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Abstract 
The logistic ridge regression estimator was designed to address the problem of 
variance inflation created by the existence of collinearity among the explanatory 
variables in logistic regression models. To reduce the bias introduced by the 
logistic ridge estimator, and at the same time achieve variance reduction, a 
modified generalized logistic ridge regression estimator is proposed in this paper. 
By exponentiating the response function, the weight matrix is enhanced, thereby 
reducing the variance. The modified estimator is jackknifed to achieve bias 
reduction. 
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1  Introduction  

Regression methods have become an integral component of data analysis in 
describing the relationship between a response variable and one or more 
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explanatory variables. When the response variable is binary or dichotomous taking 
in two possible values, the Logistic regression model becomes the standard 
method of analysis. However, when there is exact collinearity among the 
regressors, the IWLS update fails because in that case, the information matrix 
assumes singularity.When there exist collinearity(ies) in the explanatory variables, 
the Ridge i.e. in this case, Logistic Ridge Regression is applied since collinearity 
inflates the variance, bias and indeterminable parameter estimates. Now, when the 
components of the explanatory variables are both categorical and continuous, it 
necessitates a generalized logistic ridge regression to handle. If an information 
matrix Ιm=X’WX is ill-conditioned, it means that there is the existence of 
collinearity among the explanatory variables. Where there is exact collinearity, the 
information matrix assumes singularity and the iterative weighted least squares 
method collapses. The ill-conditioning of a nonsingular information matrix can be 
detected using its condition number? (Lesaffre and Marx, 1993). Let λ1, λ2,..., λt   
be the eigenvalues of the information matrix Im in descending order. The condition 
number of Im is given as: k=(λmax/λmin)1/2. When there is no collinearity at all, the 
condition number is equal to one. As collinearity   increases, the condition 
number increases. When there is exact collinearity, the information matrix 
assumes singularity. Lesaffre and Marx (1993) showed  within the  logistic 
regression framework that  exact  collinearity  among  the regressors and 
non-existence of the  maximum likelihood  estimators are the only  causes 
of singularity  for the information matrix.  An ill-conditioning situation results 
in inflated variances of the estimated regression parameters.  
Note: let 𝜋(𝑥) = 𝐸(𝑌|𝑋� = 𝑥) represents the conditional mean of Υ given x  
when the logistic distribution is used, i.e.   

𝜋(𝑥) =
𝑒𝛽𝜊+𝛽1𝑥

1 +  𝑒𝛽𝜊+𝛽1𝑥
 

(1a) 

A simple logit transformation, defined in terms of π(x) is 

𝑔(𝑥) = 𝑙𝑛 �
𝜋(𝑥)

1 − 𝜋(𝑥)
� = 𝛽0 + 𝛽1𝑥1 + ⋯ ,−∞ < 𝑥 < ∞ 

(1b) 

The logit g(x) is linear in its parameter and may be continuous, hence 
−∞ < 𝑥 < ∞.       

𝑔(𝑥)=𝛽0 + 𝛽1𝑥1 + ⋯+ 𝛽𝑝𝑥𝑝 = 𝑋1𝛽 (1c) 

is MultipleLinear Regression Model (MLRM) . 

The logistic regression model is a special case of the Generalized Linear model in 
the exponential family, 

𝐹(𝑦;𝜃,𝜑) = 𝑒𝑥𝑝 �{𝑥𝜃+𝑏(𝜃)}
𝛼(𝜑)

+ 𝑐(𝑥,𝜑)� 
(1d) 

for some  specific functions a(.),  b(.) and c(..) , where X = (x0, x1, …, xk) be an 



U.P. Ogoke, E.C. Nduka and M.E. Nja 163  

n×(k+1) design matrix and y is an n×1 response vector.  A Generalized Linear 
model is one in which each component of the response variable Y has a 
distribution in the exponential family, taking the form  

𝐹(𝑦;𝜃,𝜑) = 𝑒𝑥𝑝 �
{𝑥𝜃 + 𝑏(𝜃)}

𝛼(𝜑)
+ 𝑐(𝑥,𝜑)� 

for some  specific functions  a(.), b(.) and c(..) . 
It is also stated as  

                𝑧𝑖 = ∑ 𝑥𝑖𝑗𝛽𝑗 + 𝑒𝑖ℎ′(𝜇𝑖),    𝑖 = 1, 2, …𝑝
𝑗=1 ,𝑛            (1e) 

where iz =  adjusted dependent variate  
Xij = (i,j)thelement of the design matrix. 
βj = jthparameter effects. 
h’(μi) = link function, ei = residual error 
μ is the response function. When the link function h(μ) is defined as the logit, the 
model (1d) is called the logistic regression model.  

The problem  of  collinearity in a given set of  data is responsible  for 
the  proposed  modified Logistic  Ridge  regression estimator where the 
response  function  is exponentiated.A proposed jackknife estimator provides 
reduction in bias  normally associated with Ridge regression. 
 
 
2  Methodology 
2.1 The Iterative Weighted Least Squares Method  

Maximum likelihood methods are often used in the solution of Generalized 
Linear models for which the Logistic regression is a special case. Principal among 
them is the Iterative Weighted Least Squares (IWLS) method. 

The IWLS update is stated as  

                          �̂� = (𝑋′𝑊𝑋)−1𝑋′𝑊𝑍             (2.1) 
where 

                         {𝑋′𝑊𝑋}𝑟𝑠 = −𝐸 � 𝜕2𝜄
𝜕𝛽𝑟𝜕𝛽𝑠

� 

                𝑙(𝛽,𝑦) = ∑∑𝑦𝑖𝑥𝑖𝑗𝛽𝑗 − ∑𝑚𝑖log (1 + 𝑒𝑥𝑝∑𝑥𝑖𝑗𝛽𝑗)     (2.2) 

                            𝑍 = 𝜂 + (𝑦 − 𝜇) 𝑑𝜂
𝑑𝜇

          (2.3) 

is the adjusted dependent variate for η, the  systematic  component of the model. 
However, when there is exact collinearity among the regressors, the IWLS update 
fails because in that case, the information matrix assumes singularity. Where 
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collinearity is not exact, the variances of parameter estimates are inflated in 
accordance with the degree of collinearity. To overcome this problem, the logistic 
ridge regression estimator was first suggested (Lesaffre and Marx, 1993) by 
Schaefer, Roi and Wolfe (1984). Earlier, Hoerl and Kennard (1970) had proposed 
the ridge regression estimator in the context of the General linear model. 

The Logistic Ridge regression estimator is a modification of the IWLS 
estimator where small amount of weights are added to the diagonal elements of 
the information matrix in order to prevent the singularity of the matrix. By so 
doing, the IWLS algorithm can be executed even for cases of exact collinearity. 

 
 
2.2 The Logistic Ridge Regression Estimator 
 The Logistic Ridge regression estimator is given as 

                      �̂� = (𝑋′𝑊𝑋 + 𝐶𝐼)−1𝑋′𝑊𝑍         (2.4) 
Where C is an identity of biasing constants. In the case of Ordinary Logistic Ridge 
regression estimator, the elements of C are all equal and chosen by successive 
trials. By some canonical transformation, the Ordinary Logistic Ridge regression 
estimator is stated as  

�̂�𝑂𝑅𝐸
(𝑘) = 𝑉𝛼�𝑂𝑅𝐸

(𝑘) = 𝑉(𝐼 − 𝐶𝐹𝑐−1)𝛼�(𝑘) 

  Where 𝛼�(𝑘) = 𝑉′�̂�(𝑘) = 𝛼�    at the kth-iteration. V = a  p×p matrix 
whose columns are eigenvectors of X’X    

𝐹𝑐 = 𝑑𝑖𝑎𝑔(𝜆1 + 𝑐, 𝜆2 + 𝑐, … , 𝜆𝑘 + 𝑐) 
c1 = c2 = … = c1 = c, c≥0, c  is a biasing constant.The Generalized Logistic 
Ridge estimator is obtained by generalizing the biasing constant c , which is 
stated in canonical form as  

�̂�𝐺𝑅𝐸
(𝑘) = 𝑉𝛼�𝐺𝑅𝐸

(𝑘) = 𝑉(𝐼 − 𝐶𝐹−1)𝛼�(𝑘) 

where 𝛼�(𝑘) = 𝑉′�̂�(𝑘) = 𝛼�  at the kth – iteration as earlier defined. 

𝐹𝑐 = 𝑑𝑖𝑎𝑔(𝜆1 + 𝑐, 𝜆2 + 𝑐, … , 𝜆𝑘 + 𝑐𝑘), 𝑐𝑖 ≥ 0, ( )kici ...,,2,1=  

is an element of 𝐶 = 𝑑𝑖𝑎𝑔(𝑐1𝑐2, … , 𝑐𝑘)  which is also obtained by successive 
guesses. λi is the ith eigenvalue of (𝑋′𝑊𝑋 + 𝐶𝐼). In General Linear models ci has 
been estimated by several authors, including Khalaf and Shukur (2005). 

Quenonille (1956) introduced a Jackknife technique which was later used by 
Singh et al (1986) to propose an almost unbiased ridge estimator as a method for 
reducing the bias created by the Ridge method. Starting with the multiple linear 
regression model.  

Y = Xβ + e   
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where Y is an (n×1) vector of observed responses. X is an (n×p) design matrix, β 
is a (p×1) vector of regression coefficients and e is an (n×1) vector of residual 
errors, such that E(e) = 0 and 𝐸(𝑒𝑒′) = 𝜎2𝐼. Singh et al (1986) obtained its 
canonical transformation as 

                             𝑌 = 𝑍𝛼 + 𝑒           (2.5) 
where  
Z = XV  and   

                              𝛼 = 𝑉′𝛽                         (2.6) 
𝑍′𝑍 = 𝐽 = 𝑑𝑖𝑎𝑔(𝜆1𝜆2, … , 𝜆𝑘),𝜆𝑖 is the ith eigenvalue of 𝑋′𝑋.  
By this transformation, they obtained the Generalized Estimator 𝛼�𝐺𝑅𝐸as 

                         𝛼�𝐺𝑅𝐸 = (𝐼 − 𝐶𝐹−1)𝛼�       (2.7) 

where 

𝐶 = 𝑑𝑖𝑎𝑔(𝑐1𝑐2, … , 𝑐𝑘), 𝑐𝑖 > 0 

𝐹𝑐 = 𝐽 + 𝐶 = 𝑑𝑖𝑎𝑔(𝜆1 + 𝑐1, 𝜆2 + 𝑐2, … , 𝜆𝑘 + 𝑐𝑘) and 𝛼� is the OLS estimator of  
α . 

             �̂�𝐺𝑅𝐸 = 𝑉𝛼�𝐺𝑅𝐸 = 𝑉(𝐼 − 𝐶𝐹−1)𝛼�       (2.8) 

Following the lines of Hinkley (1977), Singh et al (1986) derived the Jackknifed 
form of (2.5), i.e. of 𝛼�𝐺𝑅𝐸 as 

                       𝛼�𝐽𝑅𝐸 = [𝐼 − (𝐶𝐹−1)2]𝛼�                    (2.9) 

so that  

                  �̂�𝐽𝑅𝐸 = 𝑉𝛼�𝐽𝑅𝐸 = 𝑉[𝐼 − (𝐶𝐹−1)2]𝛼�               (2.10) 

Nja (2013) extended Jackknife estimation to the logistic Ridge Regression model 
by redefining models (2.4) and (2.5) respectively as 

                          𝑍 = 𝑋𝛽 + 𝑒ℎ′(𝜇)      (2.11) 
 
and  

                         𝑍 = 𝑆𝛼 + 𝑒ℎ′(𝜇)          (2.12) 

where 𝑆 = 𝑋𝑉 and V  is the matrix whose columns are the eigenvectors of the 
information matrix as (𝑋′𝑊𝑋 + 𝐶𝐼) and h(μ) is as earlier defined. 
 
 Batah (2011) showed in the context of the General Linear Model that the bias 
of the Modified Jackknife Ridge estimator is smaller than the bias of the 
Generalized Ridge estimator. The theorem and proof by Khurana, M. Chaubey, 
Y.P; and Chandra, S. (2012) shown will help to buttress this fact. 
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2.3  The Proposed Estimator 
The proposed Modified Logistic Ridge regression estimator is stated as 

             �̂� = (𝑋′𝑊�1+𝛾𝑋 + 𝐶𝐼)−1𝑋′𝑊�1+𝛾𝑍�1+𝛾             (2.13) 

where 𝑊�1+𝛾 = 𝑑𝑖𝑎𝑔 �𝑚𝑖𝜇𝑖
�1+𝛾(1 − 𝜇𝑖

�1+𝛾� 
 𝑚𝑖 = 𝑖𝑡ℎ   group sub total 
 𝜇𝑖 = 𝑖𝑡ℎ   group response function 
 
For  0 ≤ γ ≤ 1      
 i = number of groups 
 𝑍�1+𝛾  is a column vector with elements 

           𝑍𝑖 = 𝜂 + (𝑦𝑖
𝑚𝑖
− 𝜇𝑖

�1+𝛾) 1

𝜇𝑖
√1+𝛾(1−𝜇𝑖

√1+𝛾)
          (2.14) 

where   

              𝜂𝑖 = 𝑥𝑖𝑗�̂�0 + 𝑥𝑖𝑗�̂�1 + ⋯+ 𝑥𝑖𝑗�̂�𝑝−1              (2.15) 

 p = number of parameters to be estimated. 
 yi  number of favourable outcomes. 
 
 Using equations (2.11) and (2.12) and borrowing from the Jackknife method 
adopted by Singh et al (1986), we propose the following Jackknife Logistic Ridge 
regression estimator. 

                   𝛼�𝐽𝑀𝐿𝑅 = [𝐼 − (𝐶𝐹−1)2]𝛼�          (2.16) 

where 𝐹 = 𝑑𝑖𝑎𝑔(𝜆𝑖 + 𝑐𝑖),𝜆𝜄  is the ith eigenvalue of the matrix 
(𝑋′𝑊�1+𝛾𝑋 + 𝐶𝐼) and ci  is the ith element of the matrix C of the generalized 
biasing constants and α is as previously defined. 

 
 
 
3  Numerical Illustration 

The table below is that of 4 subpopulations characterized by sex, Diastolic 
Blood Pressure (DBP) and Body Mass Index (BMI) showing the number of people 
whose survival time from the date of medication is greater than or equal to 10 
years and the number of people whose survival time is less than 10 years. The 
probability of a person surviving 10 or more extra years is modelled using the 
modified Logistic Ridge regression proposed in this work. 
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Table 1: Survival Data 

 
 
          
 
 
 
 
 
 
 
 
 

 
 
 
 
3.1 Results 

The results of parameter estimates and their variances are presented for the 
IWLS, the Logistic Ridge estimator and the modified Logistic Ridge estimator. 
Also presented are results for the variances and bias of estimates for the Logistic 
Ridge, the modified logistic ridge parameters and those of their corresponding  
Jackknife parameter estimates. Variances and bias of their parameter estimates 
and those of their corresponding Jackknife models are also presented. 

 
Table 2: β parameter estimates 

Estimator �̂�0 �̂�1 �̂�2 �̂�3 

     IWLS -1.700 0.179 1.124 0.040 

Logistic. Ridge -0.3551 -0.1642 -1.0824 0.0372 

Jackknife  logistic 
Ridge  

-0.3551 -0.1642 -1.0824 0.0372 

Modified logistic 
ridge 

-0.6846 -0.1299 -0.9207 -0.0316 

Jackknife Modified 
Logistic  Ridge 

-0.6846 -0.1299 -0.9207 -0.0316 

 
 

Sex  

1x  
Diastolic 
B.P  
    2x   

 BMI  

   3x  
No.Surviving 
≥10 yrs  

iY  

No.surviving 
<10 yrs 

Total  

M < 90  20.1 9 6 15 
M >90 25.3 6 10 16 

F < 90 18.3 7 6 13 
F > 90 37 8 10 18 
   30 32 62 
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Table 3: α parameter estimates 

Estimator 𝛼�0 𝛼�1 𝛼�2 𝛼�3 

Logistic  Ridge 0.9086 0.5440 -0.3919 -0.0042 

Jackknife  
logistic Ridge  

0.9317 0.5484 - 0.3951 -0.0042 

Modified logistic 
ridge 

1.0647 0.2303 -0.2920 -0.0170  

Jackknife 
Modified 
Logistic  Ridge 

1.0917 0.2321 -0.2943 -0.0170 

 
 

Table 4: Variances of β Parameter Estimates 

 �̂�0 �̂�1 �̂�2 �̂�3 

IWLS 7.0969 0.4502 1.1236 0.0059 

Logistic 
Ridge 

0.6637 0.1045 0.0698 0.0000 

Modified 
logistic 
ridge 

0.6638 0.1045 0.0698 0.0000 

 
 

Table 5: Variances of α parameter estimates 

 𝛼�0 𝛼�1 𝛼�2 𝛼�3 

Logistic  
Ridge 

0.6304 0.1028 0.0687 0.0000 

Jackknife  
logistic 
Ridge  

0.6629 0.1045 0.0698 0.0000 

Modified 
logistic 
Ridge 

0.6305 0.1028 0.0687 0.0000 

Jackknife 
Modified 
Logistic  
Ridge 

0.0030 0.1045 0.0698 0.0000 
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Table 6: Bias α estimates 

 𝛼�0 𝛼�1 𝛼�2 𝛼�3 

Logistic  Ridge -0.0237 -0.0045 0.0032 0.0000 

Jackknife  
logistic Ridge  

-0.0006 -0.0000 0.0000 0.0000 

Modified 
logistic Ridge 

-0.0278 -0.0019 0.0024 0.0000 

Jackknife 
Modified 
Logistic  Ridge 

-0.0007 -0.0000 0.0000 0.0000 

 
 
 
3.2  Discussion 

From the results, it can be seen that the Modified Generalized Logistic Ridge 
estimator is superior to the Generalized Logistic Ridge estimator in terms of bias. 
Both estimators especially have approximately the same variances of parameter 
estimates in both β and α estimates (see Tables 4, and 5). By introducing the 
Jackknifed estimator to the Generalized Logistic Ridge and the Modified 
Generalized Logistic Ridge estimators, the bias of the Jackknife estimators drop 
respectively (Table 6). The purpose of modifying the response function is to 
enhance the weight matrix so that by jackknifing the modified estimator bias 
reduction can be achieved. 
 
Theorem 3.1                        
Let Κ be a (p×p) diagonal matrix with non-negative entries, then the difference of 
total squared biases of the modified Jackknife Ridge (MJR) and Generalized 
Ridge estimators (GRE) of β as given by 

                                 𝐷2 = ∑��𝐵𝑖𝑎𝑠(�̂�𝑀𝐽𝑅)�
𝑖
2
− �𝐵𝑖𝑎𝑠(�̂�𝐺𝑅𝐸)�

𝑖
2
�             (3.1a) 

is positive. 
Proof: using the expression for MJR given as  

                 𝛼�𝑀𝐽𝑅 = [𝐼 − (𝐶𝐹−1)2][𝐼 − 𝐶𝐹−1]𝛼� = [𝐼 − (𝐹−1𝜙𝐶)]      (3.1b) 

where  
𝜙 = (𝐼 + 𝐶𝐹−1 − 𝐶∗𝐹−1)  and  𝐶∗ = 𝐶𝐹−1𝐶. 
we have  

                                     𝐵𝑖𝑎𝑠(𝛼�𝐺𝑅𝐸) = −(𝐶𝐹−1)|𝛼|                 (3.1c) 
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Also using the expression for GRE of α given as   

                   𝛼�𝐺𝑅𝐸 = [𝐼 − 𝐶𝐹−1]𝛼�                  (3.1d) 
we have  

𝐵𝑖𝑎𝑠(𝛼�𝐺𝑅𝐸) = −(𝐶𝐹−1)|𝛼|. 
Comparing (3.1b) and (3.1c) component – wise, we have 

    �𝐵𝑖𝑎𝑠(𝛼�𝑀𝐽𝑅)�
𝑖
− |𝐵𝑖𝑎𝑠(𝛼�𝐺𝑅𝐸)|𝑖 =

𝑐𝑖𝜙𝑖
𝜆𝑖 + 𝑐𝑖

|𝛼�𝑖| −
𝑐𝑖

𝜆𝑖 + 𝑐𝑖
|𝛼�𝑖|

=
𝑐𝑖 �1 + 𝑐𝑖

𝜆𝑖 + 𝑐𝑖
− 𝑐𝑖2

(𝜆𝑖 + 𝑐𝑖)2
�

𝜆𝑖 + 𝑐𝑖
|𝛼�𝑖| −

𝑐𝑖
𝜆𝑖 + 𝑐𝑖

|𝛼�𝑖| =
𝜆𝑖𝑐𝑖2

(𝜆𝑖 + 𝑐𝑖)3
|𝛼�𝑖| 

which is a positive quantity. This proves the result. 
Both theorem and proof are extended to the Logistic Ridge estimator by redefining 
F as 𝐹 = 𝑑𝑖𝑎𝑔(𝜆𝑖 + 𝑐𝑖) where λi is the ith eigenvalue of the matrix  

(𝑋′𝑊𝑋 + 𝐶𝐼) 

and 𝛼� is defined as 𝛼� = 𝑉′�̂� with  

�̂� = (𝑋′𝑊𝑋 + 𝐶𝐼)−1𝑋′𝑊𝑍. 
The bias of an estimator in which the weight function has been modified 

differs only slightly from that of a Logistic Ridge estimator in favour of the 
modified estimator. This is also true when the modification is on the response 
function. To achieve a significant reduction in bias for any type of Logistic Ridge 
estimator, the Jackknife procedure should be applied as demonstrated in this paper. 
The Jackknife procedure is applied to the Generalized Logistic Ridge and the 
modified response function Logistic Ridge estimators. In both cases, it is observed 
that there is an enormous reduction in bias in favour of the Jackknife estimators. 
We used the above illustrative example to demonstrate this.        

         
 
4  Conclusion 
       The jackknife modified Logistic Ridge estimator is superior to both the 
Logistic Ridge and the modified Logistic Ridge estimators in terms of variance 
and bias reduction.  
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