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Abstract

In this study, we introduce a non-linear estimating approach for risk
factor loading. This new estimate is based on mixed vine copula with
the aim of separating upside and downside risk exposure. We provide
empirical evidence of Chinese stocks that copula-based method fits bet-
ter than OLS for single-factor model, then we present that adjusted
estimate adapted for time-serial weights performs better when fitting
factor loadings. For multi-factor model, copula-based method is also
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1 Introduction

Explaining cross-sectional differences of asset loading towards different risk

factors is one of most basic topics in finance world. Capital asset pricing model

proposed by Sharpe[7] and intertemporal pricing model proposed by Merton[4]

both imply linear relationship between asset return and economic risk factors,

as well as the most-widely used Fama-French model[5]. Risk factor loading is

the indicator for influence direction and influence scale.

Linear regression is one of most commonly-applicable methods in financial

analysis. The accuracy of this statistical method is dependent on the correct

depiction of relationship between response variable and explanatory variables.

The key concept behind traditional multivariate factor model is identifying

the dependence between a set of risk factors, which is usually non-linear for

actuarial financial data. As a result, the risk factor loading derived from linear

regression scope is not able to describe real risk impact on asset. The basic

least square method is based on normal distribution assumption. Generalized

linear model releases distribution assumption to exponential family including

binomial, Poisson, gamma and etc(Joe(2010)[18]). However, financial data is

usually skewed and fat-tailed, copula functions provide feasible methods to

remove the restrictions of exponential distribution and describing the depen-

dence structure in more flexible way(Killiches(2017) [17]).

Non-linear dependence modelling has become more and more popular within

the last decades and copulas is one of most widely applied as they allow vari-

ous marginal distribution assumptions and dependence structure according to

Sklar(1959)[3]. Vine copula is designed to model serial dependence (Bedford

and Cooke(2002)[2]) and Smith(2015)[1] studied how vine copulas model the

dependence structure of more than one time-series. In this paper, we explore

a new estimation method of risk factor loading based on mixed vine copula

function.Patton [12] modelled asymmetric correlation between stock returns by

copulas. According to the researches by Velu[15] and Czado [16],the impact

of risk factor is not asymmetry either and it is of importance to differenti-

ate the upside impact and downside impact. Mixed copula can separate the

comparable sensitivities to risks of upside tail, downside tail and middle part

by including Gumbel copula, Frank copula and Clayton copula in the mixed

model in this paper. As vine copula can effectively solve the dimension ex-
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plosion problem, it is specifically useful for multi-factor estimation without

requirement of any assumed distribution.

One approach to testing the specification of copula-based methodology is

comparing degree of fitting respectively. The main novelty of the estimation

approach presented in this paper is the mixed vine copula based estimates for

factor loadings with the aim of thoroughly describing the asymmetric relation-

ship between risk factor and asset return and it is further extended to model

multi risk factors. This estimation approach is superior to linear method as it

models a wider class of correlation with risk factors.

The paper is organized as follows. Section 2 briefly introduces the format of

mixed vine copula, and then we construct the estimates of unitary risk factor

loadings based on mixed copula in Section 3. Section 4 contains empirical

evidence of new estimation approach and compare it with linear regression

from the perspective of value at risk and R square. After that, we develop

a modified approach to estimate factor loading with self-adjusted time effect

in Section 5 and demonstrate and discuss how mixed vine copula is used to

explain factor model with multiple risks. Conclusions and implications are

offered in Section 6.

2 Mixed vine copula and risk factor loading

2.1 Mixed vine copula

Since in this paper we use mixed vine copula to model the relationship

between asset and risk factor, we first give a brief introduction to construction

of this type copula. Vine copula is defined as a flexible and applicable method

to construct high-dimensional copulas by approximating pair-wise copula with

connected vines. Kjersti and Claudia(2009)[?] used pair-copula decomposition

to exhibit complex pattern of dependence in the tails, which is named Canoni-

cal Vine Copula. In this paper, we use c-vine copula to model the dependence

for n assets as follows:

c(x1, ..., xn) =
n−1∏
j=1

n−j∏
i=1

cj,j+i|1,...,j−1(F (xj|x1, ..., xj−1), F (xj+i|x1, ..., xj−1)) (1)
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Equation 1 is the c-vine copula function and its likelihood function is Equa-

tion 2

L(c) =
n−1∑
j=1

n−j∑
i=1

T∑
t=1

log
[
cj,j+i|1,...,j−1,t(F (xj|x1, ..., xj−1), F (xj+i|x1, ..., xj−1))

]

(2)

In Equation 2,cj,j+i|1,...,j−1 is the copula function of xi and xj, and F (xj|·)
is the conditional marginal function of xj. Normal distribution is biased when

sample data is skewed. In this article, we use Generalized Pareto distribu-

tion(GPD) to estimate marginal distribution. R = (R1, R2, ..., Rn) is the set

of asset returns and Gθ
R is the marginal distribution. In spite of location θ,

scale σ > 0 and shape k ∈ R of GPD, dependence function D(u1, u2, ..., un) is

also needed to approximate multi-variant joint distribution of tails.

According to the maximum likelihood method to estimate the joint tail dis-

tribution by Ledford(1997)[?], we firstly hypothesize that time-series data of

asset returns R1 and R2 are time-independent. The dependence function Dθ
R of

asset return R beyond threshold θ represents the asymmetry of upside correla-

tion and downside correlation, where comprising Gumbel CopulaFrank Copula

and Clayton Copula. Gumbel Copula is sensitive to positive co-movements

and Clayton Copula is better explaining the downside correlation. Correla-

tion derived from Frank Copula is symmetrical and we include Frank Copula

in mixed-copula aiming at calibrating the relative upside-sensitive weight and

downside-sensitive weight.

Suppose bivariate asymmetric dependence relationship between asset re-

turn as:

Dθ
R =

3∑
i=1

wiCi(F
θ1
R1

(x1), F
θ2
R2

(x2)) (3)

The likelihood function of asset return series R1 and R2 within time window

T is:

L({R1,t, R2,t}t∈[1,T ] , φ) =
T∏

t=1

L(R1,t, R2,t, φ) (4)

2.2 Factor model

Given the important role of risk factor model in explaining asset return,
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correlation analysis is critical as it measures the covariance risk among invest-

ment portfolio. The multivariate correlation is getting more complicated as the

increasing of involved assets. Factor model offers a way to reduce dimensions

by focusing on sensitivities to common factors.

For stock i, Ri refers to its return in time t and Fj represents risk factor j.

If market contains N stocks which is subject to M common risk factors, factor

model is:

Ri = αi + β∗i,1F1 + β∗i,2F2 + · · ·+ β∗i,MFM + εi, i = 1, 2, ..., N (5)

where αi is excess return that cannot be explained by M risk factors and

εi is residuals which is irrelevant to risk factors. Sensitivities to risk factor

changes β∗i,j is risk factor loading. Linear risk factor loading estimation is

based on the following conditions: 1E(Fj) = 0, j = 1, 2, ..., M ; 2E(Fi, Fj) =

0, i, j = 1, 2, ..., M, i 6= j; 3E(εi) = 0, i = 1, 2, ..., N ; 4E(εi, εj) = 0, i, j =

1, 2, ..., N, i 6= j.

Theoretically, if multi-factor model can accurately reflect impact from com-

mon factors to asset return, it can describe and predict asset return. For real-

istic financial data like joint distribution between asset return and risk factor,

they usually do not follow elliptical distribution, as a result, the linear scope

is biased as it does not allow other complicated dependence relationship. Fur-

thermore, outliers have impact on linear factor loading estimation and copulas

are suitable for data fitting with extreme values. Consequently, copulas are

used for modelling risk factor loadings in following section.

3 New estimation approach

Risk factor loading (β)abstracts two aspects of information about relation-

ship between asset return and risk factor: change direction and sensitivity.

In order to be consistent with these two aspects, we decompose factor load-

ings into two parts. The first part is aimed to measure the possible upside

co-varying probability dup and downside probability ddown; the second part is

upside and downside sensitivity of asset to risk factor represented by eup and

edown. Hence Risk factor loading to factor j is shaped as equation 6.

β∗j = dupeup + ddownedown, j = 1, 2, ...,M (6)
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where the sign of |d| ≤ 1 refers to the change direction. When dup is posi-

tive(negative), asset up-tail return changes in the same direction of risk factor,

similarly when dup is positive, asset downside-tail return changes in the same

direction of risk factor. When the sign of d is negative, asset return and risk

factor return change in opposite direction. The absolute value of dup and ddown

reflects changing scale. We include Gumbel Copula, Clayton Copula and Frank

Copula in the mixed copula function as equation 7.

C(x, y) =
3∑

i=1

wiCi(x, y; αi),
3∑

i=1

wi = 1 (7)

Parameters αi, i = 1, 2, 3 in equation 7 are estimated using expectation

maximization algorithm(EM). Correlation coefficient τ derived from mixed

vine copula is to describe the direction of co-varying of asset and risk factor.

Although the new estimation approach does not include correlation in the

middle part, Frank Copula is still important for distinguishing the relevant

scale of upside correlation and downside correlation thorough weight allocation.

The weight wup = w1 and parameter α1 of Gumbel is estimated according to

equation 7, which are used to compute upside Kendall correlation coefficient

τup, and weight and parameters from Clayton (wdown = w2 and α2) are used to

compute downside Kendall correlation coefficient τdown. Then we obtain the

expression of dup and ddown in the following equation.

dup = wupτup

ddown = wdownτdown

(8)

Indicators dup and ddown depict direction and probability of co-varying be-

tween asset return and risk factor while eup(edown) is defined as delta up(down)

of asset return faced with risk factor increasing(decreasing) per unit. We firstly

define counts of same-direction moves c as:

c(τ) =
T∑

t=1

φt,j(τ) (9)

where

φt,j(τ) = max

(
0, sign

(
τ

Rt+1 −Rt

Ft+1,j − Ft,j

))
(10)

When τ = τup and τ = τdown, the sensitivities to risk factor j is eup and

edown respectively, which are expressed as follows:
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eup =

∑T
t=1

Rt+1−Rt

Ft+1,j−Ft,j
φt,s(τup)

c(τup)

edown =

∑T
t=1

Rt+1−Rt

Ft+1,j−Ft,j
φt,s(τdown)

c(τdown)

(11)

The sample window is T and φt,j only reveals parameters when asset moves

in the same direction of risk factor. To sum up, the final factor loading esti-

mation is presented in equation 12.

β∗j = wupτup

∣∣∣∣∣

∑T
t=1

Rt+1−Rt

Ft+1,j−Ft,j
φt,s(τup)

c(τup)

∣∣∣∣∣ + wdownτdown

∣∣∣∣∣

∑T
t=1

Rt+1−Rt

Ft+1,j−Ft,j
φt,s(τdown)

c(τdown)

∣∣∣∣∣
(12)

Equation 12 is constructed on mixed copula including upside-sensitive cop-

ula and downside-sensitive copula. By doing so, the new estimate does not

only involve relationship between asset return and risk factor, it also takes

extreme effect and asymmetry of asset-risk correlation into consideration.

4 Empirical result of single risk factor loading

estimation

We present the performance comparison between linear estimation and

mixed vine copula-based estimation approach proposed in the above section.

In order to testify its validity in different market condition. We select ten

stocks listed on Chinese stock market topped in valid data. Firstly, we examine

one-factor model for Fama-French three factors market, SMB and HML,

momentum factor Mom, reversal factor Rev and volatility factor V ol. The

sample window is from January 1995 to June 2018. The return data in this

study all refers to log return.

Table 1 reports the R-square and factor loading by linear OLS estima-

tion and mixed vine copula-based estimation in full sample window. Panel A

represents empirical result of daily return sample while panel B reports the

empirical result of monthly return sample. Column (1) lists sample stock code
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and column(2) to column(7) indicate R-square of each risk factor. From the

result, we can conclude that R-square computed by mixed copula estimation is

higher than that computed by linear regression for all risk factor. The increase

of R-square for marketSMB and HML is the largest with 12.65%24.14% and

22.49%. Volatility factor V ol model has least R-square improvement of 0.14%.

Monthly return sample data leads to similar result: R-square in market-factor

model has experienced maximum enhancement of 9.33%. It is because mixed

copula reflects asymmetric influence of risk factor to asset return.

Table 1: Full sample-window R2(%) Comparison for OLS and Copula Esti-

mates

Sample Stock Method market SMB HML Rev Mom V ol

Panel A. Estimation on daily return sample

SHANXI FEN WINE
OLS 1.91 0.13 0.14 0.93 0.93 0.30

Copula 2.80 30.77 0.61 1.28 1.21 0.44

CSD WATER SERVICE
OLS 4.53 0.58 0.12 0.18 0.18 0.19

Copula 10.89 32.68 91.22 0.25 0.26 0.20

NHPRECL
OLS 6.47 5.89 1.80 0.54 0.54 0.23

Copula 8.44 19.13 14.01 0.69 0.79 0.28

J.L.C
OLS 9.74 3.22 1.53 0.12 0.12 0.23

Copula 74.32 72.09 41.07 0.58 0.17 0.47

SCAC
OLS 11.90 5.66 2.50 0.13 0.13 0.17

Copula 17.00 10.61 16.85 25.01 0.60 0.34

FUDAN FORWARD
OLS 12.66 13.24 8.83 0.25 0.25 0.26

Copula 39.88 19.22 16.76 0.37 0.37 0.32

SXBN
OLS 1.12 1.66 0.90 0.47 0.47 0.17

Copula 4.94 13.00 7.46 0.97 0.55 0.25

BEZ
OLS 2.21 0.75 0.13 0.25 0.25 0.45

Copula 4.56 14.82 1.75 0.36 0.32 0.87

LANSHENG
OLS 8.01 2.03 0.97 0.43 0.43 0.48

Copula 22.19 42.77 0.98 0.71 0.84 0.66

HUAJIN
OLS 1.05 0.20 0.56 0.94 0.94 0.41

Copula 1.11 19.65 2.74 1.12 1.27 0.49
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Panel B. Estimation on monthly return sample

SHANXI FEN WINE
OLS 8.23 0.82 0.75 0.75 0.75 0.43

Copula 32.14 0.97 3.21 0.83 21.07 0.57

CSD WATER SERVICE
OLS 10.23 0.59 0.87 0.87 0.87 0.56

Copula 11.01 0.72 2.68 1.03 45.9 0.67

NHPRECL
OLS 9.33 0.4 0.19 0.19 0.19 0.13

Copula 13.36 0.58 4.92 0.39 38.22 0.36

J.L.C
OLS 4.18 1.08 0.33 0.33 0.33 0.28

Copula 6.24 1.25 2.08 0.42 24.67 0.36

SCAC
OLS 6.31 1.48 0.1 0.1 0.1 0.27

Copula 35.21 1.55 4.43 0.43 37.72 0.97

FUDAN FORWARD
OLS 7.54 1.21 0.2 0.2 0.2 0.3

Copula 20.87 1.33 4.49 0.22 30.67 0.4

SXBN
OLS 5.29 0.21 0.16 0.16 0.16 0.13

Copula 6.36 0.79 2.12 0.29 14.78 0.78

BEZ
OLS 10.17 0.16 0.16 0.16 0.16 0.78

Copula 23.97 0.75 5.37 0.49 49.4 1.15

LANSHENG
OLS 7.74 0.26 0.62 0.62 0.62 0.11

Copula 8.42 0.77 2.45 0.7 84.15 0.76

HUAJIN
OLS 10.16 1.26 0.78 0.78 0.78 0.9

Copula 14.92 1.74 1.62 1.13 25.03 0.95

In order to testify the robustness of mixed copula estimation approach

for risk factor loading, we further demonstrate R-square for rolling window.

The rolling window for daily data is 1 month and for monthly data is 12

months and empirical result is reported in table4. The usage of mixed vine

copula leads to better fitting for smb with 16.76% increase in R-square for daily

return, 42.18% increase for monthly return. As for volatility factor vol, there

is 16.76% enhancement in R-square for daily return, and only 1.02% increase

for monthly return. R-square for market factor market increases 13.6% for

daily return and 7.47% for monthly return.
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Table 4: Rolling sample-window R2(%) Comparison for OLS and Copula Es-

timates
Sample Stock Method market SMB HML Rev Mom V ol

Panel A. Estimation on daily return sample with 1 month rolling window

SHANXI FEN WINE
OLS 38.17 11.60 15.51 5.48 5.48 3.83

Copula 51.71 31.78 21.42 8.69 8.99 6.56

CSD WATER SERVICE
OLS 39.67 11.59 10.02 4.68 4.68 4.02

Copula 53.12 30.16 17.17 8.61 7.81 6.11

NHPRECL
OLS 42.88 13.54 9.87 5.14 5.14 4.34

Copula 56.57 37.06 19.19 8.89 8.57 6.98

J.L.C
OLS 37.88 19.04 11.67 4.57 4.57 4.05

Copula 50.95 44.54 19.44 8.52 9.1 6.83

SCAC
OLS 39.27 18.28 12.62 4.69 4.69 3.38

Copula 52.41 37.60 19.07 7.72 7.83 6.46

FUDAN FORWARD
OLS 44.76 23.34 15.41 5.78 5.78 4.66

Copula 59.78 43.52 24.01 9.26 9.08 7.53

SXBN
OLS 34.45 21.68 15.56 6.44 6.44 3.9

Copula 46.22 37.57 22.14 10.06 9.91 6.03

BEZ
OLS 36.66 15.23 11.56 5.46 5.46 3.91

Copula 49.86 21.62 20.86 9.05 8.55 67.35

LANSHENG
OLS 42.63 16.90 13.18 4.83 4.83 4.04

Copula 57.69 24.46 20.04 9.04 8.58 6.63

HUAJIN
OLS 44.65 14.14 11.82 6.68 6.68 4.09

Copula 58.73 24.62 19.07 10.78 10.29 6.34

Panel B. Estimation on monthly return sample with 12 month rolling window

SHANXI FEN WINE
OLS 2.13 1.79 1.42 1.75 1.61 4.3

Copula 14.31 4.96 4.94 9.88 10.94 5.82

CSD WATER SERVICE
OLS 2.15 3.31 2.00 1.78 2.06 1.85

Copula 13.04 3.82 2.7 12.82 10.8 2.29

NHPRECL
OLS 2.1 3.93 1.75 1.65 1.81 3.56

Copula 7.77 6.07 5.8 10.54 7.8 4.83

J.L.C
OLS 2.22 2.36 1.09 1.00 1.02 1.93

Copula 9.05 3.69 2.47 8.57 7.89 2.81
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SCAC
OLS 1.92 7.36 1.31 1.11 1.23 2.4

Copula 8.49 8.24 2.8 11.96 7.11 3.03

FUDAN FORWARD
OLS 1.26 2.07 1.19 1.15 1.29 2.45

Copula 5.01 26.3 2.5 7.5 27.55 3.27

SXBN
OLS 3.29 1.7 2.23 1.92 2.33 2.6

Copula 9.06 3.65 4.08 12.67 6.75 4.72

BEZ
OLS 2.17 1.83 1.24 1.54 1.59 3.12

Copula 10.96 2.45 5.74 5.86 8.51 4.07

LANSHENG
OLS 3.35 4.34 2.98 2.24 2.55 2.55

Copula 8.63 10.0 5.26 14.09 7.22 3.41

HUAJIN
OLS 1.9 2.58 1.06 0.65 0.88 2.85

Copula 10.82 7.88 3.76 7.24 1.05 3.59

5 Improved estimation with serial adjustment

During the period of high volatility, the volatile risk factor has more in-

tense influence on asset return. Factor loading computation is corresponding

to sample window selection. Taking 36-month window for example, when ex-

treme event happens in the last month(at time t), copula-based estimate is

exposed to average changing condition of 36-months and pays little attention

to unexpected change in the last month. Aiming at addressing this problem,

we improve the estimates by adding serial adjustment. The first step is to

divide the rolling window into N sub-window, the weight for sub-window n is

Wn = n/(n × (n + 1)/2). Latest sub-window is allocated with larger weight

and distant sub-window is allocated with smaller weight, allowing reflection of

impact from nearer extreme event. The improved factor loading estimation β†j
is expressed in equation13.

β† =
N∑

n=1

Wnβ
∗
n (13)

where

β∗n = wup,nτupn|eup,n|+ wdown,nτdown|edown,n|
Wn = n/(n× (n + 1)/2)

Table 5 provides average R-square of listed stocks for different risk fac-

tors by adjusted mixed copula based estimates. Row (1) to row (4) reports
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respective R-square for 3 sub-window, 5 sub-window, 8 sub-window and 10

sub-window. The comparison result shows that when dividing sample peri-

ods into 5 sub-windows, the fitting effect is best. This is because too few

sub-windows with smaller sample data per window is difficult to describe real

dependence structure while too many sub-window is exposed to data noise. In

the following examination, we all divide the rolling window into 5 groups.

Table 5: Averaged R2 for different sub-windows and risk factor

Sub-window market SMB HML Rev Mom V ol MC MCS

3 0.244 0.009 0.030 0.010 0.206 0.009 0.009 0.009

5 0.272 0.045 0.054 0.045 0.212 0.044 0.032 0.042

8 0.252 0.008 0.037 0.007 0.233 0.008 0.004 0.007

10 0.221 0.079 0.093 0.073 0.182 0.079 0.064 0.077

Adjusted estimation method has a better explanatory effect to risk factor

loadings because when risk factor undergoes extreme changes, the adjusted

method is more sensitive to latest abnormal changes and mirrors it in factor

loading. In order words, adjusted approach better explains the risk condition.

It is of significance as abnormal changes in risk factor is usually companied

with abnormal changes in asset price. With the purpose of testifying the fitting

effect for extreme events, we compute VaR and CVaR with 0.95 confidence level

and compare it with historical VaR and CVaR. Given historical return Ri for

stock i, its distribution function is FRi
. Assume the fitted asset return is R̂i

with distribution FR̂i
. The measurement of VaR and CVaR at confidence level

α ∈ (0, 1) is as follows:

V aRα(R) = max(Ri : FR(r) ≤ α)

CV aRα(R) = E[r|r < V aRα(R)]
(14)

The empirical result is represented in table 6. Both VaR and CVaR com-

puted from fitted return by copula method and adjusted copula method are

closer to historical value than linear regression. Furthermore, copula estimates

after serial adjustment has a better fitting effect for risk value since it captures

latest extreme risk event by over-weighting.
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Table 6: Comparion of VaR and CVaR by Different Estimates

VaR Comparison with 0.95 Confidence Level

Sample Stock Code Historical Linear Copula Adj. Copula

SHANXI FEN WINE 0.0455 0.0378 0.0448 0.0524

CSD WATER SERVICE 0.0456 0.0405 0.0434 0.0485

NHPRECL 0.0487 0.0355 0.0437 0.0569

J.L.C 0.0553 0.0364 0.0468 0.0657

SCAC 0.0547 0.0357 0.0529 0.0719

FUDAN FORWARD 0.0531 0.0371 0.0482 0.0642

SXBN 0.0533 0.0452 0.0501 0.0582

BEZ 0.0568 0.0481 0.0538 0.0624

LANSHENG 0.0503 0.0385 0.0456 0.0574

HUAJIN 0.0524 0.0522 0.0523 0.0525

CVaR Comparison with 0.95 Confidence Level

Sample Stock Code Historical Linear Copula Adj. Copula

SHANXI FEN WINE 0.1821 0.0895 0.0979 0.1905

CSD WATER SERVICE 0.1542 0.0650 0.1461 0.2352

NHPRECL 0.1368 0.0616 0.0675 0.1427

J.L.C 0.1290 0.0637 0.0947 0.1599

SCAC 0.1175 0.0591 0.0722 0.1306

FUDAN FORWARD 0.1148 0.0582 0.0623 0.1190

SXBN 0.2539 0.0977 0.1109 0.2672

BEZ 0.2091 0.0925 0.1187 0.2354

LANSHENG 0.1385 0.0670 0.0819 0.1534

HUAJIN 0.2708 0.1189 0.1302 0.2821

6 Multiple risk factor estimation

Assuming R is the stock return as dependent variable, risk factors F1, F2, ..., Fm

as independent variables, then multi-factor regression model have m + 1 vari-

ables. The variable set is {R, F1, F2, ..., Fm}. According to the definition of con-

ditional copula, the conditional density function on the condition (F1, F2, ..., Fm) =

(f1, f2, ..., fm) is:

h(r|f1, f2, ..., fm|α) = g(R; α0)×
m∏

i=1

cr,Fi|Fj
(GY |Xj

(r|fj), Gi|Fj
(fi|fj); φ) (15)
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where α is unknown parameter vector and GY |Xj
are conditional distribution

function on the condition Fj = fj; cr,Fi|Fj
is the conditional mixed copula den-

sity function and φ is the parameters to be estimated. The mixed copula based

multi-factor regression model for R is H(f1, f2, ..., fm|α) that is integral of r

with conditional density function h(r|f1, f2, ..., fm|α). The expression of mixed

copula based multi-factor regression model H(f1, f2, ..., fm|α) is equation 16.

H(f1, f2, ..., fm|α) =

∫
rh(r|x1, x2, ..., xm; α)dr (16)

Parameter estimation in equation 16 includes parameters related to de-

pendence structure and related to distribution. We use maximum likelihood

approach for parameter estimation, the likelihood function is:

L(α) =
T∏

t=1

h(rt|f1,t, f2,t, ..., fm,t; α) (17)

The estimated mixed copula parameters between asset return and each

risk factor are reported in table 7. Dependence function among risk factors is

also required for multi-factor regression. Table 8 summarizes the parameter

estimates between market risk factor and other risk factor. To obtain the

final factor loading of multi-factor copula regression, we evaluate dependence

structure of every pair-wise risk factor and asset return.

Table 7: Mixed Copula Parameter Estimates between Asset Return and Risk

Factor
Copula market SMB HML Rev Mom V ol MC MCS

Kendall τ

clayton 0.390 0.153 0.366 1.72E-07 0.383 7.25E-07 7.25E-07 2.66E-07

frank 0.405 0.073 0.414 1.26E-07 0.386 0.093 1.36E-06 7.63E-12

gumbel 0.603 -0.199 0.416 -0.535 0.532 0.029 -0.106 -0.090

α

clayton 1.277 0.362 1.154 3.44E-07 1.241 1.45E-06 1.45E-06 5.31E-07

frank 1.680 1.079 1.706 1.000 1.628 1.103 1.000 1.000

gumbel 8.009 -1.851 4.386 -6.418 6.350 0.265 -0.959 -0.819

One important indicator measuring regression effect is the distribution of

error term. If majority of asset return as dependent variable is interpreted by
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Table 8: Mixed Copula Parameter Estimates between Market Risk and Other

Risk Factor
Copula SMB HML Rev Mom V ol MC MCS

Kendall τ

clayton 0.268 0.409 1.65E-07 0.620 7.25E-07 7.25E-07 7.25E-07

frank 0.174 0.577 1.40E--07 0.601 1.36E-06 1.36E-06 1.36E-06

gumbel -0.473 0.663 -0.708 0.744 -0.255 -0.119 -0.131

α

clayton 0.732 1.383 3.31E-07 3.261 1.45E-06 1.45E-06 1.45E-06

frank 1.211 2.364 1.000 2.506 1.000 1.000 1.000

gumbel -5.259 9.910 -11.787 13.733 -2.427 -1.083 -1.200

multiple risk factors, error term of the multi-factor regression is assumed to

be normal distributed, otherwise the included risk factors in regression cannot

explain asset return effectively. So we analyse MSE under different quantiles

as a measure of fitting effect, which is reported in Table 9.

Panel A in table9 reports MSE of ten sample stocks for linear regression

and Panel B reports MSE for multi-factor mixed copula regression. For almost

all sample stocks, copula regression better explain asset returns than linear

regression because mixed vine copula allows simulating correlated relationship

by different dependence forms and distribution assumptions. The asymmetric

influence of risk factors to asset return and intersect influence between risk

factors are depicted by copulas.

7 Conclusion

Factor model is an useful and commonly-applicable method for analysing

influence of various risk factors to asset return, which can be calibrated by

adding relevant risk factors. The most widely estimation approach is linear

regression so the factor loading(regression scope) reflects linear relationship

between asset return changes and risk factors changes. Nevertheless, asset

return data and other financial data used for risk factor computation is usually

not normal distributed so the dependence structure can be in other forms and
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Table 9: MSE of Regression Error Term by Different Quantile

Panel A.Multi-factor Linear Regression

Sample Stock Code 0.5 0.1 0.05 0.01

SHANXI FEN WINE 7.850 5.459 5.372 5.146

CSD WATER SERVICE 3.896 2.719 2.672 2.550

NHPRECL 3.920 2.728 2.682 2.550

J.L.C 7.984 5.710 5.642 5.393

SCAC 7.984 5.710 5.642 5.393

FUDAN FORWARD 7.564 5.329 5.266 5.105

SXBN 7.552 5.308 5.249 5.095

BEZ 7.782 5.499 5.434 5.229

LANSHENG 6.251 5.661 5.648 4.763

HUAJIN 4.317 4.193 3.266 3.784

Panel B.Multi-factor Copula Regression

SHANXI FEN WINE 11.329 6.344 6.278 5.738

CSD WATER SERVICE 4.728 5.591 5.527 4.868

NHPRECL 3.323 0.860 0.832 0.534

J.L.C 3.232 1.141 1.087 0.830

SCAC 3.616 1.232 1.178 1.020

FUDAN FORWARD 4.846 2.448 2.404 2.254

SXBN 4.434 3.949 3.908 3.718

BEZ 3.536 1.300 1.246 1.096

LANSHENG 3.574 1.566 3.745 2.751

HUAJIN 2.514 2.590 1.225 1.351

rather complicated.

Regarding of the problem of asymmetry, we construct a new factor loading

estimate using mixed vine copula by separating the upside and downside co-

varying direction and sensitivities. Empirical evidence is presented by ten

Chinese stocks with longest valid return data. We first testify and compute

factor loadings estimates using copula-based method and linear regression,

by comparing the R2 we find out the copula-based method offers a better

fitted value for all sample in both constant full sample window and rolling

sample window. By examined daily returns and monthly returns, we obtain

similar result: risk factor loading is more accurately estimated by copula-based
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method.

During period of high volatility, the volatile risk factor has more intense

influence on asset return. Factor loading computation is corresponding to

sample window selection and our constructed estimates only measure averaged

effect. With the aim of addressing this problem, we improve the estimates

by adding serial adjustment. The improved factor loading estimate better

interprets extreme changes of factors so it more accurately depicts assets value

condition, supported by comparison result of simulated value of VaR and CVaR

by different estimates. Finally, we extend single factor model to multi-factor

model by evaluating the pair-wise dependence structure and distribution of

factors and between factors and asset return.

Our result have implications for risk factor analysis theoretically and em-

pirically. Factor model is useful for understanding the formation of asset return

and the main contribution of this paper is better explaining the asymmetric

influence of different risk factors on asset return and further better predict

future asset return.
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