
Journal of Computations & Modelling, vol.1, no.2, 2011, 73-96
ISSN: 1792-7625 (print), 1792-8850 (online)
International Scientific Press, 2011

Four Moduli RNS Bases for Efficient Design of

Modular Multiplication

Marzieh Gerami1, Mohammad Esmaeildoust2, Shirin Rezaie1,

Keivan Navi2 and Omid Hashemipour2

Abstract

Residue Number System provides parallel and fast arithmetic operation by

replacing large number computation with small moduli without carry propagation

between moduli. RNS can be applied in application like public key cryptography

in order to achieve more speed and less power consumption. Modular

Multiplication is the main operation in this application. Selecting RNS moduli sets

(bases) is the most important part in modular multiplication. In this work RNS

bases in order to design efficient modular multiplication is presented. The

proposed RNS bases in first basis employs the basis and multiplicative inverses

with small hamming weight based on the work reported in literature and in second

basis, well formed arithmetic unit RNS basis with efficient forward and reverse

converter are employed. The proposed RNS bases are suitable for public key

cryptography algorithm especially for Elliptic Curve Cryptography (ECC).

The results show that combination of these RNS basis has achieved noticeable

improvement in hardware complexity and also less time delay.

1 Department of Computer, Science and Research Branch, Islamic Azad University,
 Tehran, Iran, e-mail: {m.gerami, sh.rezaie}@srbiau.ac.ir
2 Faculty of Electrical and Computer Engineering, Shahid Beheshti University, GC,
 Tehran, Iran , e-mail: {m_doust, navi, hashemipour}@sbu.ac.ir

Article Info: Revised : September 28, 2011. Published online : November 30, 2011

74 Four Moduli RNS Bases for Efficient Design of Modular Multiplication

Keywords: Residue Number System, Modular Multiplication, Public Key

Cryptography

1 Introduction

Residue Number System (RNS) perform addition, subtraction and

multiplication in a fast manner because of its carry free nature [1]. Provided

parallelism by RNS makes it suitable for application like digital image processing

[2], digital signal processing (DSP) [3] and public key cryptography systems

[4-7]. RNS consist of three main parts which include forward converter, reverse

converter and arithmetic unit [8]. Efficiency of these three parts is depends on the

number of moduli and its form. Therefore selecting RNS bases becomes more

complicated with growth of application. The most popular RNS basis is

{2 1,2 ,2 1}n n n  . This set benefits the balanced moduli and the best forward and

reverse converter is reported in [9]. Moduli sets with higher dynamic ranges are

reported like, 1{2 1,2 ,2 1,2 1}n n n n   , 1{2 1,2 ,2 1,2 1}n n n n   [10], [11] and

1 1{2 1,2 ,2 1,2 1,2 1}n n n n n     [12]. Residue to binary converters for these

moduli sets are consists of carry save adder (CSA) tree which results in hardware

redundancy.

Other moduli sets like, 2 1{2 1,2 ,2 1,2 1}n n n n   , 2{2 1,2 ,2 1,2 1}n n n n   are

reported in [13-14] where simple structure of residue to binary converter make

them suitable for high dynamic ranges application. Efficient reverse converters for

these moduli sets based on new Chinese reminder theorem (CRT) are presented in

[13] where the authors proposed memory less converter architecture and adder

based. Among the RNS application, public key cryptography like RSA and ECC

required more dynamic ranges. Growing up the key length in these algorithms

caused to increase hardware complexity and time delay. Modular multiplication is

basic operation in cryptosystems. Several algorithms in order to increase the

Marzieh Gerami et al. 75

efficiency of modular multiplication were proposed. The most famous algorithm is

Montgomery modular multiplication [15] where its RNS version is also designed

for achieve higher performance [5-6]. RNS Montgomery multiplication performs

modular multiplication by using auxiliary bases without any division. Selecting

the proper RNS bases caused to achieve high performance of converters and

arithmetic operation unit. In [16] in designing RNS bases, for first basis modulus

in the form of 2 1jk  are used and modulus in the form of 2 1ik  are selected as

second basis where , 0,1,2, ,i j m  . The main disadvantage of this work is

inefficient multiplicative reverses that caused to decrease efficiency of reverse

converter. In [17] RNS bases in the form of
0 12 2 2{2 1, 2 1, 2 ,..., 2 1}

kn n n n   for

both bases are reported. The main disadvantages of these bases are unbalanced

moduli that caused to decrease the efficiency of arithmetic unit. The best work that

was done until now, is presented in [4]. In this work, RNS bases in form of

2k
ic , where / 20 2k

ic  are proposed. The main advantage of this report is to

achieve efficient RNS to RNS conversion between two bases and simple

multiplicative inverses, which are needed in the process of RNS Montgomery

multiplication. In the proposed RNS bases, in one basis the four moduli sets in the

form of 2k
ic , where / 20 2k

ic  [4] is applied. In second basis, moduli sets

2 1{2 1,2 ,2 1,2 1}n n n n   and 2{2 1,2 ,2 1,2 1}n n n n   [13-14] are used. By

employing these moduli sets in RNS Montgomery multiplication without losing

arithmetic operation efficiency, faster RNS to RNS conversion is achieved which

result to more efficient modular multiplication. Comparing to [4], more efficient

arithmetic unit and converters is achieved.

 This paper is organized as follows. RNS and modular multiplication

background is presented in section 2 and section 3. The proposed RNS bases are

presented in section 4. Reductions in the proposed RNS basis which is required in

RNS to RNS conversion are detailed in section 5. In section 6, comparison with

the other RNS bases are presented and finally section 7 concludes the paper.

76 Four Moduli RNS Bases for Efficient Design of Modular Multiplication

2 Overview of RNS

An integer X in Residue Number System (RNS) represented as

1 2(, , ,)mx x x , where modi ix X p that ip is the modulo of the moduli set

1 2{ , , , }mS p p p  . In order to prevent redundancy, RNS moduli must be pair

wise relatively prime. Each integer number in the range of 0 to 1M  , where

1

m

i
i

M p


  , has unique representation. Two most common algorithms to convert

from RNS in to binary are CRT and MRC (Mixed Radix Conversion). These

methods are described as fallow. In CRT the RNS integer number convert to its

equivalent as below:

1

m

i i i
ii M

X x N MP
  (1)

Where
1

m

i
i

M p


  , i
i

M
M

p
 and 1

i
i i p

N M  is the multiplicative

inverse of iM in modulo ip . Another algorithm is MRC that weighted number

X from its residues in RNS representation should be calculated as fallow:

 (2)
1

3 2 1 2 1 1
1

n i
i

X P P P P


   




     

Where

(3) 1 1v x

 (4)
2

2

1
1122)(

PP
Pvxv 

And in the general form is:

(5)
1 1 1

((()))1 1 2 2 1 1
m m m

m

x v P v P v Pm m m mP P P P
v   

         

1

j
i p

p  is the multiplicative inverse of ip in modulus jp . Compare to MRC

method which is the sequential algorithm, CRT is a parallel one. Depend on the

Marzieh Gerami et al. 77

number and form of the moduli, one of these algorithms is used in design of

reverse converter. In some cases for the moduli set with more than four moduli

combination of these two algorithms could be applied to achieve high speed of the

reverse converter.

3 Overview of RNS Montgomery multiplication

One of the most famous modular multiplication algorithms in Residue

Number System is Montgomery modular multiplication. Montgomery algorithm

computes the result of 1X Y M   mod T, with an auxiliary base without any

division. X and Y, are two large integer number with RNS representation

1 2(, , ,)mx x x and 1 2(, , ,)my y y in first basis and in the second basis we

consider X and Y as 1 2(, , ,)mx x x   and 1 2(, , ,)my y y   . M , M  as their

dynamic range that 1 2 iM p p p  and 1 2 iM p p p     , where ip and ip are

the modulo in moduli sets. Consider T which is T M M   , so that

gcd(,) gcd(,) gcd(,) 1T M T M M M    . As mentioned before, lack of division

operation increase the speed of modular multiplication. In this section

Montgomery modular multiplication algorithm that presented in [15] is described.

The most important part of Montgomery algorithm is moduli selection that leads

to design pretty faster converter and efficient arithmetic unit. Choosing moduli set

is necessary to provide these features, so in this approach the RNS basis in order

to achieve the high performance of multiplication is proposed.

According to [4], RNS Montgomery multiplication algorithm consist of two

conversions, one RNS product on the two basis, one RNS product on the first

basis, two RNS products and one addition on the second basis. Besides forward

and reverse converters is needed at the end of operations.

78 Four Moduli RNS Bases for Efficient Design of Modular Multiplication

RNS Montgomery multiplication

Algorithm

n

n

1

n

n n

1
n

n n

1: (in base B

 in base B)

2 : in B

3: in B in B

4: () in B

5: in B in B

i

i

i
i

i i i m

i i i m

i i m m

i i

i i i

D X Y d x y

d x y

q d T

q q

r d q N M

r r







   

    

 

 

      
 

4 Proposed RNS bases

In this section the proposed four moduli RNS bases is described. In

Montgomery modular multiplication, an auxiliary basis to calculate the result is

needed. For this basis four moduli sets 2 1
1 {2 1,2 ,2 1,2 1}n n n nS     [13] and

2
2 {2 1,2 ,2 1,2 1}n n n nS     [14] with their efficient reverse converters are used.

This dynamic RNS basis range is suitable for cryptography algorithms with large

key size. For the first basis the RNS basis in the form of 2k
ic , where

/ 20 2k
ic  reported in [4] are employed. The advantage of this RNS basis is

small hamming weight of moduli and multiplicative inverses that leads to

implementing the faster modular multiplication. Additions and multiplications in

RNS basis 2 1
1 {2 1,2 ,2 1,2 1}n n n nS     [13] and 2

2 {2 1,2 ,2 1,2 1}n n n nS    

[14], in second basis are done with more speed comparing to first basis. In Table 1,

four moduli RNS bases for 160, 192 and 256 bit key length are reported. Notice

that because of various moduli length bit in RNS basis, two different symbols for

moduli length bit in first and second basis are used (k and n for first and second

basis, respectively). Dynamic range of first basis is 4k and for second basis is

Marzieh Gerami et al. 79

5n . As discuss in the RNS Montgomery multiplication algorithm, 4k must be less

than 5n. Therefore For an instance, for 256 key lengths, k considered as 64 bits in

order to cover 256 bit dynamic ranges and for second basis n consider as 52 bits.

Therefore 4k and 5n cover the required 256 bit dynamic ranges and also 4k < 5n is

satisfied. Forward conversion in moduli in the form of 2 1k  and 2 1k  is

straight forward and more simple logic circuits with less delay are required

comparing to moduli in the form of 2k
ic , where / 20 2k

ic  [4].

Table 1: Proposed RNS bases

Required steps for RNS to RNS conversion in RNS Montgomery

multiplication is shown in Figure 1. Notice that the complexity of algorithm is in

line 3 and 5 of RNS Montgomery multiplication Algorithm [4].

256 key length 192 key length 160 key length
Proposed

RNS bases First
Base

Second
Base

First
Base

Second
Base

First
Base

Second
Base

4 moduli
RNS bases

s1

64 10

64 16

64 19

64 20

2 2 1

2 2 1

2 2 1

2 2 1

 

 

 

 

52

52

52

105

2

2 1

2 1

2 1







48 10

48 16

48 19

48 20

2 2 1

2 2 1

2 2 1

2 2 1

 

 

 

 

39

39

39

79

2

2 1

2 1

2 1







40 10

40 16

40 19

40 20

2 2 1

2 2 1

2 2 1

2 2 1

 

 

 

 

32

32

32

65

2

2 1

2 1

2 1







4 moduli
RNS bases

s2

64 8

64 22

64 15

64 16

2 2 1

2 2 1

2 2 1

2 2 1

 

 

 

 

52

52

52

104

2

2 1

2 1

2 1







48 10

48 16

48 19

48 20

2 2 1

2 2 1

2 2 1

2 2 1

 

 

 

 

39

39

39

78

2

2 1

2 1

2 1







40 10

40 16

40 19

40 20

2 2 1

2 2 1

2 2 1

2 2 1

 

 

 

 

32

32

32

64

2

2 1

2 1

2 1







80 Four Moduli RNS Bases for Efficient Design of Modular Multiplication

Figure 1: RNS Montgomery Multiplication Algorithm, a) conversion from first

basis to the second basis (line 3), b) conversion from second basis to the first basis
(line 5)

4.1 RNS to RNS conversion from first to second basis

 As shown in Figure 1, RNS to RNS conversion from first basis to second

basis consists of two steps: RNS to MRS conversion in first basis and MRS to

RNS from first to second basis. Therefore we have:

(6) RNS RNS RNS MRS MRS RNSDelay Delay Delay   

Since the first RNS basis in this work in the moduli in the form of 2k
ic where

/ 20 2k
ic  , efficient RNS to MRS conversion are reported in [4] which is used

in this work. Based on [4], cost of RNS to MRS conversion is shown in Eq. 7.

 (7)
1

1
,

2, ;
1

max (() 2 () 4)
m

RNS MRS i j j FA
j k i j

i

Delay m c kD 



  

 
   
 


In Eq. 7, ()w k is the hamming weight of k and m is the number of moduli. In

order to convert MRS to RNS form first to second basis, the critical moduli in

second basis must be considered. In [13] comparisons of critical moduli for

different RNS basis are done. Considering new modulo 2 1n  adder proposed in

[25], comparison of critical moduli for the proposed RNS bases is shown in table

2. Comparison between modulo 2 12 1k  and 2 1k  shows that the unit gate

delay for both is same. Therefore reductions for both moduli are calculated in

Marzieh Gerami et al. 81

section 5. Because of different moduli bit length in the proposed RNS bases

(smaller bit length in second RNS basis), the unit gate delays that are shown in

Table 2 for second basis is less than first basis. Therefore more speed of arithmetic

operation with advantages of efficient converters is achieved.

Table 2: Comparison of critical moduli for different RNS bases

Critical moduli Unit gate delay
2 2 1k t  2log(k-1) +7

22 1k  2log(k) +7
2 12 1k   2log (k)+5

2 1k  2log (k)+5

According to the Eq. 7, conversion delays from RNS to MRS based on their key

length are shown in Table 3.

Table 3: Cost of RNS to MRS conversion

Size of
key

length

Delay of RNS to
MRS conversion

for S1

Delay of RNS to
MRS conversion

for S2
160 52 kDFA 52 kDFA
192 65 kDFA 65 kDFA
256 60 kDFA 39 kDFA

In this work two different basis for auxiliary basis were proposed, so we have two

various delay of MRS to RNS conversion. As proofed in section 5, delay of MRS

to RNS conversion for critical moduli set 1S and 2S are shown in Eq. 8 and Eq.

9 respectively.

 (8)
1

2 1

1

((2 1) 2)
m

n
MRS RNS FA

i

Delay MA D







 
   
 


(9)

1
2

1

((2 1) 3)
m

n
MRS RNS FA

i

Delay MA D





 
   
 


82 Four Moduli RNS Bases for Efficient Design of Modular Multiplication

MA in this equation denotes the modular addition. By using modulo 2 1n  and

2 1n  adder (MA) reported in [23] and considering n-bit delay of full adder (DFA)

and 2n-bit delay of FA for MA (2 1n ) and 2 1n  respectively, we have:

(10) (6 9)MRS RNS FADelay n D  

(11) (12 9)MRS RNS FADelay n D  

Overall delays of RNS to RNS conversion for the proposed RNS bases are shown in

Table 4.

Table 4: Total cost of RNS to RNS conversion from first to second basis

Size of
key length

RNS to RNS for
S1

RNS to RNS for
S2

160  52 6 9 FAk n D 
  52 12 9 FAk n D 

192  65 6 9 FAk n D 

  65 12 9 FAk n D 
256  60 6 9 FAk n D 

  39 12 9 FAk n D 

4.2 RNS to RNS conversion from second basis to the first basis

 In order to achieve RNS to RNS conversion from second to first basis

according to Figure 1, we have

(12) RNS RNS RNS weighted weighted RNSDelay Delay Delay   

Delays of RNS to weighted conversion from second to first basis are shown in

Table 5. Weighted to RNS conversion in first basis is proved in section 5,

therefore considering critical moduli 2 12 1n  in 1S and 22 1n  in 2S we

have:

 (13) 1

2

(12 5)

(8 3)
FA

RNS W eighted
FA

n D for s
Delay

n D for s


  

(14)  
1

1

2 () 2 18
m

Weighted RNS j FA FA
i

Delay c kD kD





    
 


Marzieh Gerami et al. 83

Table 5: Shows the area and delay costs of proposed moduli sets

Proposed
moduli

Conv
erter

Moduli Set Area Delay

S1:4
moduli

proposed
1

[13]

{2n,2n-1,2n+1,

22n+1-1}

(8m+2) AFA + (m-1)AXOR +
(m-1)AAND + (4m+1)AOR +
(4m+1)AXNOR mA2:1MUX +

(7m+1) ANOT

(12 5) FAn D

S2:4
moduli

proposed
2

[14]

{2n,2n-1,2n+1,

22n+1}

(11m+6) AFA +
(2m-1)AXOR + (2m-1)AAND

+ (4m)AOR + (4m)AXNOR+
(5m+3) ANOT

(8 3) FAn D

Total delay of RNS to RNS from second basis to first basis for 160,192 and 256

bit key length is represented in Table 6.

Table 6: Total delay of conversion from second basis to first basis

Proposed moduli sets RNS to RNS delay
S1 18k+12n+5
S2 18k+8n+3

 Finally we should calculate total delay of RNS Montgomery Multiplication

Algorithm. Delay is obtained from summation of RNS to RNS conversion from

first basis to second basis and vice versa. Notice that key length must be

considered in calculation of overall delay. The results are shown in Table 7.

Table 7: Total cost of RNS to RNS conversions

key length S1 S2
160  70 18 14 FAk n D   70 20 12 FAk n D 

192  83 18 14 FAk n D   83 20 12 FAn n D 

256  78 18 14 FAk n D   57 20 12 FAk n D 

84 Four Moduli RNS Bases for Efficient Design of Modular Multiplication

5 Reduction in moduli 2n+1, 22n+1 and 22n+1-1

 As shown in Figure 1, after calculation of MRS, conversion to RNS in

second basis is needed. This section describes MRS to RNS reduction in moduli

2 1n  , 2 12 1n  and 22 1n  . Considering MRC we have:

 (15) 1 1 2 2 3 1((...)...)
j

i m m p
x v p v p v p v    

Where pi is the moduli in the form 2 2 1k t  and jp is 2n , 2 1n  , 2 1n  ,

2 12 1n  and 22 1n  . Therefore

(16) 31 2
1 2 3 4(2 2 1)((2 2 1)((2 2 1)))

j

tt tk k k
i

L p

x v v v v         

L is considered as basic operation in Eq. 16. Since the second RNS bases are the

moduli sets 2 1{2 1,2 ,2 1,2 1}n n n n   and 2{2 1,2 ,2 1,2 1}n n n n   , MRS to

RNS conversion in this moduli sets must be calculated. Two moduli 2n and

2 1n  are especial case of 2 2 1k t  . In [4] reduction in moduli 2 2 1k t  is

presented. Therefore calculating MRS to RNS conversion in other moduli 2 1n  ,

2 12 1n  and 22 1n  are considered in the following.

5.1 Reduction in modulo 2n+1

 Based on Eq. 16 we have:

(17) 31 2
1 2 3 4

2 1

(2 2 1)((2 2 1)((2 2 1)))
n

tt tk k k
i

L

x v v v v



         

The value L, is the basic operation in Eq. 17. So L should be calculated as fallow:

(18)
 

1 1 1 12 1 2 1

1 1 1

2 1

(2 2 1) 2 2

00...0 00...0

i i

n n

ni

t tk k
i i i i i i

i i i i
k t

L v v v v v v

v v v v

    

  



         

   

Marzieh Gerami et al. 85

In order to compute the result of Eq. 18 in modulo 2 1n  , (1)n  bit separation

of values more than (1)n  bit is needed. Therefore

 (19) 1 3 4 5 6 7
1 1 1 1 1 1 2 1ni i i i i i iL v v v v v v v      

      

Where









1
, ,0

2
1 1

2 2
1 1,2 1 1,0 , 1 , 12

1 2 1 0
1

1
1

1

3
1 1 2 2

3 2 3

...

00...0 ...

... ...
... 00...0

00...0

00...0 ...

i i n i

i k n
n k

i i n k i i k i n

i n k
k n

i
n

i k n k
n k

v v v

v v v

v v v v v
v v v

v

v v v

 
 

      
  

 




   
 




  

 












4
1 0

5
1 1 1

2 2

6
1 1, 1,0

7
1 1 1

2 2

... 00...0

00...0 ...

...

00...0 ...

i

i

i n t
t

i k n t
n k t

i i n i

i k n
n k

v v v

v v v

v v v

v v v

 

   
  

  

  
 









Notice that negative numbers in modulo 2 1n  can be calculated as:

(20)

2 1 2 12 1
2 1 2n nn

nv v v
 

     

Thus

 1 3 4 5 6 7
1 1 1 1 1 1 2 1

8
ni i i i i i iL v v v v v v v      

        (21)

86 Four Moduli RNS Bases for Efficient Design of Modular Multiplication

Figure 2: Hardware implementation of value L in modulo 2 1n 

Hardware implementation of Eq. 21 is shown in Figure 2. The result of

(2 2 1)itk
iH L     should be calculated in the next step:

 

 

2 12 1

1 2
1 1 2 1

2 1

2 2 1 2 2

00...0 00...0 6

i i

nn

n

ni

t tk k
i i

i i i i i
k t

H v L v L L L

v L L L v v v v L



  


         

          
 (22)

According to Eq. 22, value H should be separated in four parts as bellow.

Therefore CSA inputs in Figure 3, changed to

Marzieh Gerami et al. 87









1
1 0

2
1

2 1

1
1

1

2
1 2 1 0

1
1 2 1 0 2 23

1 2 2
2 2

...

00...0 ...

00...0

... 00...0

... ...
00...0 ...

i n

i k n
n k

i
n

i n k
k n

i n k n n k

i n n k
n k

v v v

v v v

v

v L L

v L L L L
v L L




 




  
 

    

  
 








  

 






4
1 0

1 0 15
1 1

1

... 00...0

... ...
00...0 ...

i

i

i

i

i n t
t

i n t n n t

i n n t
n t

v L L

v L L L L
v L L

 

   
  

 




 
 



 Hardware implementation of H is shown in Figure 3. According to Figure 2,

the delay of conversion from MRS to RNS in worst case can be calculated as:

 (23)  
1

1

(2 1) 4
m

n
MRS RNS FA

i

Delay MA D





 
   
 


Figure 3: Hardware implementation of value H in modulo 2 1n 

88 Four Moduli RNS Bases for Efficient Design of Modular Multiplication

5.2 Reduction in modulo 22n+1

 According to Eq. 16 we can calculate the reduction in modulo 22 1n  as

fallow:

(24) 31 2

2

1 2 3 4

2 1

(2 2 1)((2 2 1)((2 2 1)))
n

tt tk k k
i

I

x v v v v



         

Negative numbers in modulo 22 1n  can be calculated as:

(25) 2 22 2

2 2

2 1 2 12 1 2 1
2 1 (2 1) 2 2n nn n

n nv v v v  
         

For calculation of I in Eq. 24 we have

(26)

2 21 1 1 12 1 2 1
(2 2 1) 2 2i i

n n

t tk k
i i i i i iI v v v v v v    

       

By considering (2 1)n  bit separation and considering negative numbers such

as modulo 22 1n  we have

(27)
2

2 3 4
1 1 1 1 2 1

4
ni i i iI v v v v    

    

Where







1
1 0

2 1
1 1,2 1,0 , 1 ,01

1 2 0

2
1 1 2 1

3 2 2

00..0 ...

... ...
... 00..0

00..0 ...

i k
n k

i i n k i i k i

i n k
k

i k n k
n k

v v v

v v v v v
v v v

v v v


 

    
 

   
 


  

 




 



3
1 1

2 1

4
1 1

2 1

00..0 00..0

00..0

i i

i i
n k t t

i i
n k

v v

v v

 
  

 
 





Marzieh Gerami et al. 89

Figure 4: Hardware implementation of I in modulo 22 1n 

 Hardware implementation of I is shown in Figure 4. In this step the result

of (2 2 1)k t
iF I     must be calculated. Therefore inputs in of Figure 4,

changes to











1
1 1

1

2 1

1
1 2 0

1 2 0 2 2 12
1 2 2 1

2 1

3
1 2 0

1 24
1 2 2 1

2 1

6

00...0

... 00...0

... ...
00...0 ...

... 00...0

00...0 ...

i

i

i

i

i i i

i i
n k

i n k
k

i n k n n k

i n n k
n k

i n t
t

i

i n n t
n t

F v v v I

v v

v I I

v I I I I
v I I

v I I

v I
v I I

 

 

 

   

  
 

 



  
 

     




  

 




 
 



0 2 2 1... ...
i in t n n tI I I  

 Hardware implementation of F is shown in Figure 4. According to Figure 4,

delay of conversion from MRS to RNS in worst case can be calculated as:

  
1

2

1

(2 1) 3
m

n
MRS RNS FA

i

Delay MA D





 
   
 
 (28)

90 Four Moduli RNS Bases for Efficient Design of Modular Multiplication

5.3 Reduction in modulo 22n+1-1

 According to Eq. 16, reduction in modulo 2 12 1n  , can be computed as

bellow:

 31 2

2 1

1 2 3 4

2 1

(2 2 1)((2 2 1)((2 2 1)))
n

tt tk k k
i

Z

x v v v v
 

          (29)

Negative numbers in modulo 2 12 1n  should be calculated as:

(30) 2 1 2 12 1

2 1

2 1 2 12 1
2 1n nn

nv v v 


 

    

Based on Eq. 29 calculation of Z shown as:

(31)
2 1 2 11 1 1 12 1 2 1

(2 2 1) 2 2i i

n n

t tk k
i i i i i iZ v v v v v v

     
       

(32) 2 1

1 1 2 3
1 1 1 2 1ni i i iZ v v v v

   
   

Where:





 



1

2 1

1
1 2 0 1 2 2 1

2 1

2
1

2 1

3
1 1

2 1

00..0

... 00..0 ...

00..0 00..0

00..0

i

i i
n k

i n k k k n k
n k

i i
n k t t

i i
n k

v v

v v v v v v

v v

v v

 

     
 


  

 
 









 Hardware implementation of Z is represented in Figure 5. In this step the

result of (2 2 1)k t
iE Z     should be calculated. Therefore inputs in Figure

5, changes to



1 1 2
1 1

1

2 1

1
1 2 0 2 2 1

2
1 2 0 2 2 1

00...0

... ...

... ...
i i

i i i

i i
n k

i n k n n k

i n t n n t

E v v v Z

v v

v Z Z Z Z

v Z Z Z Z

 

 

   

   

   







Marzieh Gerami et al. 91

 Hardware implementation of E is shown in Figure 5. Therefore delay of

conversion from MRS to RNS in worst case can be calculated as:

(33)   
1

2 1

1

2 1 2
m

n
MRS RNS FA

i

Delay MA D







 
   
 


Figure 5: Hardware implementation of Z in modulo 2 12 1n 

5.4 Reduction in modulo 2k-2t-1

 Reduction of weighted number to its RNS representation in moduli

2 2 1k t  is proved in this section. Weighted to RNS conversion in moduli in the

form of 2 2 1k t  can be done as

 (34)

4
2 3 4

0 1 2 3 4
0

4 3 2 1 0

2 2 1
2 2 1

2 2 1

2 2 2 2 2

 2 (2 (2 (2)))

tk i
tk i

tk i

ik k k k k
i

i

k k k k

T

X x x x x x x

x x x x x


 

 

 

     

    





Cost of conversion of MRS to RNS in [4] is reported as

92 Four Moduli RNS Bases for Efficient Design of Modular Multiplication

(35)
1

1,
1

max(() 2 () 2)
m

MRS RNS i j FA
j m

i

Delay c c kD 


 

    
 


According to the Eq. 34 hamming weight of 2k is equal to one. Therefore T in

Eq. 34 could be calculated with one shift and addition. In Eq. 35, ()ic is the

hamming weight of ic which is equal to zero, therefore cost of weighted to RNS

conversion is

1

1

2 () 2)
m

weighted RNS j FA
i

Delay c kD





   
 
 (36)

6 Comparison

 As mentioned in [13] and [24], the unit gate delays of addition reported in

[18] and [19] are,  
22 log 6k  and  1

22 log 7k   , respectively. In this work by using

the unit gate delay of modular adder [20] and [18], the delay of modulo 2 12 1n 

and
22 1n  are obtained as  0.5

22 log 5n  and  
22 log 5n  [25]. It is obvious from

Table 2 that the moduli set 2 1{2 1,2 ,2 1,2 1}n n n n   ,

is faster than the moduli set

2{2 1,2 ,2 1,2 1}n n n n   , moreover moduli sets 2 1{2 1,2 ,2 1,2 1}n n n n   and

2{2 1,2 ,2 1,2 1}n n n n   can result in better tradeoffs between the RNS arithmetic

unit delay and reverse converter performance.

In moduli set 2 1{2 1,2 ,2 1,2 1}n n n n   , modulo 2 12 1n  is the critical moduli

and also in moduli set 2{2 1,2 ,2 1,2 1}n n n n   , modulo 22 1n  has the worst

delay in addition and therefore in MRS to RNS conversion. Considering fast

implementation of modular adder such as parallel prefix adders [21-22] modulo

2 1k  implementation in much faster than modulo 2k-2ti-1 adder. Therefore

unbalanced modulus 2 12 1n  and 22 1n  does not decrease the efficiency of

proposed RNS bases. It is worth mentioning that, the unbalanced RNS basis

Marzieh Gerami et al. 93

results in efficient residue to binary conversion in second basis. The first basis is

the four moduli RNS basis in the form of 2k
ic where / 20 2k

ic  as proposed

in [4]. Table 8, shows the comparison between four moduli sets which are

proposed in this work and RNS basis that reported in [4]. Notice that this

comparison also depends on dynamic range, on the other hand based on key length

of cryptography, different cost of RNS to RNS conversion are shown in Table 8.

As shown in this table, noticeable improvement in speed of the RNS to RNS

conversion compared to [4] is achieved. Note that in [4] four moduli RNS

comparison are propose d for 256 bit key length, therefore for fair comparison,

cost of RNS to RNS conversion for 256 bit key size are done in Table 8. Since one

of important part of RNS Montgomery multiplication is the RNS to RNS

conversion, therefore RNS Montgomery multiplication could be executed in faster

design by the proposed bases.

Table 8: Comparison RNS to RNS conversion for key length 256 bit

Moduli sets
Cost of RNS to RNS Conv.

(DFA)
Improvement

Proposed (S1) 5942 %12
Proposed (S2) 4700 %30

[4] 6784 ---

7 Conclusion

With growing up key length in cryptography systems, needs for speed,

security and less hardware redundancy are sensible. Therefore this paper proposed

RNS bases to satisfy the key length of cryptosystem and also have proper speed

and efficient hardware implementation. Four moduli RNS bases for public key

cryptography algorithm such as ECC are proposed. Whit using these RNS bases,

less complexity in hardware and more speed in arithmetic unit compare to the best

94 Four Moduli RNS Bases for Efficient Design of Modular Multiplication

work in literature has been achieved. The advantage of moduli sets which are

employed for second basis are efficient forward and reverse converter and

efficient arithmetic unit. Therefore noticeable improvement in time delay with

160,192 and 256 bits key length that are used in cryptography algorithm is

achieved.

References

[1] B. Parhami, Computer Arithmetic: Algorithms and Hardware Design, Oxford

University Press, 2000.

[2] W. Wei et al., RNS application for digital image processing, in Proc. 4th

IEEE Int. Workshop Syst.-on-Chip Real-Time Appl., (2004), 77-80.

[3] G.C. Cardarilli, A. Nannarelli and M. Re, Residue Number System for

Low-Power DSP Applications, Proc. of 41nd IEEE Asilomar Conference on

Signals, Systems, and Computers, (2007).

[4] J.C. Bajard, M. Kaihara and T. Plantard, Selected RNS Bases for Modular

Multiplication, 19th IEEE International Symposium on Computer Arithmetic,

(2009), 25-32.

[5] J.C. Bajard and L. Imbert, A Full RNS Implementation of RSA, IEEE

Transactions on Computers, 53(6), (2004), 769-774.

[6] J. Bajard, L. Didier and P. Kornerup, An RNS Montgomery’s Modular

Multiplication Algorithm, IEEE Trans. Computers, 47(2), (February, 1998),

167-178.

[7] J. Bajard, L. Didier and P. Kornerup, Modular Multiplication and Base

Extensions in Residue Number Systems, Proc. 15th IEEE Symp. Computer

Arithmetic (ARITH ’01), (2001), 59-65.

Marzieh Gerami et al. 95

[8] K. Navi, A.S. Molahosseini and M. Esmaeildoust, How to Teach Residue

Number System to Computer Scientists and Engineers, IEEE Transactions

on Education, 54(1), (2011), 156-163.

[9] Y. Wang, X. Song, M. Aboulhamid and H. Shen, Adder based residue to

binary numbers converters for {2n-1, 2n, 2n+1}, IEEE Transactions on Signal

Processing, 50(7), (2002), 1772-1779.

[10] P.V.A. Mohan and A.B. Premkumar, RNS-to-Binary Converters for Two

Four-Moduli Set {2n-1, 2n, 2n+1, 2n+1–1} and {2n-1, 2n, 2n+1, 2n+1+1}, IEEE

Transactions on Circuits and Systems-I, 54(6), (2007), 1245-1254.

[11] B. Cao, T. Srikanthan and C.H. Chang, Efficient reverse converters for the

four-moduli sets {2n–1, 2n, 2n+1, 2n+1–1} and {2n–1, 2n, 2n+1, 2n–1–1}, IEEE

Proc. Comput. Digit. Tech., 152, (2005), 687-696.

[12] B. Cao, C.H. Chang and T. Srikanthan, A Residue-to-Binary Converter for a

New Five-Moduli Set, IEEE Transactions on Circuits and Systems-I, 54(5),

(2007), 1041-1049.

[13] A.S. Molahosseini, K. Navi, C. Dadkhah, O. Kavehei and S. Timarchi,

Efficient Reverse Converter Designs for the new 4-Moduli Set {2n-1, 2n,

2n+1, 22n+1-1} and {2n-1, 2n+1, 22n, 22n+1} Based on New CRTs, IEEE

Transactions on Circuits and Systems-I, 57(4), (2010), 823-835.

[14] B. Cao, C. Chang and T. Srikanthan, An Efficient Reverse Converter for the

4-Moduli Set {2n-1, 2n, 2n+1, 22n+1} Based on the New Chinese Remainder

Theorem, IEEE Transactions on Circuits and Systems-I: Fundamental

Theory and Applications, 50(10), (October, 2003), 1296-1303.

[15] P. Montgomery, Modular Multiplication without Trial Division, Mathematics

of Computation, 44(170), (April, 1985), 519-521.

[16] K. Manochehri Kalantari, S. Pour Mozafari and B. Sadeghiyan, Improved

RNS for RSA Hardware Implementation, 2(2&4- b), (2004), 31-39.

96 Four Moduli RNS Bases for Efficient Design of Modular Multiplication

[17] F. Pourbigharaz and H. M. Yassine, A signed digit architecture for residue to

binary transformation, IEEE Transactions on Computers, 46(10), (1997),

1146-1150.

[18] Leonel Sousa and Ricardo Chaves, A Universal Architecture for Designing

Efficient Modulo 2 1n  Multipliers, IEEE Transactions on Circuits and

Systems-I, 52(6), (June, 2005).

[19] H.T. Vergos and C. Efstathiou, Design of efficient modulo 2n+1 multipliers,

IET Comput. Digit. Tech. 1(1), (2007), 49-57.

[20] M. Esmaeildoust, K. Navi and M. R. Taheri, High speed reverse converter for

new five-moduli set {2n, 22n+1-1, 2n/2-1, 2n/2+1, 2n+1}, IEICE Electron.

Express, 7(3), (2010), 118-125.

[21] R.A. Patel, M. Benaissa and S. Boussakta, Efficient new approach for

modulo 2n-1 addition in RNS, IEEE Proc.-Comput. Digit. Tech., 153(6),

(2006), 399-405.

[22] C. Efstathiou, H.T. Vergos and D. Nikolos, Modified Booth Modulo 2n-1

Multipliers, IEEE Transactions on Computers, 53(3), (2004), 370-374.

[23] M.A. Bayoumi, G.A. Jullien and W.C. Miller, A VLSI implementation of

residue adder, IEEE Transactions on Circuits and Systems, 34(3), (1987),

284-288.

[24] K. Navi, M. Esmaeildoust and A.S. Molahosseini, A General Reverse

Converter Architecture with Low Complexity and High Performance, IEICE

TRANSACTIONS on Information and Systems, E94-D(2), (2011), 264-273.

[25] G. Jaberipur and B. Parhami, Unified Approach to the Design of

Modulo- (2 1)n  Adders Based on Signed-LSB Representation of Residues,

19th IEEE International Symposium on Computer Arithmetic, (2009),

57-64.

