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Abstract 

Residue Number System provides parallel and fast arithmetic operation by 

replacing large number computation with small moduli without carry propagation 

between moduli. RNS can be applied in application like public key cryptography 

in order to achieve more speed and less power consumption. Modular 

Multiplication is the main operation in this application. Selecting RNS moduli sets 

(bases) is the most important part in modular multiplication. In this work RNS 

bases in order to design efficient modular multiplication is presented. The 

proposed RNS bases in first basis employs the basis and multiplicative inverses 

with small hamming weight based on the work reported in literature and in second 

basis, well formed arithmetic unit RNS basis with efficient forward and reverse 

converter are employed. The proposed RNS bases are suitable for public key 

cryptography algorithm especially for Elliptic Curve Cryptography (ECC). 

The results show that combination of these RNS basis has achieved noticeable 

improvement in hardware complexity and also less time delay.  
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1  Introduction  

Residue Number System (RNS) perform addition, subtraction and 

multiplication in a fast manner because of its carry free nature [1]. Provided 

parallelism by RNS makes it suitable for application like digital image processing 

[2], digital signal processing (DSP) [3] and public key cryptography systems 

[4-7]. RNS consist of three main parts which include forward converter, reverse 

converter and arithmetic unit [8]. Efficiency of these three parts is depends on the 

number of moduli and its form. Therefore selecting RNS bases becomes more 

complicated with growth of application. The most popular RNS basis is 

{2 1,2 ,2 1}n n n  . This set benefits the balanced moduli and the best forward and 

reverse converter is reported in [9]. Moduli sets with higher dynamic ranges are 

reported like, 1{2 1,2 ,2 1,2 1}n n n n   , 1{2 1,2 ,2 1,2 1}n n n n     [10], [11] and 

1 1{2 1,2 ,2 1,2 1,2 1}n n n n n     [12]. Residue to binary converters for these 

moduli sets are consists of carry save adder (CSA) tree which results in hardware 

redundancy.  

Other moduli sets like, 2 1{2 1,2 ,2 1,2 1}n n n n   , 2{2 1,2 ,2 1,2 1}n n n n    are 

reported in [13-14] where simple structure of residue to binary converter make 

them suitable for high dynamic ranges application. Efficient reverse converters for 

these moduli sets based on new Chinese reminder theorem (CRT) are presented in 

[13] where the authors proposed memory less converter architecture and adder 

based. Among the RNS application, public key cryptography like RSA and ECC 

required more dynamic ranges. Growing up the key length in these algorithms 

caused to increase hardware complexity and time delay. Modular multiplication is 

basic operation in cryptosystems. Several algorithms in order to increase the 
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efficiency of modular multiplication were proposed. The most famous algorithm is 

Montgomery modular multiplication [15] where its RNS version is also designed 

for achieve higher performance [5-6]. RNS Montgomery multiplication performs 

modular multiplication by using auxiliary bases without any division. Selecting 

the proper RNS bases caused to achieve high performance of converters and 

arithmetic operation unit. In [16] in designing RNS bases, for first basis modulus 

in the form of 2 1jk    are used and modulus in the form of 2 1ik   are selected as 

second basis where , 0,1,2, ,i j m  . The main disadvantage of this work is 

inefficient multiplicative reverses that caused to decrease efficiency of reverse 

converter. In [17] RNS bases in the form of 
0 12 2 2{2 1, 2 1, 2 ,..., 2 1}

kn n n n   for 

both bases are reported. The main disadvantages of these bases are unbalanced 

moduli that caused to decrease the efficiency of arithmetic unit. The best work that 

was done until now, is presented in [4]. In this work, RNS bases in form of  

2k
ic , where / 20 2k

ic   are proposed. The main advantage of this report is to 

achieve efficient RNS to RNS conversion between two bases and simple 

multiplicative inverses, which are needed in the process of RNS Montgomery 

multiplication. In the proposed RNS bases, in one basis the four moduli sets in the 

form of 2k
ic , where / 20 2k

ic  [4] is applied. In second basis, moduli sets 

2 1{2 1,2 ,2 1,2 1}n n n n    and 2{2 1,2 ,2 1,2 1}n n n n     [13-14] are used. By 

employing these moduli sets in RNS Montgomery multiplication without losing 

arithmetic operation efficiency, faster RNS to RNS conversion is achieved which 

result to more efficient modular multiplication. Comparing to [4], more efficient 

arithmetic unit and converters is achieved.  

 This paper is organized as follows. RNS and modular multiplication 

background is presented in section 2 and section 3. The proposed RNS bases are 

presented in section 4. Reductions in the proposed RNS basis which is required in 

RNS to RNS conversion are detailed in section 5. In section 6, comparison with 

the other RNS bases are presented and finally section 7 concludes the paper. 
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2  Overview of RNS  

An integer X  in Residue Number System (RNS) represented as 

1 2( , , , )mx x x , where modi ix X p  that ip  is the modulo of the moduli set 

1 2{ , , , }mS p p p  . In order to prevent redundancy, RNS moduli must be pair 

wise relatively prime. Each integer number in the range of 0 to 1M  , where 

1

m

i
i

M p


  , has unique representation. Two most common algorithms to convert 

from RNS in to binary are CRT and MRC (Mixed Radix Conversion). These 

methods are described as fallow. In CRT the RNS integer number convert to its 

equivalent as below: 

                             
1

m

i i i
ii M

X x N MP
                      (1) 

Where
1

m

i
i

M p


  , i
i

M
M

p
  and 1

i
i i p

N M   is the multiplicative 

inverse of iM  in modulo ip . Another algorithm is MRC that weighted number 

X  from its residues in RNS representation should be calculated as fallow: 

 (2)     
1

3 2 1 2 1 1
1

n i
i

X P P P P


   




      

Where 

(3)       1 1v x 

 (4)        
2

2

1
1122 )(

PP
Pvxv 

 

And in the general form is: 

(5)  
1 1 1

((( ) ) )1 1 2 2 1 1
m m m

m

x v P v P v Pm m m mP P P P
v   

         

 
1

j
i p

p  is the  multiplicative inverse of ip  in modulus jp . Compare to MRC 

method which is the sequential algorithm, CRT is a parallel one. Depend on the 
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number and form of the moduli, one of these algorithms is used in design of 

reverse converter. In some cases for the moduli set with more than four moduli 

combination of these two algorithms could be applied to achieve high speed of the 

reverse converter.  

 

 

3    Overview of RNS Montgomery multiplication  

One of the most famous modular multiplication algorithms in Residue 

Number System is Montgomery modular multiplication. Montgomery algorithm 

computes the result of 1X Y M    mod T, with an auxiliary base without any 

division. X and Y, are two large integer number with RNS representation 

1 2( , , , )mx x x  and 1 2( , , , )my y y  in first basis and in the second basis  we 

consider X  and Y  as 1 2( , , , )mx x x    and 1 2( , , , )my y y   . M , M  as their 

dynamic range that 1 2 iM p p p    and 1 2 iM p p p     , where ip  and ip  are 

the modulo in moduli sets. Consider T which is T M M   , so that 

gcd( , ) gcd( , ) gcd( , ) 1T M T M M M    . As mentioned before, lack of division 

operation increase the speed of modular multiplication. In this section 

Montgomery modular multiplication algorithm that presented in [15] is described. 

The most important part of Montgomery algorithm is moduli selection that leads 

to design pretty faster converter and efficient arithmetic unit. Choosing moduli set 

is necessary to provide these features, so in this approach the RNS basis in order 

to achieve the high performance of multiplication is proposed.  

According to [4], RNS Montgomery multiplication algorithm consist of two 

conversions, one RNS product on the two basis, one RNS product on the first 

basis, two RNS products and one addition on the second basis. Besides forward 

and reverse converters is needed at the end of operations. 
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RNS Montgomery multiplication 

Algorithm 

n

n

1

n

n n

1
n

n n
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     in base B )

2 :  in B

3:  in B  in B
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d x y

q d T

q q

r d q N M
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
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      
 

 

 

 

 

4    Proposed RNS bases 

In this section the proposed four moduli RNS bases is described. In 

Montgomery modular multiplication, an auxiliary basis to calculate the result is 

needed.  For this basis four moduli sets 2 1
1 {2 1,2 ,2 1,2 1}n n n nS      [13] and  

2
2 {2 1,2 ,2 1,2 1}n n n nS      [14] with their efficient reverse converters are used. 

This dynamic RNS basis range is suitable for cryptography algorithms with large 

key size. For the first basis the RNS basis in the form of 2k
ic , where 

/ 20 2k
ic   reported in [4] are employed. The advantage of this RNS basis is 

small hamming weight of moduli and multiplicative inverses that leads to 

implementing the faster modular multiplication. Additions and multiplications in 

RNS basis 2 1
1 {2 1,2 ,2 1,2 1}n n n nS      [13] and 2

2 {2 1,2 ,2 1,2 1}n n n nS      

[14], in second basis are done with more speed comparing to first basis. In Table 1, 

four moduli RNS bases for 160, 192 and 256 bit key length are reported. Notice 

that because of various moduli length bit in RNS basis, two different symbols for 

moduli length bit in first and second basis are used ( k  and n  for first and second 

basis, respectively). Dynamic range of first basis is 4k  and for second basis is 
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5n . As discuss in the RNS Montgomery multiplication algorithm, 4k must be less 

than 5n. Therefore For an instance, for 256 key lengths, k considered as 64 bits in 

order to cover 256 bit dynamic ranges and for second basis n consider as 52 bits. 

Therefore 4k and 5n cover the required 256 bit dynamic ranges and also 4k < 5n is 

satisfied. Forward conversion in moduli in the form of 2 1k   and 2 1k   is 

straight forward and more simple logic circuits with less delay are required 

comparing to moduli in the form of 2k
ic , where / 20 2k

ic   [4].  

 

Table 1: Proposed RNS bases  

 
 
 

Required steps for RNS to RNS conversion in RNS Montgomery 

multiplication is shown in Figure 1. Notice that the complexity of algorithm is in 

line 3 and 5 of RNS Montgomery multiplication Algorithm [4]. 

 

256 key length 192 key length 160 key length 
Proposed 

RNS bases First 
Base 

Second 
Base 

First 
Base 

Second 
Base 

First 
Base 

Second 
Base 

4 moduli 
RNS bases 

s1 

64 10

64 16

64 19

64 20

2 2 1

2 2 1

2 2 1

2 2 1

 

 

 

   

52

52

52

105

2

2 1

2 1

2 1





  

48 10

48 16

48 19

48 20

2 2 1

2 2 1

2 2 1

2 2 1

 

 

 

 

39

39

39

79

2

2 1

2 1

2 1





  

40 10

40 16

40 19

40 20

2 2 1

2 2 1

2 2 1

2 2 1

 

 

 

   

32

32

32

65

2

2 1

2 1

2 1





  

4 moduli 
RNS bases 

s2 

64 8

64 22

64 15

64 16

2 2 1

2 2 1

2 2 1

2 2 1

 

 

 

   

52

52

52

104

2

2 1

2 1

2 1







48 10

48 16

48 19

48 20

2 2 1

2 2 1

2 2 1

2 2 1

 

 

 

   

39

39

39

78

2

2 1

2 1

2 1







40 10

40 16

40 19

40 20

2 2 1

2 2 1

2 2 1

2 2 1

 

 

 

   

32

32

32

64

2

2 1

2 1

2 1





  
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Figure 1:  RNS Montgomery Multiplication Algorithm, a) conversion from first 

basis to the second basis (line 3), b) conversion from second basis to the first basis 
(line 5) 

 

  

4.1 RNS to RNS conversion from first to second basis 

 As shown in Figure 1, RNS to RNS conversion from first basis to second 

basis consists of two steps: RNS to MRS conversion in first basis and MRS to 

RNS from first to second basis. Therefore we have: 

(6)   RNS RNS RNS MRS MRS RNSDelay Delay Delay    

Since the first RNS basis in this work in the moduli in the form of 2k
ic  where 

/ 20 2k
ic  , efficient RNS to MRS conversion are reported in [4] which is used 

in this work. Based on [4], cost of RNS to MRS conversion is shown in Eq. 7. 

 (7)  
1

1
,

2, ;
1

max ( ( ) 2 ( ) 4)
m

RNS MRS i j j FA
j k i j

i

Delay m c kD 



  

 
   
 


 

In Eq. 7, ( )w k  is the hamming weight of k and m is the number of moduli. In 

order to convert MRS to RNS form first to second basis, the critical moduli in 

second basis must be considered. In [13] comparisons of critical moduli for 

different RNS basis are done. Considering new modulo 2 1n   adder proposed in 

[25], comparison of critical moduli for the proposed RNS bases is shown in table 

2. Comparison between modulo 2 12 1k   and 2 1k   shows that the unit gate 

delay for both is same. Therefore reductions for both moduli are calculated in 
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section 5. Because of different moduli bit length in the proposed RNS bases 

(smaller bit length in second RNS basis), the unit gate delays that are shown in 

Table 2 for second basis is less than first basis. Therefore more speed of arithmetic 

operation with advantages of efficient converters is achieved.  

 

Table 2: Comparison of critical moduli for different RNS bases 

Critical moduli Unit gate delay 
2 2 1k t   2log(k-1) +7 

22 1k   2log(k) +7 
2 12 1k    2log (k)+5 

2 1k   2log (k)+5 
 
 
According to the Eq. 7, conversion delays from RNS to MRS based on their key 

length are shown in Table 3. 

 
 

Table 3: Cost of RNS to MRS conversion   

Size of 
key 

length 

Delay of RNS to 
MRS conversion 

for S1 

Delay of RNS to 
MRS conversion 

for S2 
160 52 kDFA 52 kDFA 
192 65 kDFA 65 kDFA 
256 60 kDFA 39 kDFA 

 
 
In this work two different basis for auxiliary basis were proposed, so we have two 

various delay of MRS to RNS conversion. As proofed in section 5, delay of MRS 

to RNS conversion for critical moduli set 1S  and 2S  are shown in Eq. 8 and Eq. 

9 respectively.  

 (8)   
1

2 1

1

( (2 1) 2)
m

n
MRS RNS FA

i

Delay MA D







 
   
 


 
(9)    

1
2

1

( (2 1) 3)
m

n
MRS RNS FA

i

Delay MA D





 
   
 

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MA in this equation denotes the modular addition. By using modulo 2 1n   and 

2 1n   adder (MA) reported in [23] and considering n-bit delay of full adder (DFA) 

and 2n-bit delay of FA for MA ( 2 1n  ) and 2 1n   respectively, we have: 

(10)      (6 9)MRS RNS FADelay n D   

(11)       (12 9)MRS RNS FADelay n D  
 

Overall delays of RNS to RNS conversion for the proposed RNS bases are shown in 

Table 4. 

 

Table 4: Total cost of RNS to RNS conversion from first to second basis 

Size of 
key length 

RNS to RNS for 
S1 

RNS to RNS for 
S2 

160  52 6 9 FAk n D 
   52 12 9 FAk n D 

 
192  65 6 9 FAk n D 

   65 12 9 FAk n D   
256  60 6 9 FAk n D 

   39 12 9 FAk n D   
 
 
 

4.2 RNS to RNS conversion from second basis to the first basis 

 In order to achieve RNS to RNS conversion from second to first basis 

according to Figure 1, we have 

(12)  RNS RNS RNS weighted weighted RNSDelay Delay Delay   
 

Delays of RNS to weighted conversion from second to first basis are shown in 

Table 5. Weighted to RNS conversion in first basis is proved in section 5, 

therefore considering critical moduli 2 12 1n   in 1S  and 22 1n   in 2S  we 

have: 

 (13)    1

2

(12 5)           

(8 3)            
FA

RNS W eighted
FA

n D for s
Delay

n D for s


   

(14)     
1

1

2 ( ) 2 18
m

Weighted RNS j FA FA
i

Delay c kD kD





    
 
 
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Table 5: Shows the area and delay costs of proposed moduli sets 

Proposed 
moduli 

Conv
erter 

Moduli Set  Area  Delay 

S1:4 
moduli 

proposed
1 

[13] 

 
{2n,2n-1,2n+1, 

22n+1-1} 
 

(8m+2) AFA + (m-1)AXOR + 
(m-1)AAND + (4m+1)AOR + 
(4m+1)AXNOR mA2:1MUX + 

(7m+1) ANOT 

(12 5) FAn D
 

S2:4 
moduli 

proposed
2 

[14] 

 
{2n,2n-1,2n+1, 

22n+1} 
 

(11m+6) AFA + 
(2m-1)AXOR + (2m-1)AAND 

+ (4m)AOR + (4m)AXNOR+ 
(5m+3) ANOT 

 

(8 3) FAn D
 

 
 

Total delay of RNS to RNS from second basis to first basis for 160,192 and 256 

bit key length is represented in Table 6. 

 

Table 6: Total delay of conversion from second basis to first basis 

Proposed moduli sets  RNS to RNS delay 
S1 18k+12n+5 
S2 18k+8n+3 

 

 Finally we should calculate total delay of RNS Montgomery Multiplication 

Algorithm. Delay is obtained from summation of RNS to RNS conversion from 

first basis to second basis and vice versa. Notice that key length must be 

considered in calculation of overall delay. The results are shown in Table 7. 

 

Table 7: Total cost of RNS to RNS conversions 

key length S1 S2 
160  70 18 14 FAk n D   70 20 12 FAk n D 

 
192  83 18 14 FAk n D   83 20 12 FAn n D 

 
256  78 18 14 FAk n D   57 20 12 FAk n D 
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5    Reduction in moduli 2n+1, 22n+1 and 22n+1-1 

 As shown in Figure 1, after calculation of MRS, conversion to RNS in 

second basis is needed. This section describes MRS to RNS reduction in moduli 

2 1n  , 2 12 1n   and 22 1n  . Considering MRC we have: 

 (15)  1 1 2 2 3 1( ( ... )...)
j

i m m p
x v p v p v p v    

 

Where pi is the moduli in the form 2 2 1k t   and jp  is 2n , 2 1n  , 2 1n  , 

2 12 1n   and 22 1n  . Therefore  

(16)  31 2
1 2 3 4(2 2 1)( (2 2 1)( (2 2 1) ))

j

tt tk k k
i

L p

x v v v v         
 

L is considered as basic operation in Eq. 16. Since the second RNS bases are the 

moduli sets 2 1{2 1,2 ,2 1,2 1}n n n n    and 2{2 1,2 ,2 1,2 1}n n n n   , MRS to 

RNS conversion in this moduli sets must be calculated. Two moduli 2n  and 

2 1n   are especial case of 2 2 1k t  . In [4] reduction in moduli 2 2 1k t   is 

presented. Therefore calculating MRS to RNS conversion in other moduli 2 1n  , 

2 12 1n   and 22 1n   are considered in the following. 

 

 

5.1 Reduction in modulo 2n+1 

 Based on Eq. 16 we have: 

(17)  31 2
1 2 3 4

2 1

(2 2 1)( (2 2 1)( (2 2 1) ))
n

tt tk k k
i

L

x v v v v



         
 

The value L, is the basic operation in Eq. 17. So L should be calculated as fallow: 

(18)  
 

1 1 1 12 1 2 1

1 1 1

2 1

(2 2 1) 2 2

00...0 00...0

i i

n n

ni

t tk k
i i i i i i

i i i i
k t

L v v v v v v

v v v v

    

  



         

   
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In order to compute the result of Eq. 18 in modulo 2 1n  , ( 1)n   bit separation 

of values more than ( 1)n   bit is needed. Therefore  

         (19) 1 3 4 5 6 7
1 1 1 1 1 1 2 1ni i i i i i iL v v v v v v v      

       
 

 
Where 
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
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...
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i n k
k n

i
n

i k n k
n k

v v v

v v v
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v v v
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 

      
  

 




   
 




  

 



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
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2 2

6
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7
1 1 1
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t
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v v v

 
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 


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

 

Notice that negative numbers in modulo 2 1n   can be calculated as: 

 
(20)     

2 1 2 12 1
2 1 2n nn

nv v v
 

     
 

 
Thus 

                 1 3 4 5 6 7
1 1 1 1 1 1 2 1

8
ni i i i i i iL v v v v v v v      

               (21)  
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Figure 2:  Hardware implementation of value L in modulo 2 1n   

 

 

Hardware implementation of Eq. 21 is shown in Figure 2. The result of 

(2 2 1)itk
iH L     should be calculated in the next step: 

       

 

 

2 12 1

1 2
1 1 2 1

2 1

2 2 1 2 2

00...0 00...0 6

i i

nn

n

ni

t tk k
i i

i i i i i
k t

H v L v L L L

v L L L v v v v L



  


         

          
  (22) 

According to Eq. 22, value H should be separated in four parts as bellow.
 

Therefore CSA inputs in Figure 3, changed to 
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




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 Hardware implementation of H is shown in Figure 3. According to Figure 2, 

the delay of conversion from MRS to RNS in worst case can be calculated as: 

  (23)     
1

1

(2 1) 4
m

n
MRS RNS FA

i

Delay MA D





 
   
 


 

 

 

Figure 3:  Hardware implementation of value H in modulo 2 1n   
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5.2 Reduction in modulo 22n+1 

 According to Eq. 16 we can calculate the reduction in modulo 22 1n   as 

fallow: 

(24)  31 2

2

1 2 3 4

2 1

(2 2 1)( (2 2 1)( (2 2 1) ))
n

tt tk k k
i

I

x v v v v



         
 

Negative numbers in modulo 22 1n   can be calculated as: 

 
(25)   2 22 2

2 2

2 1 2 12 1 2 1
2 1 (2 1 ) 2 2n nn n

n nv v v v  
         

 

 
For calculation of I  in Eq. 24 we have 

 
(26)  

2 21 1 1 12 1 2 1
(2 2 1) 2 2i i

n n

t tk k
i i i i i iI v v v v v v    

       
 

By considering (2 1)n   bit separation and considering negative numbers such 

as modulo 22 1n   we have 

(27)   
2

2 3 4
1 1 1 1 2 1

4
ni i i iI v v v v    

    
 

Where    
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Figure 4:  Hardware implementation of I in modulo 22 1n   
 

 
 Hardware implementation of I  is shown in Figure 4. In this step the result 

of (2 2 1)k t
iF I      must be calculated. Therefore inputs in of Figure 4, 

changes to 
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 Hardware implementation of F  is shown in Figure 4. According to Figure 4, 

delay of conversion from MRS to RNS in worst case can be calculated as:                
 

                
1

2

1

(2 1) 3
m

n
MRS RNS FA

i

Delay MA D





 
   
 
               (28) 
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5.3 Reduction in modulo 22n+1-1 

 According to Eq. 16, reduction in modulo 2 12 1n  , can be computed as 

bellow: 

       31 2

2 1

1 2 3 4

2 1

(2 2 1)( (2 2 1)( (2 2 1) ))
n

tt tk k k
i

Z

x v v v v
 

              (29)

 

Negative numbers in modulo 2 12 1n   should be calculated as: 

(30)     2 1 2 12 1

2 1

2 1 2 12 1
2 1n nn

nv v v 


 

    
 

Based on Eq. 29 calculation of Z  shown as: 

(31)  
2 1 2 11 1 1 12 1 2 1

(2 2 1) 2 2i i

n n

t tk k
i i i i i iZ v v v v v v
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       

 

(32)  2 1

1 1 2 3
1 1 1 2 1ni i i iZ v v v v

   
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 Hardware implementation of Z  is represented in Figure 5. In this step the 

result of (2 2 1)k t
iE Z      should be calculated. Therefore inputs in Figure 

5, changes to 
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 Hardware implementation of E  is shown in Figure 5. Therefore delay of 

conversion from MRS to RNS in worst case can be calculated as: 

(33)     
1

2 1

1

2 1 2
m

n
MRS RNS FA

i

Delay MA D







 
   
 


 
 

 
Figure 5:  Hardware implementation of Z  in modulo 2 12 1n   

 

 

 
5.4    Reduction in modulo 2k-2t-1 

 Reduction of weighted number to its RNS representation in moduli 

2 2 1k t   is proved in this section. Weighted to RNS conversion in moduli in the 

form of 2 2 1k t   can be done as 

 

    (34) 
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



 

 
Cost of conversion of MRS to RNS in [4] is reported as 
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(35)   
1

1,
1

max( ( ) 2 ( ) 2)
m

MRS RNS i j FA
j m

i

Delay c c kD 


 

    
 
 

 
According to the Eq. 34 hamming weight of 2k  is equal to one. Therefore T  in 

Eq. 34 could be calculated with one shift and addition. In Eq. 35, ( )ic  is the 

hamming weight of ic  which is equal to zero, therefore cost of weighted to RNS 

conversion is 

                 
1

1

2 ( ) 2)
m

weighted RNS j FA
i

Delay c kD





   
 
               (36) 

 

 

6    Comparison 

 As mentioned in [13] and [24], the unit gate delays of addition reported in 

[18] and [19] are,  
22 log 6k  and  1

22 log 7k   , respectively. In this work by using 

the unit gate delay of modular adder [20] and [18], the delay of modulo 2 12 1n   

and 
22 1n   are obtained as  0.5

22 log 5n  and  
22 log 5n   [25]. It is obvious from 

Table 2 that the moduli set 2 1{2 1,2 ,2 1,2 1}n n n n   ,
 
is faster than the moduli set 

2{2 1,2 ,2 1,2 1}n n n n   , moreover  moduli sets 2 1{2 1,2 ,2 1,2 1}n n n n     and 

2{2 1,2 ,2 1,2 1}n n n n     can result in better tradeoffs between the RNS arithmetic 

unit delay and reverse converter performance. 

In moduli set 2 1{2 1,2 ,2 1,2 1}n n n n   , modulo 2 12 1n   is the critical moduli 

and also in moduli set 2{2 1,2 ,2 1,2 1}n n n n   , modulo 22 1n   has the worst 

delay in addition and therefore in MRS to RNS conversion. Considering fast 

implementation of modular adder such as parallel prefix adders [21-22] modulo 

2 1k   implementation in much faster than modulo 2k-2ti-1 adder. Therefore 

unbalanced modulus 2 12 1n   and 22 1n   does not decrease the efficiency of 

proposed RNS bases. It is worth mentioning that, the unbalanced RNS basis 
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results in efficient residue to binary conversion in second basis. The first basis is 

the four moduli RNS basis in the form of 2k
ic  where / 20 2k

ic   as proposed 

in [4]. Table 8, shows the comparison between four moduli sets which are 

proposed in this work and RNS basis that reported in [4]. Notice that this 

comparison also depends on dynamic range, on the other hand based on key length 

of cryptography, different cost of RNS to RNS conversion are shown in Table 8. 

As shown in this table, noticeable improvement in speed of the RNS to RNS 

conversion compared to [4] is achieved. Note that in [4] four moduli RNS 

comparison are propose d for 256 bit key length, therefore for fair comparison, 

cost of RNS to RNS conversion for 256 bit key size are done in Table 8. Since one 

of important part of RNS Montgomery multiplication is the RNS to RNS 

conversion, therefore RNS Montgomery multiplication could be executed in faster 

design by the proposed bases. 

 

Table 8: Comparison RNS to RNS conversion for key length 256 bit 

Moduli sets 
Cost of RNS to RNS Conv.

(DFA) 
Improvement 

Proposed (S1) 5942 %12 
Proposed (S2) 4700 %30 

[4] 6784 --- 
 

 

7  Conclusion 

With growing up key length in cryptography systems, needs for speed, 

security and less hardware redundancy are sensible. Therefore this paper proposed 

RNS bases to satisfy the key length of cryptosystem and also have proper speed 

and efficient hardware implementation. Four moduli RNS bases for public key 

cryptography algorithm such as ECC are proposed. Whit using these RNS bases, 

less complexity in hardware and more speed in arithmetic unit compare to the best 
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work in literature has been achieved. The advantage of moduli sets which are 

employed for second basis are efficient forward and reverse converter and 

efficient arithmetic unit. Therefore noticeable improvement in time delay with 

160,192 and 256 bits key length that are used in cryptography algorithm is 

achieved.    
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