On contra Λ_r–continuous functions

M.J. Jeyanthi1, S. Pious Missier2 and P. Thangavelu3

Abstract

In this paper, we introduce a new class of function called contra Λ_r-continuous function. Some characterizations and several properties concerning contra Λ_r-continuity are obtained.

Mathematics Subject Classification : 54C08, 54C10

Keywords: Λ_r-open, Λ_r-continuous, contra Λ_r-continuous.

1 Introduction

Λ_r-open sets is recently introduced by the authors [6] and studied Λ_r-T_0, Λ_r-T_1 and Λ_r-T_2 spaces, Λ_r-regular spaces, Λ_r-normal spaces and variants of continuity
related to this concept in [6, 8, 7]. The purpose of the present paper is to introduce and investigate some of the fundamental properties of contra \(\Lambda_r \)-continuous functions and we obtain characterizations of contra \(\Lambda_r \)-continuous functions.

2 Preliminary Notes

Throughout the paper, \((X, \tau)\) (or simply \(X\)) will always denote a topological space. For a subset \(S\) of a topological space \(X\), \(S\) is called regular-open [10] if \(S = \text{Int } cl\ S\). Then the complement \(S^c = X \setminus S\) of a regular-open set \(S\) is called the regular-closed set. The family of all regular-open sets (resp. regular-closed sets) in \((X, \tau)\) will be denoted by \(RO(X, \tau)\) (resp. \(RC(X, \tau)\)). A subset \(S\) of a topological space \((X, \tau)\) is called \(\Lambda_r\)-set [6] if \(S = \Lambda_r(S)\), where

\[
\Lambda_r(S) = \bigcap \{G / G \in RO(X, \tau) \text{ and } S \subseteq G\}.
\]

The collection of all \(\Lambda_r\)-sets in \((X, \tau)\) is denoted by \(\Lambda_r(X, \tau)\).

Throughout this paper, we adopt the notations and terminology of [6]. Let \(A\) be a subset of a space \((X, \tau)\). Then \(A\) is called a \(\Lambda_r\)-closed set if \(A = S \cap C\) where \(S\) is a \(\Lambda_r\)-set and \(C\) is a closed set. The complement of a \(\Lambda_r\)-closed set is called \(\Lambda_r\)-open. The collection of all \(\Lambda_r\)-open (resp. \(\Lambda_r\)-closed) sets in \((X, \tau)\) is denoted by \(\Lambda_rO(X, \tau)\) (resp. \(\Lambda_rC(X, \tau)\)). Also note that every open set is \(\Lambda_r\)-open; arbitrary union of \(\Lambda_r\)-open sets is \(\Lambda_r\)-open and arbitrary intersection of \(\Lambda_r\)-closed sets is \(\Lambda_r\)-closed; and intersection of two open sets is \(\Lambda_r\)-open.

A point \(x \in X\) is called a \(\Lambda_r\)-cluster point of \(A\) if for every \(\Lambda_r\)-open set \(U\) containing \(x\), \(A \cap U \neq \emptyset\). The set of all \(\Lambda_r\)-cluster points of \(A\) is called the \(\Lambda_r\)-closure of \(A\) and it is denoted by \(\Lambda_r-cl(A)\). Then \(\Lambda_r-cl(A)\) is the intersection of all \(\Lambda_r\)-closed sets containing \(A\) and it is the smallest \(\Lambda_r\)-closed set containing \(A\). Also \(A\) is \(\Lambda_r\)-closed if and only if \(A = \Lambda_r-cl(A)\). The union of \(\Lambda_r\)-open sets contained in \(A\) is called \(\Lambda_r\)-interior of \(A\) and it is denoted by \(\Lambda_r-int(A)\). Before we enter into our work, we recall the following definitions.
Definition 2.1 A function $f : X \to Y$ is called

(i) contra-continuous [3], if $f^{-1}(V)$ is closed in X for each open set V of Y
(ii) Λ_r-continuous [7], if $f^{-1}(V)$ is a Λ_r-open set in X for each open set V in Y
(iii) Λ_r-irresolute [7], if $f^{-1}(V)$ is a Λ_r-open set in X for each Λ_r-open set V in Y
(iv) Λ_r^*-open [7], if the image of each Λ_r-open set in X is a Λ_r-open set in Y
(v) Λ_r^*-closed [7], if the image of each Λ_r-closed set in X is a Λ_r-closed set in Y

Definition 2.2 A topological space X is said to be

(i) Urysohn space [11], if for each pair of distinct points x and y in X, there exists two open sets U and V in X such that $x \in U$, $y \in V$ and $cl(U) \cap cl(V) = \emptyset$.
(ii) ultra normal [9], if each pair of nonempty disjoint closed sets can be separated by disjoint closed sets.

3 Contra Λ_r-continuous function

In this section, we introduce contra Λ_r-continuous functions, contra Λ_r-irresolute functions and perfectly contra Λ_r-irresolute functions and study their properties.

Definition 3.1 A function $f : (X, \tau) \to (Y, \sigma)$ is called contra Λ_r-continuous, if $f^{-1}(V)$ is Λ_r-closed in X for each open set V in Y.

Theorem 3.2 For a function $f : (X, \tau) \to (Y, \sigma)$, the following are equivalent:

(a) f is contra Λ_r-continuous
(b) For every closed subset F of Y, $f^{-1}(F)$ is Λ_r-open in X
(c) For each $x \in X$ and each closed subset F of Y with $f(x) \in F$, there exists a Λ_r-open set U of X with $x \in U$, $f(U) \subseteq F$

Proof. (a) \leftrightarrow (b) Obvious.
(b) → (c) Let F be any closed subset of Y and let $f(x) \in F$ where $x \in X$. Then by (b), $f^{-1}(F)$ is Λ_r-open in X. Also $x \in f^{-1}(F)$. Take $U = f^{-1}(F)$. Then U is a Λ_r-open set containing x and $f(U) \subseteq F$.

(c) → (b) Let F be any closed subset of Y. If $x \in f^{-1}(F)$, then $f(x) \in F$. Hence by (c), there exists a Λ_r-open set U_x of X with $x \in U_x$ such that $f(U_x) \subseteq F$. Then

$$f^{-1}(F) = \bigcup \{ U_x : x \in f^{-1}(F) \},$$

and hence $f^{-1}(F)$ is Λ_r-open in X. \(\square\)

Lemma 3.3 [1] The following properties hold for subsets A, B of a space X:

(a) $x \in \text{ker}(A)$ if and only if $A \cap F \neq \emptyset$ for any $F \in C(X,x)$

(b) $A \subseteq \text{ker}(A)$ and $A = \text{ker}(A)$ if A is open in X

(c) If $A \subseteq B$, then $\text{ker}(A) \subseteq \text{ker}(B)$.

Theorem 3.4 Let $f : X \rightarrow Y$ be a bijective function. Then the following are equivalent:

(a) f is contra Λ_r-continuous

(b) $f(\Lambda_r\text{-cl}(A)) \subseteq \text{ker}(f(A))$ for every subset A of X

(c) $\Lambda_r\text{-cl}(f^{-1}(B)) \subseteq f^{-1}(\text{ker}(B))$ for every subset B of Y

Proof. (a) → (b) Let A be any subset of X. Suppose $y \notin \text{ker}(f(A))$. By Lemma 3.3(a), there exists $F \in C(Y, f(x))$ such that $f(A) \cap F = \emptyset$. Then $A \cap f^{-1}(F) = \emptyset$. Since $f^{-1}(F)$ is Λ_r-open by (a), $\Lambda_r\text{-cl}(A) \cap f^{-1}(F) = \emptyset$. That implies $f(\Lambda_r\text{-cl}(A)) \cap F = \emptyset$ and so $y \notin f(\Lambda_r\text{-cl}(A))$. This shows that

$$f(\Lambda_r\text{-cl}(A)) \subseteq \text{ker}(f(A)).$$

(b) → (c) Let B be any subset of Y. Then by (b),

$$f(\Lambda_r\text{-cl}(f^{-1}(B))) \subseteq f(\text{ker}(f^{-1}(B))) = \text{ker}(B).$$

Therefore, $\Lambda_r\text{-cl}(f^{-1}(B)) \subseteq f^{-1}(\text{ker}(B))$.

(c) → (a) Let V be open in Y. Then $\Lambda_r\text{-cl}(f^{-1}(V)) \subseteq f^{-1}(\text{ker}(V)) = f^{-1}(V)$ by (c) and Lemma 3.3(b). But $f^{-1}(V) \subseteq \Lambda_r\text{-cl}(f^{-1}(V))$. So $f^{-1}(V) = \Lambda_r\text{-cl}(f^{-1}(V))$. This means that $f^{-1}(V)$ is Λ_r-closed in X so that f is contra Λ_r-continuous. \(\square\)
Remark 3.5 The Examples 3.6 and 3.7 show that the concepts of Λ_r-continuity and contra Λ_r-continuity are independent of each other.

Example 3.6 Let $X = \{a,b,c\}$, $Y = \{a,b,c,d\}$, $\tau = \{X,\emptyset,\{c\},\{a,c\},\{b,c\}\}$ and $\sigma = \{Y,\emptyset,\{a\},\{b,c\},\{a,b,c\}\}$. Then $\Lambda_rO(X,\tau) = \tau$ and $\Lambda_rC(X,\tau) = \{X,\emptyset,\{a\},\{b\},\{a,b\}\}$. Define a function $f : (X,\tau) \rightarrow (Y,\sigma)$ by $f(a) = d$, $f(b) = b$ and $f(c) = c$. Then f is Λ_r-continuous. But f is not contra Λ_r-continuous since $\{b,c\}$ is open in (Y,σ) but $f^{-1}(\{b,c\}) = \{b,c\}$ is not Λ_r-closed in (X,τ).

Example 3.7 Let $X = Y = \{a,b,c,d\}$, $\tau = \{X,\emptyset,\{b,d\},\{b,c,d\},\{a,b,d\}\}$ and $\sigma = \{Y,\emptyset,\{a\},\{b\},\{a,b\}\}$. Then $\Lambda_rO(X,\tau) = \tau$ and $\Lambda_rC(X,\tau) = \{X,\emptyset,\{a\},\{c\},\{a,c\}\}$. Define a function $f : (X,\tau) \rightarrow (Y,\sigma)$ by $f(a) = a$, $f(b) = c$, $f(c) = b$ and $f(d) = d$. Then f is contra Λ_r-continuous. But f is not Λ_r-continuous since $\{a\}$ is open in (Y,σ) but $f^{-1}(\{a\}) = \{a\}$ is not Λ_r-open in (X,τ).

Theorem 3.8 If a function $f : (X,\tau) \rightarrow (Y,\sigma)$ is contra Λ_r-continuous and Y is regular, then f is Λ_r-continuous.

Proof. Let $x \in X$ and V be an open set in Y with $f(x) \in V$. Since Y is regular, there exists an open set W in Y such that $f(x) \in W$ and $\text{cl}(W) \subseteq V$. Since f is contra Λ_r-continuous and $\text{cl}(W)$ is a closed subset of Y with $f(x) \in \text{cl}(W)$, by Theorem 3.2 there exists a Λ_r-open set U of X with $x \in U$ such that $f(U) \subseteq \text{cl}(W)$. That is, $f(U) \subseteq V$. By Theorem 3.4 of [7], f is Λ_r-continuous. \qed

Recall that a topological space (X,τ) is said to be Λ_r-normal [8] if for every pair of disjoint closed sets A and B of X, there exists Λ_r-open sets U and V
Theorem 3.9 If $f : (X, \tau) \to (Y, \sigma)$ is closed, injective and contra Λ_r-continuous and Y is ultra normal, then X is Λ_r-normal.

Proof. Let A and B be disjoint closed subsets of X. Since f is closed and injective, $f(A)$ and $f(B)$ are disjoint closed subsets of Y. Since Y is ultra normal, there exists two clopen sets U and V in Y such that $f(A) \subseteq U$, $f(B) \subseteq V$ and $U \cap V = \emptyset$.

Since f is contra Λ_r-continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are Λ_r-open sets in (X, τ). Also $A \subseteq f^{-1}(U)$, $B \subseteq f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. This shows that X is Λ_r-normal.

Recall that a space (X, τ) is Λ_r-T$_2$ [6] if for each pair of distinct points x and y in X, there exists a Λ_r-open set U and a Λ_r-open set V in X such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Theorem 3.10 If a function $f : (X, \tau) \to (Y, \sigma)$ is injective, contra Λ_r-continuous and Y is a Urysohn space, then X is Λ_r-T$_2$.

Proof. Let $x, y \in X$ with $x \neq y$. Since f is injective, $f(x) \neq f(y)$. Since Y is a Urysohn space, there exists open sets U and V in Y such that $f(x) \in U$, $f(y) \in V$ and $cl(U) \cap cl(V) = \emptyset$.

Since f is contra Λ_r-continuous, by Theorem 3.2 there exists Λ_r-open sets A and B in X such that $x \in A$, $y \in B$ and $f(A) \subseteq cl(U)$, $f(B) \subseteq cl(V)$. Then $f(A) \cap f(B) = \emptyset$ and so $f(A \cap B) = \emptyset$. This implies that $A \cap B = \emptyset$ and hence X is Λ_r-T$_2$.

Remark 3.11 Every contra-continuous function is contra Λ_r-continuous since every closed set is Λ_r-closed. But the converse need not be true.

For example, let $X = Y = \{a,b,c,d\}$, $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{a,b\}, \{a,c\}, \{a,b,c\}\}$. Then the closed sets of (X, τ) are X, \emptyset, $\{b,c,d\}$, $\{a,c,d\}$ and Λ_r-closed sets of (X, τ) are X, \emptyset, $\{b,c,d\}$, $\{a,c,d\}$, $\{c,d\}$, $\{a\}, \{b\}$. Define a function

in X such that $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$.

Theorem 3.9 If $f : (X, \tau) \to (Y, \sigma)$ is closed, injective and contra Λ_r-continuous and Y is ultra normal, then X is Λ_r-normal.

Proof. Let A and B be disjoint closed subsets of X. Since f is closed and injective, $f(A)$ and $f(B)$ are disjoint closed subsets of Y. Since Y is ultra normal, there exists two clopen sets U and V in Y such that $f(A) \subseteq U$, $f(B) \subseteq V$ and $U \cap V = \emptyset$.

Since f is contra Λ_r-continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are Λ_r-open sets in (X, τ). Also $A \subseteq f^{-1}(U)$, $B \subseteq f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. This shows that X is Λ_r-normal.

Recall that a space (X, τ) is Λ_r-T$_2$ [6] if for each pair of distinct points x and y in X, there exists a Λ_r-open set U and a Λ_r-open set V in X such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Theorem 3.10 If a function $f : (X, \tau) \to (Y, \sigma)$ is injective, contra Λ_r-continuous and Y is a Urysohn space, then X is Λ_r-T$_2$.

Proof. Let $x, y \in X$ with $x \neq y$. Since f is injective, $f(x) \neq f(y)$. Since Y is a Urysohn space, there exists open sets U and V in Y such that $f(x) \in U$, $f(y) \in V$ and $cl(U) \cap cl(V) = \emptyset$.

Since f is contra Λ_r-continuous, by Theorem 3.2 there exists Λ_r-open sets A and B in X such that $x \in A$, $y \in B$ and $f(A) \subseteq cl(U)$, $f(B) \subseteq cl(V)$. Then $f(A) \cap f(B) = \emptyset$ and so $f(A \cap B) = \emptyset$. This implies that $A \cap B = \emptyset$ and hence X is Λ_r-T$_2$.

Remark 3.11 Every contra-continuous function is contra Λ_r-continuous since every closed set is Λ_r-closed. But the converse need not be true.

For example, let $X = Y = \{a,b,c,d\}$, $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{a,b\}, \{a,c\}, \{a,b,c\}\}$. Then the closed sets of (X, τ) are X, \emptyset, $\{b,c,d\}$, $\{a,c,d\}$ and Λ_r-closed sets of (X, τ) are X, \emptyset, $\{b,c,d\}$, $\{a,c,d\}$, $\{c,d\}$, $\{a\}, \{b\}$. Define a function

in X such that $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$.

Theorem 3.9 If $f : (X, \tau) \to (Y, \sigma)$ is closed, injective and contra Λ_r-continuous and Y is ultra normal, then X is Λ_r-normal.

Proof. Let A and B be disjoint closed subsets of X. Since f is closed and injective, $f(A)$ and $f(B)$ are disjoint closed subsets of Y. Since Y is ultra normal, there exists two clopen sets U and V in Y such that $f(A) \subseteq U$, $f(B) \subseteq V$ and $U \cap V = \emptyset$.

Since f is contra Λ_r-continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are Λ_r-open sets in (X, τ). Also $A \subseteq f^{-1}(U)$, $B \subseteq f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \emptyset$. This shows that X is Λ_r-normal.

Recall that a space (X, τ) is Λ_r-T$_2$ [6] if for each pair of distinct points x and y in X, there exists a Λ_r-open set U and a Λ_r-open set V in X such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Theorem 3.10 If a function $f : (X, \tau) \to (Y, \sigma)$ is injective, contra Λ_r-continuous and Y is a Urysohn space, then X is Λ_r-T$_2$.

Proof. Let $x, y \in X$ with $x \neq y$. Since f is injective, $f(x) \neq f(y)$. Since Y is a Urysohn space, there exists open sets U and V in Y such that $f(x) \in U$, $f(y) \in V$ and $cl(U) \cap cl(V) = \emptyset$.

Since f is contra Λ_r-continuous, by Theorem 3.2 there exists Λ_r-open sets A and B in X such that $x \in A$, $y \in B$ and $f(A) \subseteq cl(U)$, $f(B) \subseteq cl(V)$. Then $f(A) \cap f(B) = \emptyset$ and so $f(A \cap B) = \emptyset$. This implies that $A \cap B = \emptyset$ and hence X is Λ_r-T$_2$.

Remark 3.11 Every contra-continuous function is contra Λ_r-continuous since every closed set is Λ_r-closed. But the converse need not be true.

For example, let $X = Y = \{a,b,c,d\}$, $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{a,b\}, \{a,c\}, \{a,b,c\}\}$. Then the closed sets of (X, τ) are X, \emptyset, $\{b,c,d\}$, $\{a,c,d\}$ and Λ_r-closed sets of (X, τ) are X, \emptyset, $\{b,c,d\}$, $\{a,c,d\}$, $\{c,d\}$, $\{a\}, \{b\}$. Define a function
f : \((X, \tau) \rightarrow (Y, \sigma) \) by \(f(a) = d, f(b) = a, f(c) = c \) and \(f(d) = c \).
Then \(f \) is contra \(\Lambda_r \)-continuous but not contra-continuous since \(\{a\} \) is open in \((Y, \sigma) \) but \(f^{-1}(\{a\}) = \{b\} \) is not closed in \((X, \tau) \).

Definition 3.12 A topological space \(X \) is said to be \(\Lambda_r \)-connected, if \(X \) cannot be written as a disjoint union of two nonempty \(\Lambda_r \)-open sets.
A subset \(B \) of a topological space \(X \) is \(\Lambda_r \)-connected, if \(B \) is \(\Lambda_r \)-connected as a subspace of \(X \).

Theorem 3.13 For a topological space \(X \), the following are equivalent:

(i) \(X \) is \(\Lambda_r \)-connected
(ii) The only subsets of \(X \) which are both \(\Lambda_r \)-open and \(\Lambda_r \)-closed are the sets \(X \) and \(\emptyset \)
(iii) Each \(\Lambda_r \)-continuous function of \(X \) into a discrete space \(Y \) with at least two points is a constant function

Proof. (i) \(\rightarrow \) (ii) Let \(U \) be a both \(\Lambda_r \)-open and \(\Lambda_r \)-closed subset of \(X \). Then \(X \setminus U \) is both \(\Lambda_r \)-open and \(\Lambda_r \)-closed. Since \(X \) is \(\Lambda_r \)-connected and \(X \) is the disjoint union of \(\Lambda_r \)-open sets \(U \) and \(X \setminus U \), one of these must be empty.
Hence either \(U = \emptyset \) or \(U = X \).

(ii) \(\rightarrow \) (i) Suppose that \(X \) is not \(\Lambda_r \)-connected. Then \(X = A \cup B \) where \(A \) and \(B \) are nonempty \(\Lambda_r \)-open sets such that \(A \cap B = \emptyset \). Since \(B = X \setminus A \) is \(\Lambda_r \)-open, \(A \) is both \(\Lambda_r \)-open and \(\Lambda_r \)-closed. By (ii), \(A = \emptyset \) or \(X \). That is, either \(A = \emptyset \) or \(B = \emptyset \), which is a contradiction. Therefore \(X \) is \(\Lambda_r \)-connected.

(ii) \(\rightarrow \) (iii) Let \(f : X \rightarrow Y \) be a \(\Lambda_r \)-continuous function from a topological space \(X \) into a discrete topological space \(Y \). Then for each \(y \in Y \), \(\{y\} \) is both open and closed in \(Y \). Since \(f \) is \(\Lambda_r \)-continuous, \(f^{-1}(y) \) is both \(\Lambda_r \)-open and \(\Lambda_r \)-closed in \(X \).
Hence \(X \) is covered by \(\Lambda_r \)-open and \(\Lambda_r \)-closed covering \(\{f^{-1}(y) : y \in Y\} \).
By (ii), \(f^{-1}(y) = \emptyset \) or \(X \) for each \(y \in Y \). If \(f^{-1}(y) = \emptyset \) for each \(y \in Y \), then \(f \) fails to be a map. Hence there exists only one point \(y \in Y \) such that \(f^{-1}(y) = X \), which shows that \(f \) is a constant function.
(iii) → (ii) Let \(U \) be both \(\Lambda_r \)-open and \(\Lambda_r \)-closed in \(X \). Suppose \(U \neq \emptyset \). Let \(f : X \to Y \) be a \(\Lambda_r \)-continuous function from a topological space \(X \) into a discrete topological space \(Y \) defined by \(f(U) = \{y\} \) and \(f(X \setminus U) = \{w\} \), where \(y, w \in Y \) and \(y \neq w \). By (iii), \(f \) is constant so that \(U = X \).

Theorem 3.14 Let \((X, \tau)\) be a \(\Lambda_r \)-connected space and \((Y, \sigma)\) be any topological space. If \(f : X \to Y \) is surjective and contra \(\Lambda_r \)-continuous, then \(Y \) is not a discrete space.

Proof. If possible, let \(Y \) be a discrete space. Let \(A \) be any proper nonempty subset of \(Y \). Then \(A \) is both open and closed in \((Y, \sigma)\). Since \(f \) is contra \(\Lambda_r \)-continuous, \(f^{-1}(A) \) is \(\Lambda_r \)-closed and \(\Lambda_r \)-open in \((X, \tau)\). Since \(X \) is \(\Lambda_r \)-connected, by Theorem 3.13, the only subsets of \(X \) which are both \(\Lambda_r \)-open and \(\Lambda_r \)-closed are the sets \(X \) and \(\emptyset \). Hence \(f^{-1}(A) \) is either \(X \) or \(\emptyset \). If \(f^{-1}(A) = \emptyset \), then it contradicts the fact that \(A \neq \emptyset \) and \(f \) is surjective. If \(f^{-1}(A) = X \), then \(f \) fails to be a map. Hence \(Y \) is not a discrete space.

Theorem 3.15 If \(f : (X, \tau) \to (Y, \sigma) \) is surjective, contra \(\Lambda_r \)-continuous and \(X \) is \(\Lambda_r \)-connected, then \(Y \) is connected.

Proof. Assume that \(Y \) is not connected. Then \(Y = A \cup B \) where \(A \) and \(B \) are nonempty open sets in \(Y \) such that \(A \cap B = \emptyset \). Set \(U = Y \setminus A \) and \(V = Y \setminus B \). Then \(U \) and \(V \) are nonempty closed sets in \(Y \). Since \(f \) is surjective and contra \(\Lambda_r \)-continuous, \(f^{-1}(U) \) and \(f^{-1}(V) \) are nonempty \(\Lambda_r \)-open sets in \((X, \tau)\).

Now, \(f^{-1}(U) \cap f^{-1}(V) = \emptyset \) and \(f^{-1}(U) \cup f^{-1}(V) = X \). This contradicts the fact that \(X \) is \(\Lambda_r \)-connected and so \(Y \) is connected.

Theorem 3.16 A space \(X \) is \(\Lambda_r \)-connected if every contra \(\Lambda_r \)-continuous function from a space \(X \) into any \(T_0 \)-space \(Y \) is constant.

Proof. Suppose that \(X \) is not \(\Lambda_r \)-connected and every contra \(\Lambda_r \)-continuous function from \(X \) into a \(T_0 \)-space \(Y \) is constant. Since \(X \) is not \(\Lambda_r \)-connected, by Theorem 3.13, there exists a proper nonempty subset \(A \) of \(X \) such that \(A \) is both
Let $Y = \{a,b\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{b\}\}$ be a topology for Y. Let $f : X \to Y$ be a function such that $f(A) = \{a\}$ and $f(X \setminus A) = \{b\}$. Then f is non constant and contra Λ_r-continuous such that Y is T_0, which is a contradiction. This shows that X must be Λ_r-connected.

Theorem 3.17 If $f : (X, \tau) \to (Y, \sigma)$ is contra Λ_r-continuous and $g : (Y, \sigma) \to (Z, \gamma)$ is continuous, then $g \circ f : (X, \tau) \to (Z, \gamma)$ is contra Λ_r-continuous.

Proof. It directly follows from the definitions.

Theorem 3.18 Let $f : (X, \tau) \to (Y, \sigma)$ be surjective, Λ_r-irresolute and Λ_r^*-open and $g : (Y, \sigma) \to (Z, \gamma)$ be any function. Then $g \circ f$ is contra Λ_r-continuous if and only if g is contra Λ_r-continuous.

Proof. Suppose $g \circ f$ is contra Λ_r-continuous. Let F be any closed set in (Z, γ). Then $(g \circ f)^{-1}(F) = f^{-1}(g^{-1}(F))$ is Λ_r-open in (X, τ). Since f is Λ_r^*-open and surjective, $f(f^{-1}(g^{-1}(F))) = g^{-1}(F)$ is Λ_r-open in (Y, σ) and we obtain that g is contra Λ_r-continuous.

For the converse, suppose g is contra Λ_r-continuous. Let V be closed in (Z, γ). Then $g^{-1}(V)$ is Λ_r-open in (Y, σ). Since f is Λ_r-irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is Λ_r-open in (X, τ) and so $g \circ f$ is contra Λ_r-continuous.

Theorem 3.19 Let $f : X \to Y$ be a function and $g : X \to X \times Y$ the graph function of f, defined by $g(x) = (x, f(x))$ for every $x \in X$. If g is contra Λ_r-continuous, then f is contra Λ_r-continuous.

Proof. Let U be an open set in Y. Then $X \times U$ is open in $X \times Y$. Since g is contra Λ_r-continuous, $g^{-1}(X \times U) = f^{-1}(U)$ is Λ_r-closed in X. This shows that f is contra Λ_r-continuous.

Theorem 3.20 If $f : X \to Y$ is contra-continuous, $g : X \to Y$ is contra-continuous and Y is Urysohn, then $E = \{x \in X : f(x) = g(x)\}$ is Λ_r-closed in X.
Proof. Let $x \in X \setminus E$. Then $f(x) \neq g(x)$. Since Y is Urysohn, there exists open sets V and W in Y such that $f(x) \in V$, $g(x) \in W$ and $\text{cl}(V) \cap \text{cl}(W) = \emptyset$. Since f is contra-continuous, $f^{-1}(\text{cl}(V))$ is open in X. Since g is contra-continuous, $g^{-1}(\text{cl}(W))$ is open in X. Let $G = f^{-1}(\text{cl}(V))$ and $H = g^{-1}(\text{cl}(W))$ and set $A = G \cap H$. Then A is a Λ_r-open set containing x in X. Now,

$$f(A) \cap g(A) \subseteq f(G) \cap g(H) \subseteq \text{cl}(V) \cap \text{cl}(W) = \emptyset.$$

This implies that $A \cap E = \emptyset$ where A is Λ_r-open. So x is not a Λ_r-cluster point of E. Hence $x \notin \Lambda_r\text{cl}(E)$ and this completes the proof.

Definition 3.21 A subset A of a topological space X is said to be Λ_r-dense in X if $\Lambda_r\text{cl}(A) = X$.

Theorem 3.22 Let $f : X \to Y$ be a contra-continuous function and $g : X \to Y$ be a contra-continuous function. If Y is Urysohn and $f = g$ on a Λ_r-dense set $A \subseteq X$, then $f = g$ on X.

Proof. Let $E = \{x \in X : f(x) = g(x)\}$. Since f is contra-continuous, g is contra-continuous and Y is Urysohn, by Theorem 3.20, E is Λ_r-closed in X. By assumption, we have $f = g$ on A where A is Λ_r-dense in X. Since $A \subseteq E$, A is Λ_r-dense and E is Λ_r-closed, we have

$$X = \Lambda_r\text{cl}(A) \subseteq \Lambda_r\text{cl}(E) = E.$$

Hence $f = g$ on X.

Definition 3.23 A space (X, τ) is said to be

(i) Λ_r-space, if every Λ_r-open set is open in X

(ii) locally Λ_r-indiscrete, if every Λ_r-open set is closed in X.

Theorem 3.24 Let $f : X \to Y$ be a contra Λ_r-continuous function. Then

(i) f is contra-continuous, if X is a Λ_r-space

(ii) f is continuous, if X is locally Λ_r-indiscrete

Proof. (i) and (ii) are directly follows from the definitions.
Theorem 3.25 Let \(f : X \to Y \) be surjective, closed and contra \(\Lambda_r \)-continuous. If \(X \) is \(\Lambda_r \)-space, then \(Y \) is locally indiscrete.

Proof. Let \(V \) be open in \(Y \). Since \(f \) is contra \(\Lambda_r \)-continuous, \(f^{-1}(V) \) is \(\Lambda_r \)-closed in \(X \) and hence closed in \(X \) since \(X \) is \(\Lambda_r \)-space. Since \(f \) is closed and surjective, \(f(f^{-1}(V)) = V \) is closed in \(Y \) and so \(Y \) is locally indiscrete. \(\square \)

Recall that a function \(f : X \to Y \) is said to be contra \(\lambda \)-continuous [2] (resp., contra \(\alpha \)-continuous [5], contra-precontinuous [4]), if \(f^{-1}(V) \) is \(\lambda \)-closed (resp., \(\alpha \)-closed, pre-closed) in \(X \) for each open set of \(Y \).

Remark 3.26 Since every \(\Lambda_r \)-closed set is \(\lambda \)-closed, every contra \(\Lambda_r \)-continuous function is contra \(\lambda \)-continuous. But the converse need not be true which is shown by the following example.

Let \(X = Y = \{a,b,c\}, \ \tau = \{X, \emptyset, \{a\}, \{b\}, \{a,b\}\} \) and \(\sigma = \{X, \emptyset, \{a\}\} \). Then the function \(f : (X, \tau) \to (Y, \sigma) \) defined by \(f(a) = a, f(b) = a \) and \(f(c) = c \) is contra \(\lambda \)-continuous but not contra \(\Lambda_r \)-continuous.

The following examples show that contra \(\Lambda_r \)-continuous and contra-precontinuous functions (resp., contra-\(\alpha \)-continuous) are independent notions.

The function which is defined in Remark 3.11 is contra \(\Lambda_r \)-continuous but not contra-precontinuous and not contra-\(\alpha \)-continuous.

Let \(X = Y = \{a,b,c\}, \ \tau = \{X, \emptyset, \{a\}\} \) and \(\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a,b\}\} \). Then \(\Lambda_r(O(X,\tau)) = \tau, \ PO(X,\tau) = \{X, \emptyset, \{a\}, \{a,b\}, \{a,c\}\} \) and \(\alpha(X,\tau) = \{X, \emptyset, \{a\}, \{a,b\}, \{a,c\}\} \).

Define a function

\[f : (X, \tau) \to (Y, \sigma) \text{ by } f(a) = c, \ f(b) = b \text{ and } f(c) = a. \]

Then \(f \) is contra-pre continuous and contra-\(\alpha \)-continuous but not contra \(\Lambda_r \)-continuous.
On contra Λ_r–continuous functions

In this diagram,

“$A \rightarrow B$” means A implies B but not conversely

“$A \leftrightarrow B$” means A and B are independent of each other.

Definition 3.27 A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called contra Λ_r-irresolute, if $f^{-1}(V)$ is Λ_r-closed in (X, τ) for each Λ_r-open set V in (Y, σ).

Remark 3.28 The following examples show that the concepts of Λ_r-irresolute and contra Λ_r-irresolute are independent of each other.

Example 3.29 Let $X = \{a,b,c,d\}$, $Y = \{a,b,c,d,e\}$, $\tau = \{X, \emptyset, \{a\}, \{a,c\}, \{a,b,d\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{a,b\}, \{a,b,e\}, \{a,c,d\}, \{a,b,c,d\}\}$. Then $\Lambda_rO(X, \tau) = \tau$, $\Lambda_rC(X, \tau) = \{X, \emptyset, \{c\}, \{b,d\}, \{b,c,d\}\}$ and $\Lambda_rO(Y, \sigma) = \sigma$.

Define a function

$f : (X, \tau) \rightarrow (Y, \sigma)$ by $f(a) = a$, $f(b) = e$, $f(c) = c$ and $f(d) = e$.

Then f is Λ_r-irresolute but not contra Λ_r-irresolute since $\{a\}$ is open in (Y, σ), but $f^{-1}(\{a\}) = \{a\}$ is not Λ_r-closed in (X, τ).

Example 3.30 Let $X = Y = \{a,b,c,d\}$, $\tau = \{X, \emptyset, \{a\}, \{b,c\}, \{a,b,c\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{a,b\}, \{a,c\}, \{a,d\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}\}$. Then $\Lambda_rO(X, \tau) = \{X, \emptyset, \{a\}, \{b,c\}, \{a,b,c\}, \{a,b,d\}, \{a,c,d\}\}$, $\Lambda_rC(X, \tau) = \{X, \emptyset, \{a\}, \{d\}, \{a,d\}, \{b,c\}, \{b,c,d\}\}$ and $\Lambda_rO(Y, \sigma) = \sigma$.

Define a function

$f : (X, \tau) \rightarrow (Y, \sigma)$ by $f(a) = f(b) = f(c) = d$ and $f(d) = a$.

Then \(f \) is contra \(\Lambda_r \)-irresolute but not \(\Lambda_r \)-irresolute since \(\{a\} \) is open in \((Y, \sigma)\), but \(f^{-1}(\{a\}) = \{d\} \) is not \(\Lambda_r \)-open in \((X, \tau)\).

Remark 3.31 Every contra \(\Lambda_r \)-irresolute function is contra \(\Lambda_r \)-continuous. But the converse need not be true as shown by the following example.

In Example 3.7, \(f \) is contra \(\Lambda_r \)-continuous but not contra \(\Lambda_r \)-irresolute.

Theorem 3.32 A function \(f : (X, \tau) \to (Y, \sigma) \) is contra \(\Lambda_r \)-irresolute if and only if \(f^{-1}(V) \) is \(\Lambda_r \)-open in \(X \) for each \(\Lambda_r \)-closed set \(V \) in \(Y \).

Proof. Obvious.

Theorem 3.33 Let \(f : (X, \tau) \to (Y, \sigma) \) and \(g : (Y, \sigma) \to (Z, \gamma) \) be two functions.

Then

(a) if \(g \) is \(\Lambda_r \)-irresolute and \(f \) is contra \(\Lambda_r \)-irresolute, then \(g \circ f \) is contra \(\Lambda_r \)-irresolute

(b) if \(g \) is contra \(\Lambda_r \)-irresolute and \(f \) is \(\Lambda_r \)-irresolute, then \(g \circ f \) is contra \(\Lambda_r \)-irresolute

Proof. (a) Let \(V \) be \(\Lambda_r \)-open in \(Z \). Since \(g \) is \(\Lambda_r \)-irresolute, \(g^{-1}(V) \) is \(\Lambda_r \)-open in \(Y \).

Since \(f \) is contra \(\Lambda_r \)-irresolute, \(f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \) is \(\Lambda_r \)-closed in \(X \). This means that \(g \circ f \) is contra \(\Lambda_r \)-irresolute. (b) is similar to (a).

Theorem 3.34 If \(f : (X, \tau) \to (Y, \sigma) \) is contra \(\Lambda_r \)-irresolute and \(g : (Y, \sigma) \to (Z, \gamma) \) is \(\Lambda_r \)-continuous, then \(g \circ f \) is contra \(\Lambda_r \)-continuous.

Proof. It directly follows from the definitions.

Recall that a subset \(A \) of a topological space \((X, \tau)\) is called \(\Lambda_r \)-clopen [8] if \(A \) is both \(\Lambda_r \)-open and \(\Lambda_r \)-closed in \(X \). The collection of all \(\Lambda_r \)-clopen sets in \((X, \tau)\) is denoted by \(\Lambda_r \text{CO}(X, \tau) \).
Definition 3.35 A function $f : (X, \tau) \to (Y, \sigma)$ is called perfectly contra Λ_r-irresolute if $f^{-1}(V)$ is Λ_r-clopen in X for each Λ_r-open set V in Y.

Remark 3.36 Every perfectly contra Λ_r-irresolute function is contra Λ_r-irresolute and Λ_r-irresolute. The following two examples show that a contra Λ_r-irresolute function may not be perfectly contra Λ_r-irresolute, and a Λ_r-irresolute function may not be perfectly contra Λ_r-irresolute.

In Example 3.30, f is contra Λ_r-irresolute but not perfectly contra Λ_r-irresolute.

In Example 3.29, f is Λ_r-irresolute but not perfectly contra Λ_r-irresolute.

Theorem 3.37 A function $f : (X, \tau) \to (Y, \sigma)$ is perfectly contra Λ_r-irresolute if and only if f is contra Λ_r-irresolute and Λ_r-irresolute.

Proof. It directly follows from the definitions.

We have the following relation for the functions defined above:

```
perfectly contra \Lambda_r-irresolute
     \Lambda_r-irresolute  \equiv  \Lambda_r-continuous  \equiv  contra \Lambda_r-irresolute
           \equiv  contra \Lambda_r-continuous
```

In this diagram,

“$A \rightarrow B$” means A implies B but not conversely

“$A \leftrightarrow B$” means A and B are independent of each other
References

