On Almost Increasing Sequences For Generalized Absolute Summability

W. T. Sulaiman ${ }^{1}$

Abstract

A general result concerning absolute summability of infinite series by quasi-power increasing sequence is proved. Our result gives correction and improvement to the result of Savas and Sevli [2].

Mathematics Subject Classification: 40F05, 40D25.
Keywords : Absolute summability, Quasi-power increasing sequence.

1 Introduction

Let $\sum a_{n}$ be an infinite series with partial $\operatorname{sum}\left(s_{n}\right), A$ denote a lower triangular matrix . The series $\sum a_{n}$ is said to be absolutely A-summable of order $k \geq 1$, if

$$
\sum_{n=1}^{\infty} n^{k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty,
$$

where

$$
T_{n}=\sum_{v=0}^{n} a_{n v} s_{v} .
$$

${ }^{1}$ Department of Computer Engineering College of Engineering University of Mosul, Iraq, email: waadsulaiman@hotmail.com

Article Info: Revised : March 9, 2011. Published online : May 31, 2011.

The series $\sum a_{n}$ is summable $|A, \delta|_{k}, k \geq 1, \delta \geq 0$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\partial k+k-1}\left|T_{n}-T_{n-1}\right|^{k}<\infty . \tag{1}
\end{equation*}
$$

A positive sequence $\gamma=\left(\gamma_{n}\right)$ is said to be a quasi- β-power increasing sequence if there exists a constant $K=K(\beta, \gamma) \geq 1$ such that

$$
\begin{equation*}
K n^{\beta} \gamma_{n} \geq m^{\beta} \gamma_{m} \tag{2}
\end{equation*}
$$

Holds for all $n \geq m \geq 1$. It may be mentioned that every almost increasing sequence is a quasi $-\beta$-power increasing sequence for any nonnegative β, but the converse need not be true.

Two lower triangular matrices \bar{A} and \hat{A} are associated with A as follows

$$
\begin{gather*}
\bar{a}_{n v}=\sum_{r=v}^{n} a_{n r}, \quad n, v=0,1, \ldots . . \tag{3}\\
\hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \quad n=1,2, \ldots ., \quad \hat{a}_{00}=\bar{a}_{00}=a_{00} .
\end{gather*}
$$

Savas and Sevli [2] proved the following result.

Theorem1.1. Let A be a lower triangular matrix with nonnegative entries satisfying

$$
\begin{gather*}
a_{n-1, v} \geq a_{n, v} \text { for } n \geq v+1, \\
\bar{a}_{n 0}=1, \quad n=0,1, \ldots, \\
n a_{n n}=\mathrm{O}(1), 1 / n a_{n n}=\mathrm{O}(1), \text { as } n \rightarrow \infty, \\
\sum_{v=1}^{n-1} a_{v v} \hat{a}_{v, n+1}=\mathrm{O}\left(a_{n n}\right), \tag{4}\\
\sum_{n=v+1}^{m+1} n^{\delta k}\left|\Delta_{v} \hat{a}_{n v}\right|=\mathrm{O}\left(v^{\delta k} a_{v v}\right), \tag{5}\\
\sum_{n=v+1}^{m+1} n^{\delta k} \hat{a}_{n, v+1}=\mathrm{O}\left(v^{\delta k}\right), \tag{6}
\end{gather*}
$$

and let $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ be sequences such that

$$
\begin{align*}
& \left|\Delta \lambda_{n}\right| \leq \beta_{n}, \tag{7}\\
& \beta_{n} \rightarrow 0 \text { as } n \rightarrow \infty, \tag{8}
\end{align*}
$$

If (X_{n}) is a quasi $-\beta$-increasing sequence satisfying

$$
\begin{align*}
& \sum_{n=1}^{m} n^{\delta k-1}\left|S_{n}\right|^{k}=\mathrm{O}\left(X_{m}\right), m \rightarrow \infty \tag{9}\\
& \sum_{n=1}^{\infty} n X_{n}\left|\Delta \beta_{n}\right|<\infty \tag{10}\\
& \left|\lambda_{n}\right| X_{n}=\mathrm{O}(1) \tag{11}
\end{align*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $|A, \delta|_{k}, k \geq 1,0<\delta \leq 1 / k$.
We name the following condition

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{n^{\delta k-1}}{X_{n}^{k-1}}\left|S_{n}\right|^{k}=\mathrm{O}\left(X_{m}\right), m \rightarrow \infty \tag{12}
\end{equation*}
$$

Remark 1. It may be mentioned that in the proof of theorem 1.1, an incorrect step through the estimation of I_{2}. The author consider $\left(v \beta_{v}\right)$ is bounded regarding this follows from the fact $v \beta_{v} X_{v}=\mathrm{O}(1)$. This not true, as for X_{n} is β-quasi, we may take $X_{v}=v^{-\beta}$, which implies via $v \beta_{v} X_{v}=\mathrm{O}(1)$ that $\left(v \beta_{v}\right)$ is not bounded.
Therefore the proof of theorem 1.1 is not valid.

2 Lemmas

Lemma 2.1. Condition (12) is weaker than (9) when X_{n} is non-decreasing.
Proof. If (9) holds, then we have

$$
\sum_{n=1}^{m} \frac{\left|s_{n}\right|^{k}}{n X_{n}^{k-1}}=\mathrm{O}\left(\frac{1}{X_{1}^{k-1}}\right) \sum_{n=1}^{m} \frac{1}{n}\left|s_{n}\right|^{k}=\mathrm{O}\left(X_{m}\right),
$$

while if (12) is satisfied then,

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{1}{n}\left|s_{n}\right|^{k} & =\sum_{n=1}^{m} \frac{1}{n X_{n}^{k-1}}\left|s_{n}\right|^{k} X_{n}^{k-1} \\
& =\sum_{n=1}^{m-1}\left(\sum_{v=1}^{n} \frac{\left|s_{v}\right|^{k}}{v X_{v}^{k-1}}\right) \Delta X_{n}^{k-1}+\left(\sum_{n=1}^{m} \frac{\left|s_{n}\right|^{k}}{n X_{n}^{k-1}}\right) X_{m}^{k-1} \\
& =\mathrm{O}(1) \sum_{n=1}^{m-1} X_{n}\left|\Delta X_{n}^{k-1}\right|+\mathrm{O}\left(X_{m}\right) X_{m}^{k-1} \\
& =\mathrm{O}\left(X_{m-1}\right) \sum_{n=1}^{m-1}\left(X_{n+1}^{k-1}-X_{n}^{k-1}\right)+\mathrm{O}\left(X_{m}^{k}\right) \\
& =\mathrm{O}\left(X_{m-1}\right)\left(X_{m}^{k-1}-X_{1}^{k-1}\right)+\mathrm{O}\left(X_{m}^{k}\right) \\
& =\mathrm{O}\left(X_{m}^{k}\right)
\end{aligned}
$$

Therefore (9) implies (12) but not conversely .

Remark 2.

1. Condition (9) has been replaced by (12) which is better in the following sense (a). If X_{n} is non-decreasing, (12) is weaker than (9) (see lemma 2.1)
(b) The more advantage of our conditions is to obtain the desired result without any loss of powers through estimations. As an example the proof via condition (9) impose to deal with $\left|\lambda_{n}\right|^{k}$ as $\left|\lambda_{n}\right|^{k}=\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|=\mathrm{O}\left(\left|\lambda_{n}\right|\right)$, loosing $\left|\lambda_{n}\right|^{k-1}$ as considered to be $\mathrm{O}(1)$. We have no such case via condition (12).
2. Condition (4) is eliminated.

Lemma 2.2. Conditions (8) and (10) imply

$$
\begin{align*}
& m X_{m} \beta_{m}=\mathrm{O}(1), m \rightarrow \infty, \tag{13}\\
& \sum_{n=1}^{\infty} \beta_{n} X_{n}=\mathrm{O}(1) . \tag{14}
\end{align*}
$$

Proof. As $\beta_{n} \rightarrow 0$, and $n^{\beta} X_{n}$ is non-decreasing, we have

$$
\begin{aligned}
n X_{n} \beta_{v} & =n^{1-\beta} n^{\beta} X_{n} \sum_{v=n}^{\infty} \Delta \beta_{v} \\
& =\mathrm{O}(1) n^{1-\beta} \sum_{v=n}^{\infty} v^{\beta} X_{v}\left|\Delta \beta_{v}\right| \\
& =\mathrm{O}(1) \sum_{v=n}^{\infty} v^{1-\beta} v^{\beta} X_{v}\left|\Delta \beta_{v}\right| \\
& =\mathrm{O}(1) \sum_{v=n}^{\infty} v X_{v}\left|\Delta \beta_{v}\right|=\mathrm{O}(1) .
\end{aligned}
$$

This proves (13). To prove (14), we observe that

$$
\begin{aligned}
\sum_{v=1}^{m} X_{v} \beta_{v}= & \sum_{v=1}^{m-1}\left(\sum_{r=1}^{v} X_{r}\right) \Delta \beta_{v}+\left(\sum_{v=1}^{m} X_{v}\right) \beta_{m} \\
= & \mathrm{O}(1) \sum_{v=1}^{m-1}\left(\sum_{r=1}^{v} r^{-\beta} r^{\beta} X_{r}\right)\left|\Delta \beta_{v}\right|+\mathrm{O}(1)\left(\sum_{v=1}^{m} v^{-\beta} v^{\beta} X_{v}\right) \beta_{m} \\
= & \mathrm{O}(1) \sum_{v=1}^{m-1} v^{\beta} X_{v}\left|\Delta \beta_{v}\right| \sum_{r=1}^{v} r^{-\beta-\epsilon} r^{\epsilon} \\
& \quad+\mathrm{O}(1) m^{\beta} X_{m} \beta_{m} \sum_{v=1}^{m} v^{-\beta-\epsilon} v^{\epsilon}, \quad \in<1-\beta \\
= & \mathrm{O}(1) \sum_{v=1}^{m-1} v^{\beta} X_{v}\left|\Delta \beta_{v}\right| v^{\epsilon} \sum_{r=1}^{v} r^{-\beta-\epsilon} \\
& \quad+\mathrm{O}(1) m^{\beta} X_{m} \beta_{m} m^{\epsilon} \sum_{v=1}^{m} v^{-\beta-\epsilon} \\
= & \mathrm{O}(1) \sum_{v=1}^{m} v^{\beta+\epsilon} X_{v}\left|\Delta \beta_{v}\right|\left(\int_{1}^{v} u^{-\beta-\epsilon} d u\right)+\mathrm{O}(1) m^{\beta+\epsilon} X_{m} \beta_{m}\left(\int_{1}^{m} u^{-\beta-\epsilon} d u\right) \\
= & \mathrm{O}(1) \sum_{v=1}^{m} v X_{v}\left|\Delta \beta_{v}\right|+\mathrm{O}(1) m X_{m} \beta_{m} \\
= & \mathrm{O}(1) .
\end{aligned}
$$

Lemma 2.3 [1]. Let A be as defined in theorem 1.1, then

$$
\hat{a}_{n, v+1} \leq a_{n n} \text { for } n \geq v+1 .
$$

3 Main Result

Theorem 3.1. Suppose all conditions of theorem 1.1 are satisfied except condition (9) is replaced by condition (12), and condition (4) is removed, then the series $\sum a_{n} \lambda_{n}$ is summable $|A, \delta|_{k}, k \geq 1, \quad 0<\delta \leq 1 / k$.
Proof. Let x_{n} be the nth term of the A-transform of the series $\sum a_{n} \lambda_{n}$. By definition, we have

$$
x_{n}=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \bar{a}_{n v} \lambda_{v} a_{v},
$$

and hence

$$
T_{n}:=x_{n}-x_{n-1}=\sum_{v=0}^{n} \hat{a}_{n v} \lambda_{v} a_{v} .
$$

Applying Abel's transformation,

$$
T_{n}=a_{n n} \lambda_{n} s_{n}+\sum_{v=1}^{n-1} \Delta_{v} \hat{a}_{n v} \lambda_{v} s_{v}+\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \Delta \lambda_{v} s_{v}=T_{n 1}+T_{n 2}+T_{n 3} .
$$

To complete the proof, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} n^{\delta k+k-1}\left|T_{n j}\right|^{k}<\infty, \quad j=1,2,3 .
$$

Applying Holder's inequality, we have

$$
\begin{aligned}
\sum_{n=1}^{m} n^{\delta k+k-1}\left|T_{n 1}\right|^{k} & =\sum_{n=1}^{m} n^{\delta k+k-1}\left|a_{n n} \lambda_{n} s_{n}\right|^{k} \\
& \leq \sum_{n=1}^{m}\left(n a_{n n}\right)^{k} \frac{n^{\delta k-1}}{X_{n}^{k-1}}\left|s_{n}\right|^{k}\left|\lambda_{n}\right|\left(\lambda_{n} \mid X_{n}\right)^{k-1} \\
& =\mathrm{O}(1) \sum_{n=1}^{m} \frac{n^{\delta k-1}}{X_{n}^{k-1}}\left|s_{n}\right|^{k}\left|\lambda_{n}\right| \\
& =\mathrm{O}(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| \sum_{v=1}^{n} \frac{v^{\delta k-1}}{X_{v}^{k-1}}\left|s_{v}\right|^{k}+\mathrm{O}(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \frac{n^{\delta k-1}}{X_{n}^{k-1}}\left|s_{n}\right|^{k} \\
& =\mathrm{O}(1) \sum_{n=1}^{m-1} \beta_{n} X_{n}+\mathrm{O}(1)\left|\lambda_{m}\right| X_{m}=\mathrm{O}(1) .
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=2}^{m+1} n^{\delta k+k-1}\left|T_{n 2}\right|^{k}=\sum_{n=2}^{m+1} n^{\delta k+k-1}\left|\sum_{v=1}^{n-1} \Delta_{v} \hat{a}_{n v} \lambda_{v} s_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} n^{\delta k+k-1} \sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right|\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k}\left(\sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right|\right)^{k-1} \\
& =\mathrm{O}(1) \sum_{n=2}^{m+1} n^{\delta k}\left(n a_{n n}\right)^{k-1} \sum_{v=1}^{n-1}\left|\Delta_{v} \hat{a}_{n v}\right|\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k} \\
& =\left.\left.\mathrm{O}(1) \sum_{v=1}^{m}\left|\lambda_{v}{ }^{k}\right|\right|_{v}\right|^{k} \sum_{n=v+1}^{m} n^{\delta k}\left|\Delta_{v} \hat{a}_{n v}\right| \\
& =\mathrm{O}(1) \sum_{v=1}^{m} v^{\delta k} a_{v v}\left|\lambda_{v}\right|^{k}\left|s_{v}\right|^{k} \\
& =\mathrm{O}(1) \sum_{v=1}^{m} \frac{v^{\delta k-1}}{X_{v}^{k-1}}\left|s_{v}\right|^{k}\left|\lambda_{v}\right|\left(\left|\lambda_{v}\right| X_{v}\right)^{k-1} \\
& =\mathrm{O}(1) \sum_{v=1}^{m} \frac{v^{\delta k-1}}{X_{v}^{k-1}}\left|s_{v}\right|^{k}\left|\lambda_{v}\right| \\
& =\mathrm{O}(1) \text {, as in the case of } T_{\mathrm{nl}} \text {. } \\
& \sum_{n=2}^{m+1} n^{\delta k+k-1}\left|T_{n 3}\right|^{k}=\sum_{n=2}^{m+1} n^{\delta k+k-1}\left|\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \Delta \lambda_{v} s_{v}\right|^{k} \\
& \leq \sum_{n=2}^{m+1} n^{\delta k+k-1} \sum_{v=1}^{n-1}\left(\hat{a}_{n, v+1}\right)^{k}\left|\Delta \lambda_{v}\right|\left|S_{v}\right|^{k} X_{v}^{1-k}\left(\sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right| X_{v}\right)^{k-1} \\
& =\mathrm{O}(1) \sum_{n=2}^{m+1} n^{\delta k+k-1} \sum_{v=1}^{n-1}\left(\hat{a}_{n, v+1}\right)^{k}\left|\Delta \lambda_{v}\right|\left|s_{v}\right|^{k} X_{v}^{1-k} \\
& =\mathrm{O}(1) \sum_{v=1}^{m}\left|\Delta \lambda_{v}\right|\left|s_{v}\right|^{k} X_{v}^{1-k} \sum_{n=v+1}^{m+1} n^{\delta k+k-1} \hat{a}_{n, v+1}\left(\hat{a}_{n, v+1}\right)^{k-1} \\
& =\mathrm{O}(1) \sum_{v=1}^{m}\left|\Delta \lambda_{v}\right|\left|S_{v}\right|^{k} X_{v}^{1-k} \sum_{n=v+1}^{m+1} n^{\delta k+k-1} \hat{a}_{n, v+1}\left(a_{n n}\right)^{k-1} \quad \text { (by lemma 2.3) } \\
& =\mathrm{O}(1) \sum_{v=1}^{m}\left|\Delta \lambda_{v}\right|\left|S_{v}\right|^{k} X_{v}^{1-k} \sum_{n=v+1}^{m+1} n^{\delta k} \hat{a}_{n, v+1}\left(n a_{n n}\right)^{k-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{O}(1) \sum_{v=1}^{m}\left|\Delta \lambda_{v}\right|\left|s_{v}\right|^{k} X_{v}^{1-k} \sum_{n=v+1}^{m+1} n^{\delta k} \hat{a}_{n, v+1} \\
& =\mathrm{O}(1) \sum_{v=1}^{m} v^{\delta k}\left|\Delta \lambda_{v}\right|\left|s_{v}\right|^{k} X_{v}^{1-k} \\
& =\mathrm{O}(1) \sum_{v=1}^{m} v^{\delta k} \beta_{v}\left|s_{v}\right|^{k} X_{v}^{1-k} \\
& =\mathrm{O}(1) \sum_{v=1}^{m} v \beta_{v} \frac{v^{\delta k-1}}{X_{v}^{k-1}}\left|s_{v}\right|^{k} \\
& =\mathrm{O}(1) \sum_{v=1}^{m-1} \Delta\left(v \beta_{v}\right) \sum_{r=1}^{v} \frac{r^{\delta k-1}}{X_{r}^{k-1}}\left|s_{r}\right|^{k}+\mathrm{O}(1) m \beta_{m} \sum_{v=1}^{m} \frac{v^{\delta k-1}}{X_{v}^{k-1}}\left|s_{v}\right|^{k} \\
& =\mathrm{O}(1) \sum_{v=1}^{m} \beta_{v} X_{v}+\mathrm{O}(1) \sum_{v=1}^{m} v\left|\Delta \beta_{v}\right| X_{v}+\mathrm{O}(1) m \beta_{m} X_{m} \\
& =\mathrm{O}(1)
\end{aligned}
$$

ACKNOWLEDGEMENT. The author is so grateful to the referee who guided me to improve writing of the paper.

References

[1] B. E. Rhoades, Inclusion theorems for absolute matrix summability methods, J. Mat. Anal. Appl., 238 (1999), 87-90.
[2] E. Savas and H. Sevli, A recent note on quasi -power increasing sequence for generalized absolute summability, Journal of Inequalities and Applications, 2009, Article ID675403, 10 pages.

