Slightly Weak Separation axioms

Mohammed M. Khalaf

Department of Mathematics, Faculty of Science, Al-Azahar University, Asuiat, Egypt. Current Address : Al-Zulfi College of Science, Majmaah University, KSA

Abstract We introduce to notions of $\phi(w) - T_1$, $\phi(w) - T_2$, $\phi(w) - regular$ and $\phi(w) - normal$ on μ -weak structure ($\mu - WS$). And investigate a characterizations for such notions and relationships among $\phi(w) - T_1$, $\phi(w) - T_2$, $\phi(w) - T_3$ and $\phi(w) - T_4$. And some characterizations of *w*-regular and *w*-normal spaces in $\mu - WS$ have been given.

Keywords: μ -weak structure, $\phi(w) - T_1$, $\phi(w) - T_2$, $\phi(w) - T_3$ and $\phi(w) - T_4$

Notation and Preliminaries

Recently Á. Császár [6] defined the notion of weak structures and showed that

these structures can replace in many situations generalized topologies or minimal structures. Let us say that $w \subseteq P$ is a weak structure (briefly WS) on X if $\phi \in \omega$. Clearly each generalized topology and each minimal structure is a WS. Let w be a weak structure on X and $A \subseteq X$. Á. Császár defined (as in the general case) $i_{\omega}A$ as the union of all w -open subsets of A (e.g. ϕ) and $c_w A$ as the intersection of all w closed sets containing A (e.g. X). Define the family $w_{\mu} = \{v \cap \mu : v \in w\}$ is the w_{μ} -structure induced over $\mu \subset X$ by w (by short $\mu - WS$). The elements of w_{μ} are called w_{μ} -open sets; a set v is a w_{μ} -closed set if $\mu - v \in w_{\mu}^{c}$. We note that w_{μ}^{c} is the family of all w_{μ} -closed sets. Let $v \in \mu - WS$ we define the w_{μ} -interior (by short i_{w}) of μ as the finest w_{μ} - open sets contained in ν that is, $i_{\mu}w(\nu) = \bigcup_{\zeta \in w_{\mu}} \{\zeta : \zeta \subseteq \nu\}$. Let $v \in \mu - WS$ we define the w_{μ} -closure (by short c_w) of μ as the smallest w_{μ} -closed sets which contained in v that is, $c_{\mu}w(v) = \bigcap_{\zeta \in w_{\mu}} \{\mu - \zeta : v \subseteq \mu - \zeta\}$. Let $M_{\emptyset(w)}$ denote the union of all elements of X. Let (X, τ) be a topological space and A is a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. In this paper in section 1. We introduce the concepts of $\phi(w) - T_1$, $\phi(w) - T_2$, $\phi(w) - T_3$ and $\phi(w) - T_4$. And investigate a characterizations for such notions and relationships among them are introduces. In section 2. Some characterizations of w -regular and w -normal spaces in $\mu - WS$ have been given.

1- $\emptyset(w) - T_i$, i = 1, 2, 3, 4

Definition 1.1 Let *w* be a *w* eak structure on *X*, $\mu \subset X$. Then *X* is called a $\emptyset(w) - T_1$ if for $x_1, x_2 \in M_{\emptyset(w)}$ with $x_1 \neq x_2$. Then there exists *V*, *U* are $\emptyset(w) - open$ set , $x_1 \in U, x_2 \notin U$ and $x_2 \in V, x_1 \notin V$.

Theorem 1.1 Let *w* be a weak structure on *X*, $\mu \subset X$. Then

For the converse, let $x, y \in M_{\emptyset(w)}$ with $x_1 \neq x_2$. Then by hypothesis,

$$(X - M_{\emptyset(w)}) \cup \{x_1\}$$
 and $(X - M_{\emptyset(w)}) \cup \{x_2\}$ are $\emptyset(w) - closed$. Set

 $U = M_{\emptyset(w)} - \{x_2\}$ and $V = M_{\emptyset(w)} - \{x_1\}$. Then V, U are $\emptyset(w) - open$ set, $x_1 \in U, x_2 \notin U$ and $x_2 \in V, x_1 \notin V$. Hence X is a $\emptyset(w) - T_1$.

Definition 1.2 Let w be a weak structure on $X, \mu \subset X$. Then X is called a relative $\emptyset(w) - T_2$ if for every $x_1, x_2 \in M_{\emptyset(w)}$ with $x_1 \neq x_2$, there exists $\emptyset(w) - open$ sets $U, V \in w$ such that $x_1 \in U, x_2 \in V$ and $U \cap V = \emptyset$.

Remark 1.1 it is clear that every $\phi(w) - T_2$ and $\phi(w) - T_1$, but the converse need not be true in general.

Lemma 1.1 Let w be a weak structure on X, $\mu \subset X$. Every $\emptyset(w) - closed$ set includes $X - M_{\emptyset(w)}$.

Proof. For every w - open sets U in $X, \mu \subset X$, $U \subseteq M_{\emptyset(w)} \subseteq U^c$.

Theorem 1.2 Let *w* be a weak structure on *X*, $\mu \subset X$. Then the following properties are equivalent:

(1) *X* is $Ø(w) - T_2$

(2) Let $x \in M_{\emptyset(w)}$. For each $z \in M_{\emptyset}(w)$ with $x_1 \neq x_2$, there is a $\emptyset(w) - open$ set U containing x such that $z \notin C_w(U)$.

(3) For $x \in M_{\phi(w)}$, $\cap \{C_w(U) : U \in w \text{ and } x \in U\} \supseteq \cup (X - M_{\phi(w)})$

(4) The set $\Delta \cup M_{\emptyset(w)} \times M_{\emptyset(w)})^c$ is $\emptyset(w) - closed$ set in $X \times X$, where the diagonal $\Delta = \{(x, x) : x \in X\}.$

Proof (1) \Rightarrow (2) For $x \in M_{\emptyset(w)}$, let $z \in M_{\emptyset(w)}$ with $x_1 \neq x_2$. Then there exist disjoint $\emptyset(w) - open$ set U and V containing x and z, respectively. From lemma 1.1 $z \notin C_w(U)$.

(2) \Rightarrow (3) For $x \in M_{\emptyset}(w)$, let $z \in M_{\emptyset(w)}$ with $x_1 \neq x_2$. Then by (2), there is a $\emptyset(w) - open$ set U containing x such that $z \notin C_w(U)$, so by above lemma

 $z \notin \cap \{C_w(U) : U \in w \text{ and } x \in U\} \supseteq \cup (X - M_{\emptyset(w)}).$ Thus we find that $\cap \{C_w(U) : U \in w \text{ and } x \in U\} = \{x\} \cup (X - M_{\emptyset(w)}).$

(3) \Rightarrow (4) We show that $X \times X - (\Delta \cup M_{\emptyset(w)} \times M_{\emptyset(w)})^c)$ is $\emptyset(w) - open$. For the proof, let (x, y) be any element in $X \times X - (\Delta \cup M_{\emptyset(w)} \times M_{\emptyset(w)})^c)$. Then

 $x, z \in M_{\phi(w)}$ and $x \neq z$. Since

 $z \notin \cap \{C_w(U): U \in w \text{ and } x \in U\} = \{x\} \cup (X - M_{\emptyset(w)}) \}$, there exists some $U \in w$ such that $x \in U$ and $z \notin C_w(U)$. Since $U \cap (X - C_w(U)) = \emptyset$ and $X - C_w(U)$ is $\emptyset(w) - open$ set containing z, $U \times (X - C_w(U))$ is a $\emptyset(w) - open$ set containing (x, z) such that $U \times (X - C_w(U) \cap (\Delta \cup M_{\emptyset(w)} \times M_{\emptyset(w)})^c)$. Hence this implies $X \times X - (\Delta \cup M_{\emptyset(w)} \times M_{\emptyset(w)})^c)$ is $\emptyset(w) - open$ in $X \times X$

(3) \Rightarrow (4) let $x, z \in M_{\emptyset(w)}$ and $x \neq z$. Then $(x, z) \notin \Delta \cup M_{\emptyset(w)} \times M_{\emptyset(w)})^c$. Since $\Delta \cup (M_{\emptyset(w)} \times M_{\emptyset(w)})^c$ is $\emptyset(w) - open$, by lemma 1.1 there exists a $\emptyset(w) - open$ set $U \times V$ containing the point (x, z) such that

 $U \times V \cap (\Delta \cup M_{\emptyset(w)} \times M_{\emptyset(w)})^c) = \emptyset$. Hence we can say that there exist $U, V \in w$ such that $x \in U$, $z \in V$ and $U \cap V = \emptyset$.

Definition 1.3 Let w, w' be a weak structures on X and Y respectively, $\mu \subset X$. Then a function $f: (X, w) \to (Y, w')$ is said to be

(1) $\phi(w, w')$ – *continuous* if $U' \in w'$ implies that $f^{-1}(U') \in w$

(2) $\emptyset(w, w') - open$ if $U \in w$ implies that $f(U) \in w'$

Lemma 1.2 Let w, w' be a weak structures on $X, \mu \subset X$. If $f: (X, w) \to (Y, w')$ is a

 $\emptyset(w, w') - open$, then $f(M_{\emptyset(w)}) \subseteq M_{\emptyset(w')}$.

Proof Since $M_{\emptyset(w)} \in w$, $f(M_{\emptyset(w)}) \in M_{\emptyset(w')}$ and so $f(M_{\emptyset(w)}) \subseteq M_{\emptyset(w')}$

Theorem 1.3 Let $f: (X, w) \to (Y, w')$ be an injective, $\emptyset(w, w') - open$ and $\emptyset(w, w')$ -continuous function on a weak structures (X, w) and (Y, w'). If Y is $\emptyset(w') - T_2$, then X is $\emptyset(w) - T_2$.

Proof Let $x_1, x_2 \in M_{\emptyset(w)}$ with $x_1 \neq x_2$. Then $f(x_1) \neq f(x_2)$ and from lemma 1.2, we have $f(x_1), f(x_2) \in M_{\emptyset(w)}$. Since Y is $\emptyset(w') - T_2$, there exist $U', V' \in w'$ such that $f(x_1) \in U', f(x_2) \in V'$ and $U' \cap V' = \emptyset$. This implies $f^{-1}(U'), f^{-1}(V') \in \emptyset(w), x_1 \in f^{-1}(U'), x_2 \in f^{-1}(V')$ and $f^{-1}(U') \cap f^{-1}(V') = \emptyset$. Hence X is $\emptyset(w) - T_2$. **Theorem 1.4** Let $f: (X, w) \to (Y, w')$ be an injective, $\emptyset(w, w')$ -open function on a weak structures (X, w) and (Y, w'). If X is $\emptyset(w) - T_2$, and

 $f(M_{\emptyset(w)}) = M_{\emptyset(w')}$ then Y is $\emptyset(w) - T_2$.

Proof Let $x_1, x_2 \in M_{\emptyset(w')}$ with $y_1 \neq y_2$. Then from $f(M_{\emptyset(w)}) = M_{\emptyset(w')}$

There exist $x_1, x_2 \in M_{\emptyset(w)}$ such that $f(x_1) = y_1$, $f(x_2) = y_2$. Since X is $\emptyset(w) - T_2$, there exist $U, V \in \emptyset(w)$ such that $x_1 \in U, x_2 \in V$ and $U \cap V = \emptyset$. Thus

 $f(U), f(V) \in \emptyset(w'), y_1 \in f(U)$ and $y_2 \in f(V)$. And injective of f,

 $f(U \cap V) = f(U) \cap f(V) = \emptyset$ and so Y is $\emptyset(w) - T_2$.

Definition 1.4 Let *w* be a weak structure on $X, \mu \subset X$. Then *X* is said to be relative $\emptyset(w) - regular$ (simply, $\emptyset(w) - regular$) if for $x \in M_{\emptyset(w)}$ and $\emptyset(w) - closed$ set *F* with $x \notin F$, there exist $U, V \in \emptyset(w)$ such that $x \in U$, $F \cap M_{\emptyset(w)} \subseteq V$ and $U \cap V = \emptyset$. And if *X* is $\emptyset(w) - T_1$. And $\emptyset(w) - regular$, then it is said to be $\emptyset(w) - T_3$.

Theorem 1.5 Let *w* be a weak structure on *X*, $\mu \subset X$. Then *X* is said to be $\emptyset(w) - regular$ if and only if for $x \in M_{\emptyset(w)}$ and a $\emptyset(w) - open$ set *U* containing *x*, there $\emptyset(w) - open$ set *V* containing *x* such that $x \in V \subseteq C_w(V) \cap M_{\emptyset(w)} \subseteq U$ is a

Proof Assume that X is said to be $\emptyset(w) - regular$. Then for $x \in M_{\emptyset(w)}$ and a $\emptyset(w) - open$ set U containing x and the $\emptyset(w) - closed$ set U^c have disjoint $\emptyset(w) - open$ sets U, W with $x \in V$, $U^c \cap M_{\emptyset(w)} \subseteq W$. Since $V \subseteq W^c$ and W^c is $\emptyset(w) - closed$, it follow $C_w(V) \subseteq W^c$. This implies $C_w(V) \cap (U^c \cap M_{\emptyset(w)}) \subseteq C_w(V) \cap W = \emptyset$, thus $C_w(V) \cap M_{\emptyset(w)} \subseteq U$.

For the converse, let *F* be any $\emptyset(w) - closed$ set and $x \notin F$ for for $x \in M_{\emptyset(w)}$. Then since F^c is $\emptyset(w) - open$ set containing *x*, by hyothesis, there is a $\emptyset(w) - open$ set *V* containing *x* such that $x \in V \subseteq C_w(V) \cap M_{\emptyset(w)} \subseteq F^c$, thus $C_w(V) \cap M_{\emptyset(w)} \cap F = \emptyset$, so that $M_{\emptyset(w)} \cap F \subseteq C_w(V^c)$. Hence *X* is $\emptyset(w) - regular$.

Definition 1.5 Let *w* be a weak structure on $X, \mu \subset X$. Then *X* is said to be relative $\emptyset(w) - normal$ (simply, $\emptyset(w) - normal$) if for $\emptyset(w) - closed$ set F_1 and F_2 with $F_1 \cap F_2 = X - M_{\emptyset(w)}$ there exist $U, V \in \emptyset(w)$ such that $F_1 \cap M_{\emptyset(w)} \subseteq U$, $F_2 \cap M_{\emptyset(w)} \subseteq V$ and $U \cap V = \emptyset$. And if *X* is $\emptyset(w) - T_1$. And $\emptyset(w) - regular$, then it is said to be $\emptyset(w) - T_4$.

Theorem 1.6 Let *w* be a weak structure on *X*, $\mu \subset X$. Then *X* is said to be $\emptyset(w) - normal$ if and only if for a $\emptyset(w) - open$ set *F* and a $\emptyset(w) - open$ set *U* with $F \cap M_{\emptyset(w)} \subseteq U$, There is a $\emptyset(w) - open$ set *V* containing *x* such that

$$F \subseteq V \subseteq C_w(V) \cap M_{\emptyset(w)} \subseteq U.$$

Proof It is similar to the proof of Theorem 1.5

2 characterizations w -regular spaces and w -normal spaces

In this section characterizations of w-regular and w-normal spaces in $\mu - WS$ have been given.

Definition 2.1 Let (X, τ) be a topological space and w be a $\mu - WS$ on X. Then (X, τ) is said to be w -regular if for each closed set F of X and each $x \notin F$, there exist disjoint w -open sets U and V such that $x \in U$ and $F \subseteq V$

Theorem 2.1 Let (X, τ) be a topological space and w be a $\mu - WS$ on X. Consider the following statements:

1. X is w -regular.

2. For each $x \in X$ and each $U \in \tau$ with $x \in U$, there exists $V \in w$ such that $x \in V \subseteq c_w(V) \subseteq U$.

Then the implication (1) \Rightarrow (2) holds. If $i_w(A) \in w$ for every *w*-closed *A* of *X*, then the statements are equivalent.

Proof

1. \Rightarrow (2). Let $x \notin (X - U)$, where $U \in \tau$. Then there exist disjoint *G*, $V \in w$ such that $(X - U) \subseteq G$ and $x \in V$. Thus $V \subseteq X - G$ and hence $x \in V \subseteq c_w(V) \subseteq c_w(X - G) = X - G \subseteq U$.

2. \Rightarrow (1). Let *F* be a closed set and $x \notin F$. Then $x \in X - F \in \tau$ and hence there exists $V \in w$ such that $x \in V \subseteq c_w(V) \subseteq X - F$. Therefore, $F \subseteq X - c_w(V) = i_w(X - V) \in w$.

Definition 2.2 Let w be a $\mu - WS$ on a topological space (X, τ) . Then $A \subseteq X$ is called a generalized w closed set (or simply gw closed set) if $c_w(A) \subseteq U$ whenever $A \subseteq U \in \tau$. The complement of a g_w closed set is called a generalized w closed or simply g_w copen) set.

Theorem 2.2 Let (X,τ) be a topological space and w be a μ – WS on X, and consider the following statements:

1. X is w -regular.

2. For each closed set F and $x \notin F$, there exists $U \in w$ and gw-open set V such that $x \in U$, $F \subseteq V$ and $U \cap V = \phi$.

3. For each $A \subseteq X$ and each closed set F with $A \cap F = \phi$, there exist $U \in w$ and a gw-open set V such that $A \cap U \neq \phi$, FV and $U \cap V = \phi$. Then the implications (1) \Rightarrow (2) \Rightarrow (3) hold. If $i_w(A) \in w$ for every gw-open set A of X, then the statements are equivalent.

Proof

1. \Rightarrow (2). Obvious.

2. \Rightarrow (3). Let $A \subseteq X$ and F be a closed set with $A \cap F = \phi$. Then for $a \in A$, $a \notin F$, and hence by (2), there exist $U \in w$ and a gw-open set V such that $a \in U$, $F \subseteq V$ and $U \cap V = \phi$. Hence $A \cap U \neq \phi$, $F \subseteq V$ and $U \cap V = \phi$.

3. \Rightarrow (1). Let $x \notin F$, where *F* is closed in *X*. Since $F \cap x = \phi$, by (3) there exist *U* and a *gw*-open set set *W* such that $x \in U$, $F \subseteq W$ and $U \cap W = \phi$. Then by Theorem 2.11 we have $F \subseteq i_w(W) = V \in w$ and hence $U \cap V = \phi$.

Definition 2.3 Let (X, τ) be a topological space and w be a $\mu - WS$ on X. Then (X, τ) is said to be w-normal if for any two disjoint closed sets A and B there exist two disjoint w-open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Remark 2.1

For a $\mu - WS \, w$ on on a topological space (X, τ) , every w -closed set is a g_w -closed set. In fact, if A is a w -closed set with $A \subseteq U \in \tau$, then $A = c_w(A) \subseteq U$, so that A is g_w -closed.

Theorem 2.3 Let (X, τ) be a topological space and w be a $\mu - WS$ on X. Then A is gw-open if and only if $F \subseteq i_{\omega}(A)$ wherever $F \subseteq A$ and F is closed.

Proof

Let A be a gw -open set and $F \subseteq A$, where F is closed. Then X - A is a gw closed set contained in an open set X - F. Hence $c_{\omega}(X - A) \subseteq X - F$, i.e. $X - i_w(A) \subseteq X - F$. So $F \subseteq i_w(A)$. Conversely, suppose that $F \subseteq i_w(A)$ for any closed set F whenever $F \subseteq A$. Let $X - A \subseteq U$, where $U \in \tau$. Then $X - U \subseteq A$ and X - U is closed. By assumption, $X - U \subseteq i_w(A)$ and hence $c_w(X - A) = X - i_w(A) \subseteq U$. Therefore (X - A) is gw - closed and hence A is gw - open.

Theorem 2.4 Let w be a μ – WS on a topological space (*X*, τ), and consider the following statements:

(1) X is w -normal.

(2) For any pair of disjoint closed sets A and B of X, there exist disjoint gw -open sets U and V of X such that $A \subseteq U$ and $B \subseteq V$.

(3) For each closed set A and each open set B containing A, there exists a gw -open set U such that $A \subseteq U \subseteq c_w(U) \subseteq B$.

Then the implications $(1) \Rightarrow (2) \Rightarrow (3)$ hold. If $i_w(A) \in w$ and $c_w(A)$ is w - closed for every gw-open set A of X, then the statements are equivalent.

Proof

1. \Rightarrow (2). Let A and B be a pair of disjoint closed sets of X. Then by (1) there exist disjoint w -open sets U and V of X such that $A \subseteq U$ and $B \subseteq V$. Then (2) follows from Remark 2.1

2. \Rightarrow (3). Let *A* be a closed set and *B* be an open set containing *A*. Then *A* and *X*-*B* are two disjoint closed sets. Hence by (2) there exist disjoint *gw*-open sets *U* and *V* of *X* such that $A \subseteq U$ and $X - B \subseteq V$. Since *V* is *gw*-open and X - B is a closed set with $X - B \subseteq V$, by Theorem 2.11, $X - B \subseteq i_w(V)$. Hence $c_w(X - V) = X - i_w(V) \subseteq B$. Thus $A \subseteq U \subseteq c_w(U) \subseteq c_w(X - V) \subseteq B$.

3. \Rightarrow (1). Let A and B be two disjoint closed subsets of X. Then A is a closed set and X - B is an open set containing A. Thus by (3) there exists a gw open set U such that $A \subseteq U \subseteq c_w(U) \subseteq X - B$. Thus by Theorem 2.3

and $B \subseteq X - c_w(U)$, where $i_w(U)$ and $X - c_w(U) = i_w(X - U)$ $A \subseteq i_w(U)$ are disjoint sets. Since U is gw-open, $i_w(U) \in w$ and $i_w(X - U) \in w$. Hence X is w-normal.

Theorem 2.5 Let (X, τ) be a topological space and w be a μ – WS on X, and consider the following statements:

1. For each g -closed set A and each open set B containing A, there exists an w -open set U such that $Cl(A) \subseteq U \subseteq c_w(U) \subseteq B$.

2. For each closed set A and each g -open set B containing A, there exists an w -open set U such that $A \subseteq U \subseteq c_w(U) \subseteq Int(B)$.

3. For each g -closed set A and each open set B containing A, there exists a gw -open set U such that $Cl(A) \subseteq U \subseteq c_w(U) \subseteq B$.

4. For each closed set A and each open set B containing A, there exists a gw -open set U such that $A \subseteq U \subseteq c_w(U) \subseteq B$.

5. For each closed set A and each g -open set B containing A, there exists a gw -open set U such that $A \subseteq U \subseteq c_w(U) \subseteq Int(B)$.

Then the implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ hold. If $i_{\omega}(A) \in w$ for every gw-open A of X, then the statements are equivalent.

Proof

1. \Rightarrow (2). Let A be a closed set and B be a g-open set containing A. Then $A \subseteq Int(B)$. Since A is closed and Int(B) is open, by (1) there exists a wopen set U such that $A \subseteq U \subseteq c_w(U) \subseteq Int(B)$.

2. \Rightarrow (3) and (3) \Rightarrow (4) are obvious.

3. \Rightarrow (5). Let A be a closed set and B be a g-open set containing A. Since B is g-open and A is closed, since . Thus by (4), there exists a gw-open set U such that $A \subseteq U \subseteq c_w(U) \subseteq Int(B)$.

4. \Rightarrow (1). Let *A* be a *g*-closed subset of *X* and *B* be an open set containing *A*. Then $Cl(A) \subseteq B$, where *B* is *g*-open. Thus by (5) there exists a *gw*open set *G* such that $Cl(A) \subseteq G \subseteq c_w(G) \subseteq Int(B) \subseteq B$. Since *G* is *gw*-open and $Cl(A) \subseteq G$, by Theorem 2.3, $Cl(A) \subseteq i_{\omega}(G)$. Put $U = i_w(G)$. Then $U \in w$ and $Cl(A) \subseteq U \subseteq c_w(U) = c_w(i_w(G)) \subseteq c_w(G) \subseteq B$.

References

[1] M. E. Abd El-Monsef, A. N. Geaisa and R. A. Mahmoud, β -regular spaces, Proc. Math. Phys. Soc. Egypt, 60 (1985), 47-52.

[2] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.

[3] D. Andrijevi primec, Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.

[4] D. Andrijevic', On b -open sets, Mat. Vesnik, 48 (1996), 59-64.

[5] S. P. Arya and T. Nour, Characterizations of s-normal spaces, Indian J. Appl. Math., 21 (1990), 717-719.

[6] Á. Császár, Weak structures, Acta Math. Hungar., 131 (2011), 193-195.

[7] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351-357.