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On the fractional Black-Scholes market
with transaction costs

Ehsan Azmoodeh!

Abstract

We consider fractional Black-Scholes market with proportional trans-
action costs. When transaction costs are present, one trades periodically
i.e. we have the discrete trading with equidistance n~! between trading
times. We derive a non trivial hedging error for a class of European
options with convex payoff in the case when the transaction costs coef-
ficients decrease as n~(1=#)_ We study the expected hedging error and

asymptotic behavior of the hedge as Hurst parameter H approaches %
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1 Introduction

In fractional Black-Scholes market, the noise is modelled by geometric frac-
tional Brownian motion instead to Brownian motion in classical Black-Scholes

market. It is known that the market admits arbitrage opportunities without
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transaction costs with continuous trading. Guasoni [10] showed that, if one
considers such financial markets with proportional transaction costs, then ar-
bitrage opportunities disappear. In [11], the authors studied a more general
formulation of similar financial markets with proportional transaction costs.

They also find a super replication price for a class of European options.

The motivation of this study comes from the recent work by Azmoodeh
et. al. [2]. There we studied a hedging problem for European options with
convex payoff in fractional Black-Scholes market with Hurst parameter H > %
We assume that the market is frictionless and continuous trading is possible.
Then any European option with convex payoff can be hedged perfectly. More-
over, hedging strategy and hedging cost (see [3]) are given explicitly. Simply
speaking we showed that the classical chain rule holds for convex functionals of
geometric fractional Brownian motion. Moreover, it is shown that the wealth
process is a limit of Riemann-Stieltjes sums almost surely. This makes our
model more interesting from financial point of view (see [6] and [21]).

European call option with strike price K serves as a motivating example

for us. In this case the stop-loss-start-gain strategy

u = Lis,> K}

is self-financing replication strategy in our model. Note that this replicating
strategy is not self-financing in the classical Black-Scholes market with stan-
dard Brownian motion. This strategy is of unbounded variation, and hence it
is not practical for our model with proportional transaction costs with contin-
uous trading. One possibility is to trade periodically i.e. trade in discrete and

equidistant trading times, and the level of transaction costs is the function
k= ky = kon=(=1)

of the number of trading intervals. This is similar to Leland [15] in the case of

classical Black-Scholes model with transaction costs.

Leland suggests a way to include proportional transaction costs in classical
Black-Scholes market. Namely, over each periodical trading subinterval, the
trader follows the delta hedging strategy computed at the left point of the
trading subinterval with a modified volatility. The modified volatility depends
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on the original volatility and the number of trading intervals (see [14]). Leland

remarked that when transaction cost coefficients k,, decrease as
kn = konia, o € (0, —],

then price of the modified strategy approximately hedges the option payoff at
terminal date as the length of trading intervals tends to zero (see [16] and [14]
for more details).

The paper is organized as follows. Section 2 includes main results. Also
the description of the market model in precise way is given. Section 3 contains
discussion and conclusion with emphasis on specific example of European call
option. The paper ends with proofs and appendixes in the sections 4 and 5

respectively.

2 Main Results

Consider the following fractional Black-Scholes market, i.e. the two-assets

market model consists of :

(i) Riskless asset (bond), B, = 1; t € [0,7] which corresponds to zero

interest rate.

(ii) Risky asset (stock) whose price is modeled by geometric fractional Brow-
nian motion
St = SoeBg{; t e [O,T],

where B¥ = {B['},cp07 is a fractional Brownian motion with Hurst

1
parameter H > .

Motivated by [2], we define the class L., of payoff functions consists of all

finite linear combination of convex or concave functions, i.e.

n
Leon = {f = Z a; f; : fi; are convex or concave functions ,1 <i<n,n € ]N}.
i=1

Then the main result of 2] says that the following Ito formula
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F(S1) = £(S0) + / F(S)dSy | € Loom 1)

holds almost surely. Inspired by (1), we define the following class of stochastic

processes

Acon = {u = {w}repor] : w = f_(S;) for some function f € Loy }-

In language of stochastic finance, Ito formula (1) means that all European
options with terminal payoft f(S;) can be hedged exactly with delta hedging
strategy f_(S;). Moreover one should pay the hedging cost f(S;) for such
exact hedge.

Remark 2.1. It is worth to mention that the stochastic integral in the right-
hand side (1) is understood as a limit of Riemann—Stieltjes sums almost surely,

1.€.

n

T
S S S0 =5p) 2% [ f(spas, w=t @

1=0

2.1 Optimality of the class A,

Fractional Brownian motion is not a semimartingale, when H # % There-

fore fractional Black-Scholes market admits arbitrage with continuous trading.

Example 2.2. [Shiryaev arbitrage] It is well known that fractional Brow-

nian motion has zero quadratic variation, when H > % Then the classical

change of variables formula tmplies that

(Sp—1)2 = /0T2(St — 1)ds,

Therefore the strategy u; = 2(S; — 1) € Acon @5 a admissible strategy that is

arbitrage.
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Remark 2.3. We remark that the class Acon of trading strategies is rel-
atively big so that contains the strategies of unbounded variation. A typical

example is the stop-loss-start-gain strategy

Fo(S) = sk}

for f(z) = (x — K)* corresponding to European call option with strike price
K.

For trading strategy u € A.,,, we define the process

t
Vi(u) :/ usdS te (0,77,
0

where according to remark (2.1), stochastic integral is understood in pathwise
manner as limit of Riemann-Stieltjes sums. The financial meaning of Vp(u) is

the total loses or gains of the trading strategy w.

The main result of the subsection deals with super replication price of

European options in the fractional Black-Scholes market.

Theorem 2.4. Consider an European option with payoff f(St) where f €
Leon in the fractional Black-Scholes market. Then super replication price
p(f(ST)), in the class Acon of possible trading strategies equals to f(Sy). More

precisely

p(f(Sr)) =inf{z : x+ Vy(u) > f(Sr) for some u € A}
= f(S0)-

2.2 Limit behavior under transaction costs

In this subsection we assume that the terminal trading time 7" = 1 and
f IR — IR is a convex function with positive Radon measure p as its sec-
ond derivative. For each n € IN, we divide the trading interval [0,1] to n

subintervals [t |, "] where

o=

)

— =i, 1=20,1,...,n.
n
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Consider the discretized version of delta hedging strategy given in (1)

Or = f(Sp an ,m(t); e (0,1].
=1

In the presence of proportional transaction costs, the value of this portfolio

at terminal date with initial capital f(Sp) is

1 n
Vi(6") = £(S0) + / 0rdS, — kS S |f(Se)— /(S )l ()
=1

Here it is assumed that the transaction costs are ”two-sided” i.e. buying
and selling are equally charged and transaction costs coefficient k£ is a function

of the length of trading intervals in the shape

k=ky,=kon "1 ky>o0.

Remark 2.5. Note that it is assumed that there is no transaction costs at

time t = 0 when the trader enters to the market.

The following main result of this subsection studies limit behavior of the

payoff of delta hedging strategies under proportional transaction costs.

Theorem 2.6. Assume the level of transaction costs k = ky, = kon~ (1),

where kg > 0. Then
IP- lim Vi(0") = f(S;) —J,

n—00

3 = J(ko) = \/gko/R/ol S, (Ina, dt)u(da).

and the inner integral in the right hand side is understood as limit of Riemann-

where

Stieltjes sums a.s.

When the number of portfolio revision increases fast enough or equally
saying, the transaction costs coefficients k,, decrease faster, we have the perfect

replication in the limit, i.e. we have the following result.

«Q

Corollary 2.7. Let the level of transaction costs k = k, = kon™" where

a>1—H, ky>0. Then

IP- lim V4(0") = f(S\).

n—0o0
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Remark 2.8. Clearly, the hedging error

J=J(ko): = \/gko /R/01 S" (Ina, dt)pu(da)
= \/gko/RalH(lna, [0, 1])p1(da)

1s positive a.s. and strictly positive on a set of positive probability. So with pro-
portional transaction costs, the discretized replication strateqy asymptotically
subordinates rather than replicate the value of conver European option f(S7)

and the option is always subhedged in the limit.

Remark 2.9. The limiting hedging error J = J(kg) is small for small values

of fized proportional transaction costs coefficient k.

3 Discussion and conclusion

3.1 The case European call option

Consider European call option with corresponding convex function f(z) =
(x — K)*. The approximating wealth process can not hedge perfectly the
option payoff (S; — K)* and limiting hedging error takes the form

J = KI*(InK,[0,1)).
So, it is interesting to examine the expected hedging error
E(J) = KE("(InK,[0,1]))

K 1t*H { Ly 2 K}dt
= — expi—z n .
\/271' 0 2

The graph of the expected hedging error as a function with respect to variables
strike price K and Hurst parameter H is plotted in below which points out
that the strike price K = 1 is a critical point. The expected hedging error

tends to zero as strike price becomes bigger and bigger.
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Figure 1. Expected hedging error

3.2 Asymptotic behavior with respect to Hurst param-
eter H

Assume BY be a standard fractional Brownian motion with Hurst param-
eter H € (0,1). It is straightforward to check that when the Hurst parameter
H tends to Hy € (0,1), the finite-dimensional distributions of fractional Brow-
nian motions { B¥} tend to finite-dimensional distributions of B¥o. It follows

because of convergence of covariance functions and by
E|B — B]'|* = |t — s|*"

and Billingsley criterion (see [5]) we conclude that the family of laws of the
fractional Brownian motions { Bf } converge in law in the space C[0, T] of con-
tinuous function on the interval [0, 7] to that of B,

Moreover, the following theorem shows that the same holds for the family
of local times {I”, H € (0,1)} of the fractional Brownian motions { B*}.

Theorem 3.1. [13] The family {1, H € (0,1)} of local times of the frac-
tional Brownian motions {B¥ H € (0,1)} converges in law in the space
C([-D, D] x [0,T]), for any D, T > 0, to the local time I° of fractional

Brownian motion B, when H tends to H,.
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Now consider the family of fractional Brownian motions {B#  H € (3,1)}.
Denote Brownian motion B and its local time [(z,t) as the limit in law when
H tends to £ of corresponding fractional Brownian motions { B} and its local
times. Let S = Syexp{B} be geometric Brownian motion and f(S) be the
payoff of European call option in Black—Scholes market model. Then we have
that

Corollary 3.2. Assume the fized proportional transaction costs coefficient
ko = /% Then

lim ( lim V.(6")) = f(S.) — Ki(ln K, ),

Hi% n—+00
which limits take place in law in the space C[0,T].

Corollary 3.3. Assume the fized proportional transaction costs coefficient

ko = %\/g Then

which limits again take place in law in the space C[0,T].

4 Conclusion

It is known that geometric fractional Brownian motion with Hurst param-
eter H € (3,1) has zero quadratic variation process. Cheridito [7] uses this
fact to show pricing model based on it, admits arbitrage. Moreover in our
frictionless model in the case of European call option the formula (1) implies

that .
(Sp — K)* = (So— K)* + / s, S0
0

This indicates that out-of-money options are worthless. Moreover the hedging
strategy u; = 1yg,>Kk} is an arbitrage opportunity. On the other hand, consider

a frictionless pricing model with continuous price process

X, = Spexp{B/l +eW;} >0,
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where W is a standard Brownian motion independent of B¥. This process
has non-zero quadratic variation and fulfills all conditions of a recent result by
Bender et.al. [4]. Their result asserts that, this pricing model does not admit
arbitrage opportunities with reasonable trading strategies. This indicates that
the existence of non-zero quadratic variation is important for option pricing

based on no arbitrage.

Let f be a convex function with positive Radon measure p as its second
derivative. Consider continuous semimartingale X; = Xoe"* with local time
[x and X, € R,. By Ité-Tanaka formula (see [18], page 223) we have

FO0) = £+ [ £ axi+ 5 [ 1x(a 0 1))
— )+ [ £ X0+ 5 [ abwna,[0.1)p(da).

Hence our fractional Black-Scholes model with asymptotic proportional trans-
action costs has the same effect as the model which the stock price is modelled
by semimartingale X. In this sense there is a connection between transac-
tion costs and quadratic variation. We also refer the reader to monograph
[20, chapter 6] for the link between existence of non-zero quadratic variation,

[t0-Tanaka formula and transaction costs in financial markets.

5 Proofs

Proof of Theorem 2.1. To the contrary assume it is possible to superhedge
the European option f(Sr) with a less price and some trading strategy u €
Acon. Then there exist a positive real number ¢ > 0 and a function g € L.,
so that we have

T a.s. T,
£(S0) + / F(S)dS, = F(S0) S (F(So) —¢) + / g (S,)dS..
0 0
Applying Ito formula (1), we get

F(Sr) = F(So) < £(Sr) — F(So) + ¢ < g(Sr) — g(Sy).
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On the other hand, by continuity property of functions f and g at Sy, there
exists a 0 = §(Sp) such that when |z — Sy| < 4,

€

[f(@) = f(So)l <5 and |g(z) = g(So) < 5.

¢
2
Now set, 45 ={w € Q : Sr€ (Sy—2,5 +2)}. Then IP(A;) > 0 and

€ €
|f(ST) - f(So)| < 5 and |g(ST) - g(So)| < 5 on As.
Hence on the set A of positive probability, we have

—% 4 e S F(Sr) = F(So) +e < %

which is a contradiction.
Proof of Theorem 2.2. We can assume that the support of u is compact oth-

erwise one can consider auxiliary convex functions

£ (0)z + £(0), if 2 <0,
fn(@ =9 f(2), if0 <z <n,
fL(n)(x —n)+ f(n), ifx>n.

(see [2] for details). Since
s =10+ [ (0.
Va0 = F(50) + 37 (S )(Ser — S ) — ka3 S 1 (Sr) — £ (S )l
Therefore, we have
Vi(0") = f(S1) = I, — koI,
where

n 1
5= £ (Sp Sy~ Sy ,) - / 7(S)dS:,
=1 0

=AY S 1 (Se) = f(Se -

i=1
Note that I} — 0 almost surely by (2.1). It remains to study the behavior

of the second term I2. The representation (5) relates the left derivative of
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convex function in term I? to Radon measure of its second derivative. We

divide the proof in three steps, depending on the supp pu.

Step 1: supp p = {a}.
We can assume that p(a) = 1 and f_(z) = l{z~q). This follows from represen-
tation (5).

For any m > n,
m 1
‘Avln_H Zst?_1|1{5tm>a} — s >apl — / Sl (Ina, dt)‘ <
o1 J Jj—=1 0

1-H
A, ‘Zst;'illl{st;»a} = L atl = > Se, ) Lisim>ar = 1{st;ril>a}|‘
=1

j=1 jel(i)

+ ‘A}JH DS, D Wsmsay = s sapl = D S 17 (na, (8, t?])‘
=1

JEI(7) i=1
i 1
+ ‘ ZstzillH(ln a, (t;zlat?]) - A StlH(ln a, dt)‘
=1

- An,m + Bn,m + Cn;
where for each i = 1,2,..,n,I(i) = {j : t}* € (t}_,, 7]}

Obviously, lim,, ,+ C,, = 0, since ¥ (Ina, ) is increasing in ¢ and

M (z, (s,t]) = 1" (x,t) = 1" (x,5), s<t.

|Bn,m

AN Lisun>ap = Lisim >ap| = lH(lna(t;L_l,ty])‘_
jel()

<> S,
i=1
Therefore for each fixed n by Theorem B.1 as m — oo,

Pl (AL 37 (1m0 — Lise sl = 1 (s, (2, 27)]

m—r 00
JEIL(3)

=1IP- lim (AYNRYBY, (17, 17]) — 1" (lna, (t?_pt?])\ =0.

m—00 J=12"

Hence B,, ,, converges in probability to zero as m tends to infinity.
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n
1-H
|A"’m| < ZAW Z |St?—1 - St;’ilHl{St;.Da} o I{St;’ll>a}|
=1 JEI(@)
n
< Z sup |St?71 - Su|Arln7H Z |1{Stm>a} - I{Stm >a}|
=1 u€ () el J -1
n
P n n
— Z sup  [Sp | — Su|l® (Ina, (£ ,t7]) = A,.
i—1 UE_1,t7)

Fix € > 0. Then there exists (see [8], page 21) a partition 7, := {0 =t <
t) <--- <t =1} of interval [0, 1] so that

Osc(S, (ti_y, 1)) == sup |Sy—S,|<e foreachi=1,2--- ,m.
s,te(t]_q,t})
Forn e Nand m, = {t};i=0,1,--- ;n},set r=7m.Um, ={0=tr < --- <
t; = 1}. Therefore
OSC(S, (ti—lati)) = sup |St — Ss| < g, for t; € T.

s,te(ti_l ,ti)

Hence,

A, <> sup [Sh,, — Sl (Ina, (t; 1, 1))
ten ue(ti_l,ti)

< el (Ina,[0,1]).

So A, converges to zero almost surely as n tends to infinity.

Step 2: supp p = {ay, as, ..., a;}.

Before to show the convergence in this case we need the following simple

lemma.

Lemma 5.1. For x,y € R and positive numbers a, as, ..., oy we have

J

(Lysayy = Yasa;)) 5l = D [Lysa,y = Lisayyloy.

l l
=1 j=1
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Next we work with I?2.

=AY S [ (Se) = f(Se )]
i=1

l

" 1
1-H
= A7 S5 D sy = isgran)) = (s o) = sy <u) ) 11(0s)|
=1
1
2 Z(l{StPaj} - 1{5t?_1>“j})“(aj)‘

j=1

J=1
n
_ 1-H
- An z :Stzn—l
[

PR 1
T A}L " Z Se, ‘5 Z(l{st?_le} - 1{5ty<aj})/‘(aj)‘
i=1

J=1

By lemma 5.1 we see that

1 = l
An - iATIZ_H Z Stzn—l Z ‘1{St?>aj} N 1{St?—1>aj}‘u(aj)
=1

7j=1
[ n
1,
= §A711 N ulag) Y S L5 >0} = s >0
j=1 i=1

P 1
_> —
2 ¢

l
=

1 1
N(aj)/ Sy0* (In aj,dt) = 1/ / Sd* (Ina, dt)u(da).
0 2 JrJo

1

By a similar argument for the term B,, we conclude that

1
IP- lim I,f:// S (Ina, dt)pu(da).
R /o

n—00

Step 3: general case.

Let compact interval [a,b] contain the supp p and let P, be the con-
vex linear approximation of convex function f on the interval [a,b] based on
equidistant partition of interval [a, b] i.e. polygonal with vertices {(a+iA,,(b—
a), f(a+iA,(b—a))) }i%y. Define P,’s the same as f outside the interval [a, b)].
Note that outside of the interval [a, b] the convex function f is linear. Then

for m,n € IN we have

|IZ - J| < |IZ - In,m| + |In,m - Im| + |Im - J|:
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where

— AL sttn C(Si) = (Pu) (S )],

Im:// S (Ina, dt) ji, (da).
R /0

By the elementary inequality ||a| — |b]| < |a — b|, we have that

12— ILom| < AL HZ‘ _(Se) —f’_(St?))—(Pm)l_(St?_l)—fl_(St?_l))‘.

Now for fixed n, by Theorem A.4 the right-hand side converges to zero almost

surely as m tends to infinity. By simple calculations
1 1
/ StlH(hl a, dt) = / Stl{Bf:lna}dt
0 0
1
= / elnal{Bg{:lna}dt
0

= al(Ina, [0,1]).

It follows that

I, — J < ‘/}RalH(lna, 0, 1]) o (da) — /RalH(lna, [0, 1]) p(da)|-

By Theorem A.4 the right-hand side converges to zero almost surely as m
tends to infinity, since support of p is compact.
Finally, for fixed m by Step 2, we have that

IP- lim I, ,, = I,,.

n—o0

A Auxiliary results on convex functions

We recall some results on convex functions. First, recall that every convex
function f : R — R has a left-derivative f’ and a right-derivative f!.

The next theorem gives information about the left-derivative f’ and right-

derivative f!.
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Theorem A.1. [18] The functions f_ and fg_ are increasing, respectively
left and right-continuous and the set {x : f_(x) # f,(x)} is at most countable.

Moreover, the second derivative of a convex function f exists as a distribu-

tion, and first derivative can be represented in terms of the second derivative.

Theorem A.2. [18] The second derivative f" of conver function f exists
in the sense of distributions, and it is a positive Radon measure; conversely,
for any Radon measure i on R, there is a convex function f such that f' = p
and for any interval I and = € int(I) we have the equality

1
F@) = [ sena - utda) + ar, (1
I

where g s a constant and sgn x =1 if v > 0 and —1 if x < 0.

Remark A.3. If the supp(u) is compact, then one can globally state that
) 1

flie) =5 [ selo — apu(da )

up to a constant term.

Let f : R — R be a convex function. For each interval [a,b], let 7 = {a =
ap < aj < ... < a, = b} be a partition of the interval and

Il = max (a; — ai-).

A piecewise linear function through points (a;, f(a;)) is called a convez linear
approzimation of convex function f on the interval [a, b] based on the partition

.

Theorem A.4. Let [a,b] be a closed interval and {m,} be a sequence of

partitions of the interval [a, b] such that
|Tml] =0 as m — oo

where T, = {a1, Gz, ..., An(m) }-
Let P, be a convex linear approrimation of convex function f on the in-

terval [a,b] based on partitions m,,. Then we have

(i) On the interval (a,b) as m — oo

’

P, —f and (Pn)_ — f pointwise.
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1) For any bounded continuous function g we have

(i1) y g
/ gy, — gdu as m — 0o,
[a,b] [a,b]

where pi,, stands for Radon measure corresponding to the second deriva-
tive of Py,.

B Local time of fractional Brownian motion

The occupation measure related to fractional Brownian motion is defined
by

Tn(Ix U)=Mtel: B cU} = /1{356,]}(115
I

where I and U are Borel sets on time interval [0, 7] and the real line respectively
and A stands for Lebesgue measure. It is well-known that the occupation
measure has a jointly continuous density (local time) which is denoted by
1" (x,t) := 1" (z,[0,t]) and is Holder continuous in ¢ of any order a < 1 — H
and in z of any order 5 < % (for a survey article on the subject see Geman
and Horowitz [9]).

Let BY = {BX(t) }+cjo,r) be polygonal approximation of size A of B¥ i.e.
Bl is the polygonal lines which connect points {?(iA, BE(iA))} for suitable

running index 7. Set
Ce(B",[0,7)) ={t €[0,T): BA(t) =a and t?#iA for each index i}

and
NZ(BH7 [07T]) = #CZ(BHa [OaT])a

i.e. the number of level a crossing of BY over interval [0, 7]. Then we have

the following approximation for the local time I (a, ).

Theorem B.1. Assume BY be a standard fractional Brownian motion with
H € (0,1) and N&(B™ [0, T]) be the number of level a crossing of size A—
polygonal approzimation of BY. Then
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\/gAI‘HNg(BH,[O,T])—>lH(a,[0,T]) in L’ as A—0.

Proof. See [1], Theorem 5.
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