begin{aligned}
& |C(k, l)| \cdot|D|+|C(l, k)| \cdot\left|D_{2}\right| \\
= & n \cdot \frac{n^{2}-1}{12}+n \cdot \frac{n^{2}-6 n+5}{12} \\
= & \frac{n(n-1)(n-2)}{3!}
\end{aligned}
$$

which equals the size of $\left|\left(K_{n}^{3}\right)\right|$, that is

$$
K_{n}^{3}=\bigcup_{(k, l) \in D} C(k, l) \bigcup_{(k, l) \in D_{2}} C(l, k)
$$

The proof is completed.
Acknowledgement: This work is supported by the National Nature Science Foundation(61262018) and Project of Inner Mongolia University for the Nationalities: Postgraduate Graph Theory Curriculum.

References

[1] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1979).
[2] J. C. Bermond, Hamiltonian decompositions of graphs, directed graphs and hypergraphs, Ann. Discrete Math. 3 (1978) 21-28.
[3] H. Verrall, Hamilton decompositions of complete 3-uniform hypergraphs, Discrete Math. 132 (1994) 333-348
[4] Jirimutu and Jun Wang, Hamilton decomposition of complete bipartite 3-uniform hypergraphs(submitted).
[5] Jian-fang Wang, the theoretical base of hypergraphs(in Chinese), Beijing: Higher Education Press, 2006, 7
[6] Philippe Jégou, Samba Ndojh Ndiaye, On the notion of cycles in hypergraphs, Discrete Mathematics, Vol 309, No 23-24, 2009,12: 6535-6543
[7] Ronald Fagin, Degrees of Acyclicity for Hypergraphs and Relational Database Schemes, Journal of the Assoeiauon for Computing Machinery, Vol 30, No 3, 1983,7: 514-550
[8] Duchet, P. Hypergraphs, Handbook of Combinatorics. The MIT Press, 381-423, 1995
[9] Lee, T.T. An information - Theoretic Analysis of Relational Databases - Part I. Part II. IEE Transactions on Software Engineering, 13: 1049-1072 (1987)
[10] BEERI,C., FAGIN,R., MAIER,D., MENDELZON,A.O., ULLMAN,J.D.,AND YANNAKIS, M. Properties of acyclic database schemes In Proc. 13th Ann. ACM Symp. on Theory of Computing (Milwaukee, Wise, May 11-13, 1981), ACM, New York, 1981, pp 355-362.
[11] FAGIN, R., MENDELZON, A.O, AND ULLMAN, J.D. A simplified universal relation assumption and its properties. ACM Trans. Database Syst. 7, 3 (Sept 1982), 343-360
[12] Jian-fang Wang., On Axioms Contituting the Foundation of Hypergraphs Theory. Acta Mathematicae Applicatae Sinica, English Series Vol. 21, No. 3 (2005) 495-498
[13] Jian-fang Wang, The Information Hypergraph Theory, Beijing: Science Press, 2008

