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                                                           Abstract   

A general result concerning absolute summability of infinite series by quasi-power 

increasing sequence is proved. Our result gives correction and improvement to the 

result of Savas and Sevli [2]. 
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1  Introduction 

Let ∑ na be an infinite series with partial sum )( ns , A denote a lower triangular 

matrix .  The series ∑ na is said to be absolutely A-summable of order 1≥k , if 
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The series ∑ na is summable  ,0,1,, ≥≥ δδ kA
k

 if 
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A positive sequence )( nγγ = is said to be a quasi-β -power increasing sequence if 

there exists a constant  1),( ≥= γβKK  such that 

                                              mn mnK γγ ββ ≥                                                        (2) 

Holds for all .1≥≥ mn  It may be mentioned that every almost increasing 

sequence is a quasi -β -power increasing sequence for any nonnegativeβ , but the 

converse need not be true. 

Two lower triangular matrices A and Â  are associated with A as follows                                  
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Savas and Sevli [2] proved the following result.  

 

Theorem1.1. Let A be a lower triangular matrix with nonnegative entries 

satisfying 
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and let ( )nβ  and ( )nλ  be sequences such that  
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                                            nn βλ ≤Δ ,                                                                  (7) 
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If  )( nX  is a quasi -β -increasing sequence satisfying 
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then the series ∑ nna λ is summable ./10,1,, kkA
k

≤<≥ δδ   

We name the following condition 
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 Remark 1.  It may be mentioned that in the proof of theorem 1.1, an incorrect 

step through the estimation of 2I .  The author consider )( vvβ is bounded regarding 

this follows from the fact  ).1(Ο=vv Xvβ  This not true, as for nX  is quasi−β ,  

we may take  β−= vX v , which implies via )1(Ο=vv Xvβ  that )( vvβ is not 

bounded. 

Therefore the proof of theorem 1.1 is not valid. 

 

 2   Lemmas                                             
Lemma 2.1. Condition (12) is weaker than (9) when nX  is non-decreasing. 

Proof.  If  (9) holds, then  we have 
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  while if  (12) is satisfied then, 
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Therefore  (9)  implies  (12)  but not conversely .   

          

Remark 2.   

1. Condition  (9) has been replaced by (12) which is better in the following sense 

   (a). If  nX  is non-decreasing,  (12) is weaker than (9) (see lemma 2.1) 

   (b) The more advantage of our conditions is to obtain the desired result without    

    any loss of powers through estimations.  As an example the proof  via condition   

    (9) impose to deal with  ( )1 ,k k k
n n n n nasλ λ λ λ λ−= =Ο   loosing  1−k

nλ  as   

     considered to be  .)1(Ο We have no such case via condition (12). 

2.  Condition (4) is eliminated. 

 

Lemma 2.2. Conditions (8) and (10) imply        

                                        ,,)1( ∞→Ο= mmX mmβ                                             (13) 
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Proof.  As ,0→nβ and nXn β  is  non-decreasing,  we have 
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This proves (13).  To prove  (14), we observe that 
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Lemma 2.3 [1].  Let A be as defined in theorem 1.1,  then 

, 1ˆn v nna a+ ≤  for 1.n v≥ +                                 
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3  Main Result  
Theorem 3.1.  Suppose all conditions of theorem 1.1 are satisfied except 

condition (9) is replaced by condition (12), and condition (4) is removed, then the 

series ∑ nna λ is summable ,1,, ≥kA
k

δ  k/10 ≤< δ  . 

 Proof.  Let nx  be the nth term of the A-transform of the series ∑ nna λ . By 

definition, we have 
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To complete the proof, by Minkowski's inequality, it is sufficient to show that 
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