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Abstract 

Copulas are functions that join or “couple” multivariate distributions to their one-

dimensional marginal distribution functions. In words, copulas are multivariate 

distributions whose margins are uniform on the interval (0,1). In the present 

article, we restrict our attention to bivariate copulas and more precisely we discuss 

the Ali-Mikhail-Haq bivariate model. The special case of the aforementioned 

model with logistic margins is studied in detail and closed formulas for its basic 

characteristics are derived. In addition, reliability properties for systems with two 

exchangeable logistic components are established.  
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1. Introduction  

The study of copulas and their applications in the field of Probability and 

Statistics has attracted a lot of research interest in the last two decades. Hutchinson 

and Lai (1990) were among the early authors who popularized the notion of 

copulas. Furthermore, Nelsen (2006) studied in detail the bivariate copulas, while 

Cherubini, Luciano and Vecchiato (2004) illustrated interesting applications of 

copulas in the field of Insurance and Finance.  

Copulas are functions that join or “couple” multivariate distributions to their 

one-dimensional marginal distribution functions. Alternatively, copulas are 

multivariate distributions whose one-dimensional margins are uniform on the 

interval (0,1). Copulas offer also a way to produce scale-free measures of 

dependence or construct families of bivariate distributions. For more details about 

the development and study of copulas-based distribution models, the interested 

reader is referred to the excellent monographs of Nelsen (2006) or Balakrishnan 

and Lai (2009).  

  In the present article, we study the bivariate Ali-Mikhail-Haq distribution 

model. The copula function of the model is presented, while some results for the 

case of logistic margins are discussed. In Section 3, exact formulae are derived for 

the basic characteristics of the model, such as the joint cumulative density 

function or the bivariate survival odds ratio, when θ = 1. In Section 4, the general 

results presented previously in this paper are exploited in order to reach 

conclusions referring to lifetime of communication networks.  

 

 

2. The Ali-Mikhail-Haq copula   

Generally speaking, let YX ,  be two random variables with corresponding 

cumulative distribution functions  

)()( xXPxF ≤=  and )()( yYPyG ≤= , 
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while ),(),( yYxXPyxH ≤≤=  denotes their joint distribution function. Each 

pair ),( yx  of real numbers leads to a point ))(),(( yGxF  in the unit square and 

this ordered in turn corresponds to a number ),( yxH  in [0,1]. This 

correspondence, which assigns the value of joint distribution function to each 

ordered pair of values of the individual distribution functions, is indeed the 

function called copula. In terms of random variables, let H be a joint distribution 

with margins GF , . Then, there exists a copula C such that for all values ),( yx  

))(),((),( yGxFCyxH = .      (1) 

It is worth mentioning that in case of continuous margins GF , , the copula C is 

unique.  

 Let us now restrict our attention to the Ali-Mikhail-Haq distribution 

model. For )1,0(, ∈vu  and a design parameter ]1,1[−∈θ , the Ali-Mikhail-Haq 

copula is defined as follows 

)1)(1(1
),(

vu
uvvuC

−−−
=

θθ .      (2) 

Note that the Ali-Mikhail-Haq model can be equivalently expressed as  

( )∑
∞

=

−−=
0

)1)(1(),(
k

kvuuvvuC θθ . 

This class of distributions was first introduced by Ali, Mikhail and Haq (1978) and 

since then it has attracted some research attention (see, e.g. Genest and MacKay 

(1986) or Mikhail et al. (1987)). The following proposition offers some general 

results for the aforementioned copula.  

Proposition 1. (i) The Ali-Mikhail-Haq copula function (defined in (2)) is 

positively ordered.  

(ii) If βCCa ,  are two members of the Ali-Mikhail-Haq distribution family 

(defined in (2)), then the harmonic mean of  βCCa ,  belongs also to the Ali-

Mikhail-Haq copulas.  
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Proof. (i) A parametric family { θC } of copulas is said to be positively ordered if 

βCCa   whenever β≤a . For the distribution model defined in (2), the following 

ensues 

1
)1)(1(1
)1)(1(1
≤

−−−
−−−

=
vua
vu

C
Ca β

β

, 

where 11 ≤≤≤− βa  and ).1,0(, ∈vu  Therefore, the desired result is 

straightforward.  

(ii) Let βCCa ,  denote two copulas that belong to the Ali-Mikhail-Haq family 

defined in (2). Therefore, we have  

)1)(1(1
),(

vua
uvvuCa −−−

= , 
)1)(1(1

),(
vu

uvvuC
−−−

=
ββ . 

The harmonic mean of βCCa ,  can be expressed as  

2/)()1)(1)((2
22

/1/1
2

β
β

β

β
+=

−−+−
=

+
=

+ a
a

a

a

C
vuba

uv
CC
CC

CC
. 

It goes without saying that the harmonic mean is a Ali-Mikhail-Haq copula 

function with parameter 2/)( βθ += a .                       � 

 

 

3. The Ali-Mikhail-Haq model with logistic margins 

Let us denote by 21,TT  two random variables with corresponding copula 

function that belongs to the Ali-Mikhail-Haq family (defined in (2)). Let us next 

assume that the marginal distributions GF ,  are logistic, namely  

( ) 1
1

11)(
−−+= tetF , ( ) 1

2
21)(

−−+= tetG  . 

The joint cumulative distribution function of 21,TT  is given as  

( ) 1
21

2121 )1(1),(
−−−−− −+++= tttt eeettH θθ .      (3) 
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It is of some research interest to shed light on the special case 1=θ . In this 

case, the general model reduces to the well-known Gumbel bivariate logistic 

distribution (see Gumbel (1961)). Indeed, the joint distribution function takes now 

the following form  

211
1),( 21 tt ee

ttH −− ++
=  .      (4) 

Note that may one apply equation (2) and replace vu,  with the logistic margins 

GF , , the following result comes true 

),())(),(( 21211 ttHtGtFC = .  

The last equation verifies the well-known Sklar’s Theorem for the bivariate 

distribution mentioned above. (Sklar (1959)).  

 The notion of odds for survival for a random variable X, namely the ratio 

)(/)( xXPxXP ≤≥  is of some importance, especially when the random variable 

expresses the lifetime of a component. Analogously, the bivariate survival odds 

ratio of two random variables  YX ,  is defined as 

),(/)( yYxXPyYorxXP ≤≤≥≥ . The following remark offers some 

expressions for the bivariate survival odds ratio of 21,TT  defined earlier. 

Remark 1. If 21,TT  denote two random variables with bivariate Gumbel logistic 

distribution (defined in (4)), then the bivariate survival odds ratio of 21,TT  is 

given as  

(i) 21

),(
)(

2211

2211 tt ee
tTtTP
tTortTP −− +=

≤≤
≥≥

   

(ii) 
)(
)(

)(
)(

),(
)(

22

22

11

11

2211

2211

tTP
tTP

tTP
tTP

tTtTP
tTortTP

≤
≥

+
≤
≥

=
≤≤
≥≥

. 

Proof. (i) Since the following holds true  

),(
),(1

),(
)(

21

21

2211

2211

ttH
ttH

tTtTP
tTortTP −

=
≤≤
≥≥
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the desired result is deduced by employing equation (4).  

(ii) The result we are chasing for, is straightforward by recalling that the univariate 

survival odds ratio of each of the random variables 21,TT  takes on the following 

form  

,2,1,
)(1

)(
)(
)(

==
−

=
≤
≥ − ie

tR
tR

tTP
tTP

it

ii

ii

ii

ii                      

where )1/()( ii tt
ii eetR −− +=  denotes the survival function of .2,1, =iTi                   � 

The following proposition offers an expression for the conditional survival 

function of 1T  given 22 tT = .  

Proposition 2. If 21,TT  denote two random variables with bivariate Gumbel 

logistic distribution (defined in (4)), then the conditional survival function of 1T  

given 22 tT =  satisfies the following  

( )2
2

2211
2121

2212 )1(2)(
tttt

tttt

eee
eeetTtTP

+

+

++

++
==>  .    (5) 

Proof. The conditional survival function of 1T  given 22 tT =  is defined as  

∫
∞

==>
1

)()( 22211 t
dutuftTtTP .     (6) 

Note that )( 2tuf  denotes the conditional probability density function of 1T  given 

22 tT =  and can be expressed via  

)(
),()(

2

2
2

2
tf
tuftuf

T

= , 

where ),( 2tuf  is the joint probability density function of 21,TT  while )( 22
tfT  is 

the probability density function of 2T . Since 

( )32
2

2

1
2),(

tu

tu

ee
etuf

−−

−−

++
=  

and  
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( )22
2

2

2 1
)(

t

t

T
e

etf
−

−

+
=  

the integral appeared in (6), takes on the following form  

du
ee
eetTtTP

t tu

tu

∫
∞

−−

−−

++
+

==>
1 2

2

3

2

2211 )1(
)1(2)(  

and the proof is complete.                                       � 

 

 

4. Applications to Communication networks 

In this section, we shall present some results based on the copulas-based 

model described earlier, but now in the framework of communication networks. 

More specifically, let us consider a structure (network) that consists of two 

exchangeable components (units) with lifetimes 21,TT  respectively. The 

components are assumed to have bivariate Gumbel logistic distribution, namely 

),( 21 TT  are associated to the Ali-Mikhail-Haq model with 1=θ . In the sequel, we 

study reliability properties of a series and a parallel communication system that 

consists of bivariate Gumbel logistic components ),( 21 TT . A similar study has 

been already accomplished in the literature for different bivariate models (see, e.g. 

Navarro, Ruiz and Sandoval (2008) or Eryilmaz (2012)).  

 The next proposition offers explicit formulas for the survival (reliability) 

functions of series and parallel structures with two logistic components.  

 

Proposition 3. Let )2()1( ,TT  denote the lifetimes of a series and a parallel system 

with two components 21,TT  respectively. If ),( 21 TT  follow the bivariate Gumbel 

logistic distribution (defined in (4)), then  

(i) the reliability function of the parallel system )2(T  is given as  
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te
tR

+
=

2
2)()2( ,      (7) 

(ii) the reliability function of the series system )1(T  parallel system is given 

as  

tt ee
tR 2)1( 32

2)(
++

=  .      (8) 

Proof. (i) Since 

),(1)()()( 21)2()2( ttHtTortTPtTPtR −=>>=>=

 the desired result is effortlessly reached by recalling equation (4).  

(ii) Recalling the following well-known equality 

2,1),()(2)( )2()1( =−= itRtRtR i  

(see, e.g. Baggs and Nagaraja (1996)), the proof is complete.                           

� 

        It is of some research interest to study the failure rate of the abovementioned 

reliability structures. Generally speaking, if X is an absolutely continuous random 

variable with reliability function )(xR  and probability density function )(xf , the 

univariate failure rate is defined as  

)(
)()(

xR
xfxr =      (9) 

for all x such that 0)( >xR  (see, e.g. Kuo and Zuo (2003) or Triantafyllou and 

Koutras (2008)). 

 

Proposition 4. Let )2()1( ,TT  denote the lifetimes of a series and a parallel system 

with two components 21,TT  respectively. If ),( 21 TT  follow the bivariate Gumbel 

logistic distribution (defined in (4)), then  
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(i) the failure rate of the parallel system )2(T  is given as  

2)2( )1(2
)2()(

+
+

= −

−

t

tt

e
eetr ,     (10) 

(ii) the failure rate of the series system )1(T  is given as  

)1(2
)2()()1( +

+
= t

tt

e
eetr ,     (11) 

Proof. (i) The probability density function of lifetime )2(T  is given by 

.
)2(

2)( 2)2( t

t

e
etf
+

=

 
The conclusion is reached by recalling equation (7).  

(ii) The probability density function of lifetime )1(T  can be expressed as  

.
)23(
)32(2)( 22)1( ++

+
= tt

tt

ee
eetf  

The conclusion is reached by recalling equation (8).               �

                                    

 The mean residual lifetime (MRL) of a structure is an important 

characteristic that determines its reliability and quality in time (see, e.g. Eryilmaz, 

Koutras and Triantafyllou (2011)). The next proposition offers formulae for the 

computation of the MRL function for the reliability systems mentioned in the 

present section.  

Proposition 5. Let )2()1( ,TT  denote the lifetimes of a series and a parallel system 

with two components 21,TT  respectively. If ),( 21 TT  follow the bivariate Gumbel 

logistic distribution (defined in (4)), then  

(i) the mean residual lifetime (MRL) of the parallel system )2(T  is given as  
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))(1ln(
)(

1)( )2(
)2(

)2( tR
tR

tm −−=       (12) 

(ii) the mean residual lifetime (MRL)  of the series system )1(T  is given as  

))(1ln(
)(

1)( )1(
)1(

)1( tR
tR

tm −−=  .    (13) 

Proof. (i) By definition, the mean residual lifetime of )2(T  can be expressed as  

,)(
)(

1)()( )2(
)2(

)2()2()2( ∫
∞

=>−=
t

dxxR
tR

tTtTEtm     (14)
 

where )()2( tR  is the respective reliability function (see formula (7)). The integral 

in the above equality, may be rewritten as  

∫∫∫ −∞∞
−−=

+
=

0

)(

1
)2(

)2(

)1(
2

2)(
tRt xt

duudx
e

dxxR
 

by employing the transformation 1)2(2 −+= xeu . We next replace the last 

expression in (14) and the proof is complete.  

(ii) Employing analogous arguments as in part (i) and using the transformation 
12 )32(2 −++= xx eeu  the result is readily deduced.                                                 � 

Remark 2. Based on the above results, the mean time to failure (MTTF) of both 

series and parallel structures can be easily computed. More specifically, let us 

denote by )1(MTTF  and )2(MTTF  the mean time to failure of a series and a parallel 

structure with two components ),( 21 TT  that follow the bivariate Gumbel logistic 

distribution. Then, we may deduce that  

),3/4ln()()(
0 )1()1()1( === ∫
∞

dxxRTEMTTF  

).3ln()()(
0 )2()2()2( === ∫
∞

dxxRTEMTTF  
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The following figures display the failure rates and the MRL functions of a series 

and a parallel system with two components that follow the bivariate Gumbel 

logistic distribution. 

               
Figure 1: Failure rates of T(1) and T(2) for Gumbel bivariate logistic distribution 

 

Figure 2: MRL functions of T(1) and T(2) for Gumbel bivariate logistic distribution 
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