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The Quantum Theory in Decision Making 
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Abstract 

Humans do not always make the most rational decisions. As studies have shown, 

even when logic and reasoning point in one direction, sometimes humans “walk” 

to the opposite route, motivated by personal bias or simply "wishful thinking." 

This paradoxical human behavior has resisted explanation by classical decision 

theory for over a decade. Scientists have shown that a quantum probability model 

can provide a simple explanation for human decision-making. In military, 

decision-making process is considered to be the most neuralgic one. With the 

recent interest in quantum computing and quantum information theory, there has 

been an effort to recast classical game theory using quantum probability 

amplitudes, and hence study the effect of quantum superposition, interference and 

entanglement on the agents’ optimal strategies. Apart from unsolved problems in 

quantum information theory, quantum game theory and decision –making, may be 

useful in studying quantum communication since that can be considered as a game 

where the objective is to maximize effective communication. This paper discusses 

the idea of using quantum theory to decision making. 
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1  Introduction  

The classical theory of decision making is based on the relevant theory 

formalized by Von Neumann and Morgenstern ([1] and [2]). In spite of its 

normative appeal, since then, many researchers have discovered many systematic 

violations of expected utility theory especially in experiments involving real 

human beings. Some well known works are the one of Allais ([2]), Edwards ([3]) 

and Ellsberg ([4]). The most significant conclusion of all these works is the 

verification that human beings’ decision does not meet the principles of the 

classical decision making principles rather than paradoxes. 

This paper presents, by a literature point of view, the co-said “Quantum 

decision theory” .The roots of the aforementioned theory are found in quantum 

theory; In this frame this work is trying to show how the strict mathematical 

structure of quantum mechanics can provide a general description of quantum 

measurements and of quantum information processing ([1,7,8,9,10]).  

In order to achieve this purpose, the following methodology is developing 

into ontological parts. In the first part the fundamentals of the game theory are 

presented; In the second one the basics of the quantum theory are also presented; 

in the third part the literature review of the works associated with the decision 

making by using quantum theory are noted. Finally some useful examples are 

outlined in order reader can understand the precise nature of the engagement. 

Conclusions and future research are closing this paper. 

 

 

 

 



D. Kalogera                                                                                                                                      63 

2 The Decision Making Theory (or Gaming Theory) 

Decision theory is theory concerning decisions. The subject is not 

considered to be a very unified one. To the contrary, there are many different ways 

to theorize about decisions, and therefore also many different research traditions. 

Instead, the starting-point of the modern discussion is generally taken to be John 

Dewey's ([1910] 1978, pp. 234-241) exposition of the stages of problem-solving. 

According to Dewey, problem-solving consists of five consecutive stages:  

(1) a felt difficulty,  

(2) the definition of the character of that difficulty,  

(3) suggestion of possible solutions,  

(4) evaluation of the suggestion, and  

(5) further observation and experiment leading to acceptance or rejection of the 

suggestion. 

Game theory attempts to mathematically model a situation where agents 

interact. The agents in the game are called players, their possible actions moves, 

and a prescription that specifies the particular move to be made in all possible 

game situations a strategy ([9]). That is, a strategy represents a plan of action that 

contains all the contingencies that can possibly arise within the rules of the game. 

In response to some particular game situation, a pure strategy consists of always 

playing a given move, while a strategy that utilizes a randomizing device to select 

between different moves is known as a mixed strategy ([9] and [8]).  

The utility to a player of a game outcome is a numerical measure of the 

desirability of that outcome for the player. A payoff matrix gives numerical values 

to the players’ utility for all the game outcomes. It is assumed that the players will 

seek to maximize their utility within the given rules of the game. Games in which 

the choices of the players are known as soon as they are made are called games of 

perfect information. A dominant strategy is one that does at least as well as any 

competing strategy against any possible moves by the other player(s). The Nash 

equilibrium (NE) is the most important of the possible equilibria in game theory. It 
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is the combination of strategies from which no player can improve his/her payoff 

by a unilateral change of strategy. A Pareto optimal outcome is one from which no 

player can obtain a higher utility without reducing the utility of another. Strategy 

A is evolutionary stable against B if, for all sufficiently small, positive ǫ, A 

performs better than B against the mixed strategy (1 −  �̨�)𝐴 +  �̨�𝐵. An 

evolutionary stable strategy (ESS) ([36]) is one that is evolutionary stable against 

all other strategies. The set of all strategies that are ESS is a subset of the NE of 

the game. A two player zero-sum game is one where the interests of the players 

are diametrically opposed. That is, the sum of the payoffs for any game result is 

zero. In such a game a saddle point is an entry in the payoff matrix for (say) the 

row player that is both the minimum of its row and the maximum of its column 

([9]). 

 

 

2.1 The known prisoner dilemma 

A two player game where each player has two possible moves is known as a 

2 ×  2 game, with obvious generalizations to larger strategic spaces or number of 

players. As an example, consider one such game that has deservedly received 

much attention: the prisoners’ dilemma. Here the players’ moves are known as 

cooperation (C) or defection (D). The payoff matrix is such that there is a conflict 

between the NE and the Pareto optimal outcome. The payoff matrix can be written 

as 

 

 

where the numbers in parentheses represent the row (Alice) and column (Bob) 

player’s payoffs, respectively. The game is symmetric and there is a dominant 

strategy, that of always defecting, since it gives a better payoff if the other player 

 Bob (C) Bob (D) 

Alice : C (3, 3)  (0, 5) 

Alice : D  (5, 0)  (1, 1) 
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cooperates (five instead of three) or if the other player defects (one instead of 

zero). Where both players have a dominant strategy this combination is the NE. 

The NE outcome {D, D} is not such a good one for the players, however, since if 

they had both cooperated they would have both received a payoff of three, the 

Pareto optimal result. In the absence of communication or negotiation we have a 

dilemma, some form of which is responsible for much of the misery and conflict 

through out the world. 

 

 

3 The quantum theory 

Quantum mechanics departs from classical mechanics primarily at the 

quantum realm of atomic and subatomic length scales. Quantum mechanics 

provides a mathematical description of much of the dual particle-like and wave-

like behavior and interactions of energy and matter. In advanced topics of 

quantum mechanics, some of these behaviors are macroscopic and only emerge at 

extreme (i.e., very low or very high) energies or temperatures. The name quantum 

mechanics derives from the observation that some physical quantities can change 

only in discrete amounts (Latin quanta), and not in a continuous (cf. analog) way. 

For example, the angular momentum of an electron bound to an atom or molecule 

is quantized. In the context of quantum mechanics, the wave–particle duality of 

energy and matter and the uncertainty principle provide a unified view of the 

behavior of photons, electrons, and other atomic-scale objects. 

𝑖ħ 𝜕Ψ
𝜕𝑡

= 𝐻�Ψ :time-dependent Schrödinger equation (general) 

𝐸Ψ = 𝐻�Ψ :time-independent Schrödinger equation (general) 

The simplest equation expression for a quantum particle prisoned in a box 

is presented in the following one. 

− ħ2

2𝑚
 𝑑

2𝜓
𝑑𝑥2

= 𝐸𝜓. 
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The probabilistic nature of quantum mechanics thus stems from the act of 

measurement. This is one of the most difficult aspects of quantum systems to 

understand. It was the central topic in the famous Bohr-Einstein debates, in which 

the two scientists attempted to clarify these fundamental principles by way of 

thought experiments. In the decades after the formulation of quantum mechanics, 

the question of what constitutes a "measurement" has been extensively studied. 

Newer interpretations of quantum mechanics have been formulated that do away 

with the idea of "wavefunction collapse" (see, for example, the relative state 

interpretation). The basic idea is that when a quantum system interacts with a 

measuring apparatus, their respective wavefunctions become entangled, so that the 

original quantum system ceases to exist as an independent entity. For details, see 

the article on measurement in quantum mechanics ([9]). 

Since its inception, the many counter-intuitive aspects and results of 

quantum mechanics have provoked strong philosophical debates and many 

interpretations. Even fundamental issues, such as Max Born's basic rules 

concerning probability amplitudes and probability distributions took decades to be 

appreciated by society and many leading scientists. Indeed, the renowned physicist 

Richard Feynman once said, "I think I can safely say that nobody understands 

quantum mechanics."([10]) 

The Copenhagen interpretation - due largely to the Danish theoretical 

physicist Niels Bohr - remains the quantum mechanical formalism that is currently 

most widely accepted amongst physicists, some 75 years after its enunciation. 

According to this interpretation, the probabilistic nature of quantum mechanics is 

not a temporary feature which will eventually be replaced by a deterministic 

theory, but instead must be considered a final renunciation of the classical idea of 

"causality". It is also believed therein that any well-defined application of the 

quantum mechanical formalism must always make reference to the experimental 

arrangement, due to the complementarity nature of evidence obtained under 

different experimental situations. 
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4 Decision Theory Anomaly’s Indications 

A very well known example having indications about a non rational way of 

deciding is the one given by researchers (Physics.org). In this example it is said 

that if you were asked to gamble in a game in which you had a 50/50 chance to 

win $200 or lose $100, would you play? Moreover in the referred study, 

participants were told that they had just played this game, and then were asked to 

choose whether to try the same gamble again. One-third of the participants were 

told that they had won the first game, one-third were told they had lost the first 

game, and the remaining one-third did not know the outcome of their first game. 

Most of the participants in the first two scenarios chose to play again (69% and 

59%, respectively), while most of the participants in the third scenario chose not 

to (only 36% played again). These results violate the “sure thing principle,” which 

says that if you prefer choice A in two complementary known states (e.g., known 

winning and known losing), then you should also prefer choice A when the state is 

unknown. So why do people choose differently when confronted with an unknown 

state? 

Suppose you receive the following questionnaire in an email: 

Imagine an urn containing 90 balls of three different colors: red balls, black 

balls and yellow balls. We know that the number of red balls is 30 and that the 

sum of the black balls and the yellow balls is 60. Our questions are about the 

situation where somebody randomly takes one ball from the urn (MIT Review , 

2012). 

- The first question is about a choice between two bets: Bet I and Bet II. 

Bet I involves winning ’10 euros when the ball is red’ and ‘zero euros 

when it is black or yellow’. Bet II involves winning ’10 euros when the 

ball is black’ and ‘zero euros when it is red or yellow’. The first question 

is: Which of the two bets, Bet I or Bet II, would you prefer? 

- The second question is again about a choice between two different bets, 

Bet III and Bet IV. Bet III involves winning ‘10 euros when the ball is red 
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or yellow’ and ‘zero euros when the ball is black’. Bet IV involves 

winning ‘10 euros when the ball is black or yellow’ and ‘zero euros when 

the ball is red’. 

The second question is: which of the two bets, Bet III or Bet IV, would 

you prefer? 

This are exactly the questions sent out by Diederik Aerts and pals at the 

Brussels Free University in Belgium. They received replies from 59 people which 

broke down like this: 34 respondents preferred Bets I and IV, 12 preferred Bets II 

and III, 7 preferred Bets II and IV and 6 preferred Bets I and III. That most 

respondents preferred Bets I and IV is no surprise. It’s been verified in countless 

experiments since the 1960s when the situation was dreamt up by Daniel Ellsberg, 

a Harvard economist (who more famously leaked the Pentagon Papers later that 

decade). The situation is interesting because, paradoxically, a branch of science 

called decision theory, on which modern economics is based, predicts that humans 

ought to make an entirely different choice. 

Here’s why. Decision theory assumes that any individual tackling this 

problem would do it by assigning a fixed probability to the chance of picking a 

yellow or black ball and then stick with that probability as they chose their bets. 

This approach leads to the conclusion that if you prefer Bet I, then you must also 

prefer Bet III. But if you prefer Bet II, then you must also prefer Bet IV. 

Of course, humans don’t generally think like that, which is why most 

people prefer Bets I and IV (and why modern economic theory has served us so 

badly in recent years). At the heart of the Ellsberg paradox are two different kinds 

of uncertainties. The first is a probability: the chance of picking a red ball versus 

picking a non-red ball, which we are told is 1/3. The second is an ambiguity: the 

chance of the non-red ball being black or yellow which is entirely uncertain. 

Conventional decision theory cannot easily handle both types of uncertainty. But 

various researchers in recent years have pointed out that quantum theory can cope 
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with both types and what’s more, can accurately model the patterns of answers 

that humans come up with. 

We looked at an example a couple of years ago that showed how quantum 

probability theory can explain other paradoxical behaviors in humans called the 

conjunction and disconjunction fallacies. Now Aerts and pals have done the same 

for the Ellsberg paradox by creating a model of the way humans think about this 

problem and framing it in terms of quantum probability theory. In fact, these guys 

go further. The point out that humans can also think in a way that is consistent 

with decision theory and therefore that this thinking must employ classical logic. 

So both classical and quantum logic must both be at work at some level in human 

thought. 

Maybe. The big surprise is that quantum theory works at all. Just why quantum 

probability theory should explain the strange workings of the human mind, 

nobody is quite sure. Neither is it yet clear how quantum probability theory will 

help to mould new ideas about economics and broader human behavior. But that’s 

why there is so much excitement over this new approach and why you’re likely to 

hear much more about it in future. 

Linda is 31 years old, single, outspoken, and very bright. She majored in 

philosophy. As a student, she was deeply concerned with issues of discrimination 

and social justice, and also participated in antinuclear demonstrations. 

Which is more probable? 

• Linda is a bank teller. 

• Linda is a bank teller and is active in the feminist movement. 

It turns out that 85 per cent of people choose the second option. But the 

probability of two events occurring together (in conjunction) is always less than or 

equal to the probability of one of them alone. 

This is the conjunction fallacy (humans show a similar problem over the 

probability of one event OR another being true, called the disjunction fallacy). The 

question is how to explain the problem humans have with this kind of reasoning. 
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Until now, psychologists have turned to classical probability theory to study the 

concept of probability judgment error. This allows them to build a mathematical 

model of human reasoning that allows for errors in judgment. But Jerome 

Busemeyer at Indiana University and buddies have a different take. They say that 

quantum probability theory leads to more realistic predictions about the type of 

errors humans make.“Quantum probability theory is a general and coherent theory 

based on a set of (von Neumann) axioms which relax some of the constraints 

underlying classic (Kolmogorov) probability theory,” say the team. 

That’s an interesting insight, to say the least. And if it pans out, it signals a 

fundamental shift in thinking about the brain. 

What Busemeyer and co are saying is that the principles of quantum 

information processing, including the ideas of superposition and interference, lead 

to better models of the way humans make decisions. 

What this idea needs, of course, is some kind of testable hypothesis that 

differentiates it from classical models. The team hint at this when describing how 

the principle of superposition applies to thinking about voting habits, when a voter 

has to choose between two candidates. 

According to classical theory, before the vote is cast, the voter is in a mixed 

state. But Busemeyer and co say that thinking about the voter in a superposition of 

states is a better model. That kind of thinking ought to lead to some testable 

predictions. Busemeyer and co are at pains to distance themselves from research 

that uses quantum mechanics to model the brain in an attempt to understand 

consciousness. and memory. “We are not following this line,” they say. Instead 

they keep their work far more abstract. 

 

 

4.1 Applying Decision Theory to Quantum Events 

A two state system, such as a coin, is one of the simplest gaming devices. If 

we have a player that can utilize quantum moves we can demonstrate how the 
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expanded space of possible strategies can be turned to advantage. Meyer, in his 

seminal work on quantum game theory ([10,11]), considered the simple game 

“penny flip” that consists of the following: Alice prepares a coin in the heads 

state, Bob, without knowing the state of the coin, can choose to either flip the coin 

or leave its state unaltered, and Alice, without knowing Bob’s action, can do 

likewise. Finally, Bob has a second turn at the coin. The coin is now examined and 

Bob wins if it shows heads. A classical coin clearly gives both players an equal 

probability of success unless they utilize knowledge of the other’s psychological 

bias, and such knowledge is beyond analysis by standard game theory ( 

[10, 11, 12]). 

To quantize this game, we replace the coin by a two state quantum system 

such as a spin one-half particle. Now Bob is given the power to make quantum 

moves while Alice is restricted to classical ones. Can Bob profit from his 

increased strategic space? Let |0 represent the “heads” state and |1 the “tails” state. 

Alice initially prepares the system in the |0 state. Bob can proceed by first 

applying the Hadamard operator, 

𝐻� =
1
√2

�1 1
1 −1� 

Putting the system into the equal superposition of the two states: (|0 +  |1)/√2. 

Now Alice can leave the “coin” alone or interchange the states |0 and |1, but if we 

suppose this is done without causing the system to decohere either action will 

leave the system unaltered, a fact that can be exploited by Bob. In his second 

move he applies the Hadamard operator again resulting in the pure state |0 thus 

winning the game. Bob utilized a superposition of states and the increased latitude 

allowed him by the possibility of quantum operators to make Alice’s strategy 

irrelevant, giving him a certainty of winning. 

We shall see later that quantum enhancement often exploits entangled states, 

but in this case it is just the increased possibilities available to the quantum player 
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that proved decisive. Du et al has also considered quantum strategies in a 

simplified card game that do not rely on entanglement ([10, 11]). 

 

 

5 Solving games using quantum theory 

Where a player has a choice of two moves they can be encoded by a single 

bit. To translate this into the quantum realm we replace the bit by a quantum bit or 

qubit that can be in a linear superposition of the two states. The basis states |0 and 

|1 correspond to the classical moves. The players’ qubits are initially prepared in 

some state to be specified later. We suppose that the players have a set of 

instruments that can manipulate their qubit to apply their strategy without causing 

decoherence of the quantum state. That is, a pure quantum strategy is a unitary 

operator acting on the player’s qubit. Unitary operations on the pair of qubits can 

be carried out either before the players’ moves, for example to entangle the qubits, 

or afterwards, for example, to disentangle them or to chose an appropriate basis 

for measurement. Finally, a measurement in the computational basis {|0, |1} is 

made on the resulting state and the payoffs are determined in accordance with the 

payoff matrix. Knowing the final state prior to the measurement, the expectation 

values of the payoffs can be calculated. The identity operator Iˆ corresponds to 

retaining the initial choice while 

𝐻� = 𝑖𝜎𝑥� �0 𝑖
𝑖 0� 

corresponds to a bit flip. The resulting quantum game should contain the classical 

one as a subset. We can extend the list of possible quantum actions to include any 

physically realizable action on a player’s qubit that is permitted by quantum 

mechanics. Some of the actions that have been considered include projective 

measurement and entanglement with ancillary bits or qubits. A quantum game of 

the above form is easily realized as a quantum algorithm. Physical simulation of 
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such an algorithm has already been performed for a quantum prisoners’ dilemma 

in a two qubit nuclear magnetic resonance computer ([13]). 

 

 

5.1 Military quantum decision theory 

In the modern warfare environment, quantum decision theory can contribute 

enough. Considering the simple example that two opponents exist and every one 

has just a single move. 

In traditional 2 ×  2 games where each player has just a single move, 

creating a superposition by utilizing a quantum strategy will give the same results 

as a mixed classical strategy. In order to see non-classical results Eisert et al ([14]) 

produced entanglement between the players’ moves. Keeping in mind that the 

classical game is to be a subset of the quantum one, Eisert created the protocol in 

Figure 1 for a quantum game between two players, Alice and Bob. The final state 

can be computed by 

�𝜓𝑓 >= 𝐽†��̂� ⊗ 𝐵��𝐽�𝜓𝑖 > 

where | 𝜓𝑖 =  |00 represents the initial state of the qubits and |𝜓𝑓 the final states, 

𝐽 is an operator that entangles the players’ qubits, and �̂� and 𝐵�  represent Alice’s 

and Bob’s move, respectively.  

 
Figure 1 

A disentangling gate 𝐽† is applied prior to taking a measurement on the final 

state and the payoff is subsequently computed from the classical payoff matrix. 
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Since we require the classical game to be a subset of the quantum one, of necessity 

𝐽 commutes with the direct product of any pair of classical moves. In the quantum 

game it is only the expectation value of the players’ payoffs that is important. For 

Alice (Bob) we can write 

< $ > = 𝑃𝑜𝑜|< 𝜓𝑓|00 > |2   +  𝑃𝑜1|< 𝜓𝑓|01 > |2    + 𝑃11|< 𝜓𝑓|11 > |2 

where 𝑃𝑖𝑗 is the payoff for Alice (Bob) associated with the game outcome 𝑖𝑗, 𝑖,𝑗 ∈ 

{0,1}. If both players apply classical strategies the quantum game provides 

nothing new. However, if the players adopt quantum strategies the entanglement 

provides the opportunity for the players’ moves to interact in ways with no 

classical analogue. 

A maximally entangling operator 𝐽, for an 𝑁 ×  2 game, may be written, 

without loss of generality ([15]), as 

𝐽 =   √2 ( 𝐼 +  𝑖 𝜎� 𝑥 ). 

An equivalent form of the entangling operator that permits the degree of 

entanglement to be controlled by a parameter 𝛾 ∈  [0,𝜋/2] is 

𝐽 = 1
√2

 (𝐼⨂𝑁� +  𝑖𝜎𝜒⨂𝛮� ) 

with maximal entanglement corresponding to 𝛾 =  𝜋/2. The full range of pure 

quantum strategies are any 𝑈� ∈ 𝑆𝑈(2). We may write 

𝑈�(𝜃,𝛼,𝛽) =  �
𝑒𝑖𝑎 cos (

𝜃
2

) 𝑖𝑒𝑖𝑎 sin (
𝜃
2

)

𝑒−𝑖𝛽 sin (
𝜃
2

) 𝑒−𝑖𝑎 cos (
𝜃
2

)
� 

where 𝜃 ∈  [0,𝜋] and 𝛼,𝛽 ∈  [−𝜋,𝜋]. The strategies 𝑈�(𝜃)  ≡  𝑈� (𝜃, 0, 0) are 

equivalent to classical mixtures between the identity and bit flip operations. When 

Alice plays 𝑈�(𝜃𝐴) and Bob plays 𝑈�(𝜃𝐵) the payoffs are separable functions of 

𝜃𝐴 and 𝜃𝐵 and we have nothing more than could be obtained from the classical 

game by employing mixed strategies. In quantum prisoners’ dilemma a player 

with access to quantum strategies can always do at least as well as a classical 

player. If cooperation is associated with the |0 state and defection with the |1 
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state, then the strategy “always cooperate” is �̂� ≡  𝑈�(0)  =  𝐼 and the strategy 

“always defect” is 𝐷� ≡  𝑈�(𝜋) =  𝐹�. Against a classical Alice playing 𝑈�(𝜃), a 

quantum Bob can play Eisert’s “miracle” move ([22]) 

𝑀� = 𝑈� �
𝜋
2

,
𝜋
2

, 0� =
𝜄
√2

�1 1
1 −1� 

that yields a payoff of $𝐵 =  3 + 2𝑠𝑖𝑛𝜃 for Bob while leaving Alice with only 

$𝐴 = 1/2(1 − 𝑠𝑖𝑛𝜃). In this case the dilemma is removed in favor of the 

quantum player. In the partially entangled case, there is a critical value of the 

entanglement parameter 𝛾 =  𝑎𝑟𝑐𝑠𝑖𝑛(1/ 𝑠𝑞𝑟𝑡(5)), below which the quantum 

player should revert to the classical dominant strategy 𝐷� to ensure a maximal 

payoff ([9]). At the critical level of entanglement there is effectively a phase 

change between the quantum and classical domains of the game ([17, 18]). 

In a space of restricted quantum strategies, corresponding to setting 𝛽 = 0 

in Equation (8), Eisert demonstrated that there was a new NE that yielded a payoff 

of three to both players, the same as mutual cooperation. This NE has the property 

of being Pareto optimal. Unfortunately there is no a priori justification to 

restricting the space of quantum operators to those of with 𝛽 =  0. 

With the full set of three parameter quantum strategies every strategy has a 

counter strategy that yields the opponent the maximum payoff of five, while the 

player is left with the minimum of zero ([13]). This result arises since for any 

�̂� = 𝑈�(𝜃,𝛼,𝛽) there exists a 𝐵� = 𝑈�(𝜃,𝛼,− 𝜋/2 −  𝛽) such that, 

(𝐴 ⊗ 𝐼)√2(|00⟩  +  𝑖|11⟩)  =  (𝐼 ⊗  𝐵)√2(|00⟩  +  𝑖|11⟩) . 

That is, on the maximally entangled state any unitary operation that Alice carries 

out on her qubit is equivalent to a unitary operation that Bob carries out on his. So 

for any strategy 𝑈�(𝜃,𝛼,𝛽) chosen by Alice, Bob has the counter 𝐷� 𝑈� (𝜃,−𝛼,𝜋/

2 − 𝛽), essentially “undoing” Alice’s move and then defecting. Hence there is no 

equilibrium amongst pure 2 quantum strategies. We still have a (non-unique) NE 

amongst mixed quantum strategies ([14]). A mixed quantum strategy is the 

combination of two or more pure quantum strategies using classical probabilities. 
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This is in contrast to a superposition of pure quantum strategies which simply 

results in a different pure quantum strategy. The idea is that Alice’s strategy 

consists of choosing the pair of moves 

�̂�1 = �̂� = �1 0
0 1� ,   �̂�2 = �𝑖 0

0 −𝑖� 

with equal probability, while Bob counters with the corresponding pair of optimal 

answers 

𝐵�1 = 𝐷� = �𝑖 0
0 𝑖 � ,   �̂�2 = �0 −1

1 0 � 

with equal probability. The combinations of strategies {𝐴𝑖 ,𝐵𝑗} provide Bob with 

the maximum payoff of five and Alice with the minimum of zero when 𝑖 =  𝑗, 

while the payoffs are reversed when i ≠ j. The expectation value of the payoffs for 

each player is then the average of PCD and PDC, or 2.5. There is a continuous set 

of NE of this type, where Alice and Bob each play a pair of moves with equal 

probability, namely 

�̂�1 = 𝑈�(𝜃,𝛼,𝛽) , �̂�2 = 𝑈�(𝜃,𝜋/2 + 𝛼,𝜋/2 + 𝛽), 

𝐵�1=𝑈�(𝜋 − 𝜃,𝜋/2 + 𝛽,𝛼) ,𝐵�2 = 𝑈�(𝜋 − 𝜃,𝜋 + 𝛽,𝜋/2 + 𝛼) 

If other values of the payoffs were chosen in Eq. (1), while still retaining the 

conditions for a classical prisoners’ dilemma ([12]), the average quantum NE 

payoff may be below (as is the case here) or above that of mutual cooperation 

([16]). In the latter case the conflict between the NE and the Pareto optimal 

outcome has disappeared, while in the former we have at least an improvement 

over the classical NE result of mutual defection. 

The prescription provided by Eisert et al is a general one that can be applied 

to any 2 × 2 game, with the generalization to 2 × 𝑛 games being to use 𝑆𝑈(𝑛) 

operators to represent the players’ actions. 

This method of quantization is not unique. Another way of achieving similar 

results is simply to dispense with the entanglement operators and simply 

hypothesize various initial states, an approach first used by Marinatto and Weber 

([17]) and since used by other authors ([25, 22]). The essential difference to 
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Eisert’s scheme is the absence of a disentangling operator. Different games are 

obtained by assuming different initial states. The classical game (with quantum 

operators representing mixed classical strategies) is obtained by selecting |𝜓 =

 |00, while an initial state that is maximally entangled gives rise to the maximum 

quantum effects. In references [21, 25] the authors restrict the available strategies 

to probabilistic mixtures of the identity and bit flip operators forcing the players to 

play a mixed classical strategy. The absence of the 𝐽† gate still leads to different 

results than playing the game entirely classically. 

Iqbal has considered ESS in quantum versions of both the prisoners’ 

dilemma and the battle of the sexes ([20]) and concluded that entanglement can be 

made to produce or eliminate ESSs while retaining the same set of NE. A classical 

ESS can easily be invaded by a mutant strategy that employs quantum means and 

that can exploit entanglement. Without the entanglement, the quantum mutants 

have no advantage. In these models the replicator dynamic takes a “quantum” 

form ([23]). 

 

 

6 Discussion 

Rationality is the only way in which the concept of ‘probability’ makes 

contact with the physical world. But probability is just relative frequency in the 

limit. If by ‘limit’ it is meant after an actual infinity of experiments, no-one can 

actually carry out an actual infinity of experiments. In practice, probabilities are 

predicted from the relative frequencies of outcomes in finitely many experiments. 

This isn’t automatically correct — probability theory itself predicts a finite 

probability that it will fail — so it is needed some account of why it’s rational to 

do it. Also, once these “probabilities” exist, what it actually do with them is use 

them as a guide to expectations about the future. Arguably, if we could do both 

we’d have a completely satisfactory analysis of probability. 
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Decision theory is a tool for decision-making under uncertainty. It doesn’t 

introduce a primitive concept of (quantitative) probability at all, incidentally — it 

just shows that rational decision-making requires us to assign probabilities to 

events, values to consequences, and then use them together to maximize expected 

utility. Decision theory provides a framework in which we can understand what is 

involved in deducing quantitative probabilities for quantum branching, and then 

shows us that this can be done satisfactorily even when questionable assumptions 

like addition are abandoned. Furthermore, the relevant links between quantum 

probability and non-probabilistic facts can then be satisfactorily established. Just 

as interesting are the implications of quantum theory for decision theory and the 

general philosophy of probability.  

On the technical side, it is noteworthy that the structure axioms required 

throughout classical decision theory can be very substantially weakened. To be 

sure, this is only because the mathematical structure of the physical theory (i. e. , 

QM)in which the decision problem is posed is so rich, but it seems far more 

satisfactory to have a richly structured physical theory (whose structure is clearly 

required on directly empirical grounds and in any case is ontologically on a par 

with any other postulate of physical theorizing) rather than introduce axioms 

governing rationality which are not self-evident and which fairly clearly are 

introduced purely to guarantee a representation theorem. 

On a more conceptual level, quantum mechanics seems to provide a novel 

route by which the concept of objective chance can be introduced. An account of 

how these chances connect with credence is available that is at least as secure as 

the frequency-based account — indeed, though we do not have a full derivation of 

the Everett Principal Principle, we have come close. What would be a simple way 

of seeing how all this is possible: how quantum mechanics can have these 

consequences for decision theory, and how the derivation of the quantum 

probability rule was possible in the first place? It’s long been recognised that the 

most fruitful guides to allocation of probability have been frequencies and 
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symmetries, but the latter has always been somewhat suspect, and it is easy to see 

why: how are we to choose which symmetries are respected by the chances? 

Appeal to the symmetries of the physical laws seems the obvious method, but 

obviously this just begs the question if those laws are probabilistic. Even for 

deterministic laws, though, the situation is problematic: for if the situation is 

completely symmetric between two outcomes, how is it that one outcome happens 

rather than the other? In classical mechanics, for instance, knowledge of the exact 

microstate of a flipped coin breaks the symmetry of that coin and tells us with 

certainty which side it will land. The symmetry only enters because we assume the 

coin’s microstate to be distributed randomly with 50% probability of leading to 

each result, but this introduces probability in advance rather than deriving it from 

symmetry. In a sense, then, this interpretation reverses the primacy of frequency 

over symmetry: the frequency of outcomes is an excellent guide to the symmetry 

of the state being measured, but ultimately it is the symmetries which dictate 

which events are equiprobable. But inevitably the question will be asked. If the 

principles of quantum information processing better describe the way humans 

make decisions, what does that imply about the way the brain works? In general, 

quantum extension of a standard (classical) game is not unique. Most of the 

published analyses explore completely positive trace-preserving maps as 

admissible quantum operations (tactics or strategies). This restriction is 

conventional but not necessary. The effect noise and decoberence and the use of 

ancillas and algorithmic aspects in quantum games are the most important areas 

that invite further research. Quantum game theory should turn out to be an 

important theoretical tool for investigation of various problems in quantum 

cryptography and computation, economics, or game theory even if never 

implemented in real world.  
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