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A necklace algorithm to determine
the growth function
of trinucleotide circular codes
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Abstract

Circular codes are mathematical objects studied in combinatorics -
theoretical computer science, and theoretical biology. So far, there is no
close formulas allowing to determine the growth function (number and
list) of circular codes. This combinatorial problem can only be solved
by an algorithmic approach. We propose a new algorithm based on a
necklace proposition to determine the growth function of trinucleotide
circular codes, a trinucleotide being a word of 3 letters on a 4-letter
alphabet. This necklace algorithm, unique in its class, can be extended
in future to the analysis of codes, e.g. circular codes, containing words

greater than 3 letters and also over larger alphabets.
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1 Introduction

Comma free codes, a very particular case of circular codes, have been
studied for a long time, e.g. [7, 10, 11]. After the discovery of a circu-
lar code in genes with strong mathematical properties [1], circular codes are
mathematical objects studied in combinatorics - theoretical computer science,
e.g. [3, 2, 23, 27, 20, 21, 24, 25, 18, 26, 19, 5, 6, 22|, and theoretical biology,
e.g. [15, 29, 14, 8,9, 17, 13, 12, 28|.

So far, there is no close formulas to determine the growth functions (num-
bers and sets of words) of trinucleotide circular codes. The only way to solve
this combinatorial problem is the algorithmic approach. The determination
of growth functions of small classes of trinucleotide circular codes, e.g. the
99, 320 self-complementary trinucleotide circular codes [27] and the &~ 559 mil-
lion trinucleotide comma-free codes [20], can be obtained by using the classical
flower automaton algorithm [4]. The identification of the growth function of
the =~ 116 billion (10%) trinucleotide circular codes [18] among 1,100 billion
potential codes has required the developement of a new algorithm based on
a necklace proposition. Indeed, this problem has a computational complexity
with an order of magnitude significantly higher, more than 200 times, than
the determination of growth functions in the two previous cases. The necklace
algorithm, called NA, allows to solve such a combinatorial problem. It involves
several computer techniques based on a generated trinucleotide matrix, branch
pruning, parallelization and different implementation hints. The definitions of
the necklace algorithm NA are first presented in the one dimension case asso-
ciated to the trinucleotide lexicographical order and then extended to the two
dimension case associated to the trinucleotide conjugation classes. This NA
algorithm presentation allows not only to introduce the concepts progressively
but also to extend it in future to the analysis of codes, e.g. circular codes,
containing words greater than 3 letters and also over larger alphabets, either

by using a word lexicographical order or word conjugation classes.
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2 Preliminaries

The following definitions and propositions are classical for any finite set of
words on any finite alphabet [4]. We recall them for trinucleotides, i.e. words
of length 3 on a 4-letter alphabet. Let A, = {A,C,G, T} denote the genetic
alphabet, lexicographically ordered by A < C' < G < T'. The set of non-empty
words (resp. words) on Ay is denoted by AJ (resp. A}). The set of the 64 words
of length 3 (trinucleotides or triletters) over A, is denoted by A3.

Definition 2.1. A set X of words in A3 is a trinucleotide code if, for

!/

each T1,...,Tp, 2, ..., 2l € X, nym > 1, the condition xy -+ -z, = - -],

implies n =m and x; =z, fori=1,...,n.
Trinucleotide codes are read on a straight line.

Definition 2.2 ([16]). A trinucleotide code X in Aj is circular if, for
each Ty,..., Tp, T),..., 2, € X, n,m > 1, p € A}, s € A, the conditions
/

STy Tpp = ) -2l and xy = ps imply n = m, p = ¢ (empty word) and

xp = fori=1,...,n.
Trinucleotide circular codes are read on a circle.

Proposition 2.3 ([4]). A trinucleotide circular code cannot contain a word
of the form u® with u # €.

The periodic trinucleotides { AAA, CCC, GGG, TTT} cannot be in a trinu-
cleotide circular code. The set A3 is a trinucleotide code but not a trinucleotide

circular code.

Remark 2.4. Two trinucleotides v and v are conjugate if there exist two

words s and t such that uw = st and v = ts.

Proposition 2.5 ([4]). A trinucleotide circular code cannot contain con-

Jugate trinucleotides.

The conjugate trinucleotides ACG and CG A cannot be in the same circular

code.

Definition 2.6. The circular permutation map P : A3 — A3 permutes

circularly each trinucleotide lylyly as follows P(l1lyls) = lylsly. For example,



4 Necklace algorithm

P (AAC) = ACA. The kth iterate of P is denoted P*. This map on words is
also naturally extended to word sets: a permuted trinucleotide set is obtained

by applying the circular permutation map P to all its trinucleotides.

Remark 2.7. Therefore, if u and v satisfy P* (u) = v for some k, then u

and v are conjugate.

Definition 2.8. A trinucleotide circular code X in A3} is mazimal if for

each v € A}, x ¢ X, X U{x} is not a trinucleotide circular code.
The following lemma is very well known.

Lemma 2.9 ([4]). For any letter o, B, and for any circular trinucleotide
code X, then aaa ¢ X and the set {afv, fya, yaB}NX contains at most one

element and exactly one when X has 20 elements.

Remark 2.10. The conjugation class of the trinucleotide AAA has only one
element: AAA itself. Obuviously, this property is also true for the trinucleotides
CCC,GGG, TTT. Otherwise, each other trinucleotide belongs to a conjuga-
tion class having exactly three trinucleotides. Consequently, the non-periodic
trinucleotides, i.e. A3\ {AAA,CCC,GGG, TTT?}, are partitioned into ex-
actly 20 classes. Finally, any trinucleotide circular code X with 20 words is

mazximal.

Remark 2.11. The length | (number of words) of trinucleotide circular

codes varies between 1 and 20.

The set X of 20 trinucleotides identified in the gene populations of both

eukaryotes and prokaryotes is a maximal trinucleotide circular code [1].

3 Circular code propositions

Proposition 3.1. The number of trinucleotide circular codes of length 1 is

equal to 60.

Proof. Obvious. O
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Proposition 3.2 ([1]). The number of trinucleotide circular codes of length
20 is equal to 12,964,440.

Proof. This number was obtained in 1996 by using the flower automaton al-
gorithm (Table 2(d) in [1]). O

In order to compute the growth function of trinucleotide circular codes for
all lengths [ = 1,...,20, we extend the necklace definition [23].
li,lo, .. ly_1, 1y, ... are letters in Ay, dy,ds,...,d,_1,d,,... are diletters in

A2 and n is an integer satisfying n > 2.

Definition 3.3. Letter Diletter Continued Closed Necklaces (LDCCN ):
We say that the ordered sequence ly,dy,ls, do, ... dy 1,0y, dy,lry 1S @ neck-
lace (n+ 1) LDCCN for a subset X C A3 if lydy,lods, ..., l,d, € X and
dily, dols, ... dp_1ly, dplps1r € X and ly = lyyq.

Proposition 3.4 ([18]). Let X be a trinucleotide circular code. The fol-

lowing conditions are equivalent:
1. X 1is a trinucleotide circular code.
2. X has no necklace nLDCCN for any integer n € {2,3,4,5}.

Proposition 3.5. A trinucleotide code has a necklace 2LDCCN if and only
if it has a trinucleotide in L} = {AAA,CCC,GGG,TTT} or two conjugate
trinucleotides.

Table 1 in [18] gives the number Nb (/) of trinucleotide circular codes of
length [, { =1,...,20. The growth function has a minimum number NbMin =
60 at [ = 1 and a maximum number NbMax = 23, 403, 485, 556 at [ = 13.

Proposition 3.6 ([4]). Let X and Y be two trinucleotide codes with X C Y.
If X has an nLDCCN (i.e. is not circular) then Y also has an nLDCCN

(i.e. is also not circular).
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4 Necklace algorithm NA

4.1 The necklace algorithm NA in one dimension (lexi-

cographical order)
4.1.1 Principle of the necklace algorithm NA

We describe here a new algorithm based on the necklace concept, called NA,
to compute very quickly the growth function of trinucleotide circular codes, i.e.
their numbers and their lists of trinucleotides [18]. The total number NbPTCC
of potential trinucleotide circular codes PT'CC for all lengths [ = 1,...,20 is
NbPTCC = 3372 (7) x 3~ 1.1 x 10%2 (consequence of Proposition 3.5).
Generating all the combinations of trinucleotide codes and testing them to be
circular is time consuming, even for actual computers. The new algorithm NA
allows to identify the growth function of trinucleotide circular codes for all
lengths [ =1,...,20 in a few hours on a standard personal computer. A naive
algorithm would need several weeks on a personal computer.

The necklace algorithm NA is based on Propositions 3.4, 3.5 and 3.6:

e NA generates by construction trinucleotide codes without necklace
2LDCCN (Proposition 3.5). Thus, it avoids the 2LDCCN tests and
generates only NbPTCC trinucleotide codes instead of all possible trin-

ucleotide code combinations over A3, ie. 3570 (%) ~ 3.4 x 101,

o If NA identifies a trinucleotide code X with a necklace nLDCCN for a
given n € {3,4} then it classifies X as being not circular and avoids to
analyse the larger necklaces n' LDCCN for n' > n, n’ € {4,5} (Proposi-
tion 3.4).

e Trinucleotide codes are incrementally generated by increasing their lengths.
A trinucleotide code X; of length [, [ < 20, is constructed after the gen-
eration of (I — 1) trinucleotide subcodes X, of length m < [ contained
in X;,ie. X;C Xy C ---C X1 C X, which are circular. Indeed, if a
trinucleotide code X, has a necklace nLDCCN for a given n € {3,4,5},
i.e. is not circular, then any following larger code X; D X,, with [ > m
has also this necklace nLDCCN (Proposition 3.6) and thus, X is also

not circular. Therefore, all the trinucleotide codes X,, which are not
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circular allow to eliminate a huge number of greater trinucleotide codes
X; D X, which are not circular. Storing in memory all these trinu-
cleotide non-circular subcodes X,,, and testing their membership of all
larger codes X is (quite) impossible. Thus, NA uses a “branch pruning”
method to eliminate efficiently almost all trinucleotide codes sharing a

common trinucleotide non-circular subcode.

Furthermore, the algorithm NA will be be parallelized in order to benefit

from multicore processors.

4.1.2 Trinucleotide code generation

For simplification, the notations and definitions of trinucleotides are pre-
sented using the lexicographical order on A}, i.e. AAA < AAC < ---<TTT.
However, the algorithm NA is in fact based on conjugate classes of trinu-

cleotides (see Section 4.2) allowing to produce codes without
{AAA,CCC,GGG, TTT} and conjugate trinucleotides.

Notation 4.1. The ith trinucleotide T, T € A3, in the lexicographical order
is noted T, i.e. T' = AAA, T? = AAC, ..., T =TTT.

Definition 4.2. In the algorithm NA, a trinucleotide code
X, ={T%,1%,...,T%} of length I, | = 1,...,20, has [ distinct trinucleotides
T with T € A3 and iy < iy < -+ < 1.

A code X; = {T",T%, ..., T"} does not verify Definition 4.2.

Example 4.3. The trinucleotide code X3 = {T?% T3, T} is
{AAC, AAG, TTT} . The trinucleotide code
Yy ={T3 T T} = {AAG, AAC, TTT} is not considered.

Furthermore, a trinucleotide code X; of length [, [ = 1,...,20, is ordered

according to the list of its trinucleotides.

Notation 4.4. The jth code X, for a given length [, | = 1,...,20, in the
lexicographical order is noted le.

Example 4.5. XJ' = {T%, T3, T} < X§* = {T? T* T°} for | = 3 with
J1 < Jz2-
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Notation 4.6. The trinucleotide T at the position p, p=1,...,1, in a code
X, of length | is noted Tzf, i.€e. Tgi < Tzfj for1 <p <py <I.

Example 4.7. X, = {Tfl,...,T,ﬁ;ﬁ,...,:F;'l} with 1< j < 1.

The first (lower) code of length [, { = 1,...,20, is X} = {T},...,T}} and
the last (greatest) code of length [ is X;max(” = {1 sttt T
withp =1,...,land juax (1) = (614). However, recall that in the effective imple-
mentation of the algorithm NA (Section 4.2), jumax (1) = (%) x 3 (consequence
of Proposition 3.5).

Notation 4.8. A trinucleotide in the configuration T;‘Hp*l at position p,

p=1,...,1, is called “limit” trinucleotide Ty of a code X;.

Indeed, if a trinucleotide in a position p of a code X; is lexicographically
greater than the limit trinucleotide 79"~ then the code X cannot exist as
there is not enough greater trinucleotides to complete the positions p+1, ..., 1.

()

In particular, all trinucleotides of a code X lj“‘a" are limit trinucleotides.

Example 4.9. The code X3 = {1}, T3, TS} has no limit trinucleotide whereas
Y = {T} 193, T8} has two limit trinucleotides T3 and TS

Note that the limit trinucleotides decrease monotonically by 1 from the end
of the code.

Notation 4.10. The pth element of a code X;, p=1,...,1, is noted X; (p).
Example 4.11. If X3 = {T?,T3,T$*} then X3 (2) = T3.

Definition 4.12. A subcode X,,; of length m of a code X; of length | with
[ =1,...,20 and 0 < m < I, is defined by X,,; = {T",T*,..., T} where
X (p) = X, (p) withp=1,...,m. A subcode Xy, (m =0) is empty.

Example 4.13. The code X3 = {T2, T3, T9*} has three subcodes: Xo3 = {},
X1,3 = {TIZ} and X273 = {TIZ, T23}

Trinucleotide codes are sequentially generated by the function next (X l] ) =
Xf“. Note that next (le) is undefined for Xfmax(l). The function next (Xf) is
algorithmically based on backtracking which generates each X i7 1 by removing

some trinucleotides from Xj and pushing their immediate successors. Two
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subfunctions are defined. The subfunction pop (le ) = (Xf;}’ll, Tl‘”t) removes
(I —m) trinucleotides from a code X} to generate a subcode anfll with the
trinucleotide 7't = le (m + 1) being the last removed trinucleotide. The
subfunction push (Xﬁ:ll, Tl‘”t) = (Xﬂ:jrlu, Tl‘”t*l) pushes the successor of the
trinucleotide 7%t ie. T'*1 on a subcode anfll to generate a subcode
X;’;:fl’l. If (m+1) =1[, a complete new code, i.e. le+1, is generated. Note

that the push function also returns the pushed trinucleotide T+,

Definition 4.14. For a trinucleotide code le, the subfunction pop (Xl])

returning a couple (subcode, last removed trinucleotide) is defined by

' (lej_ll’l; T”) - ({T17 IO E—l}{jll,[a T”)
if X{ = {T,.... -1, 1"} with T} # Tym
pop (X7) = { (Xzzjzl,lvTip_l) - <{T17 aE an—2}£;,lvTip_l)

19.¢ ip—1 (641
Zle] = {Tla"'anf%Tpfl ,TIS +p),...,1—}64}
with | —p + 1 limit trinucleotides Ty,

Note that the subcode X;'i’;’l is empty when p = 2. Hence, the subfunction
pop (Xz]) cannot be applied to a code le with p < 2, i.e. with p = 1. Indeed,
with p =1, there is [ — p + 1 = [ limit trinucleotides Tj;,, i.e. le“‘a"(l). Hence,

the trinucleotide generation process stops when the code le = X{ma"(l).

Definition 4.15. For a trinucleotide subcode ern,l ={Ty,... ,Tﬁlm}‘znyl and
a trinucleotide T'*t > Xﬁlyl (m), i, < last < 64 +m — [, the subfunction
push (XZLJ,T“’“) is defined by

;

(XZn—I—l,D Tlast—l—l) — ({TI; o ;Tm; Trlrtbl—f—trl in_H,p Tlast—l—l)
; last\ ifm<l—1
pUSh (Xin’l’T ) o { (X] Tlast—l—l) — ({T T Tlast—f—l}j Tlast—l—l)
1> 1y-++s4Lmy 4Ly R
ifm=101-1

The test last < 64 — [ + m ensures that a complete code le can be built.

It is related to the definition of limit trinucleotides.

Definition 4.16. Let first be the function defined by first (z,y) = x for
any pair (x,y).
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Example 4.17. For a given length | = 3, let be the code X3 = {1}, 12,13 }.
Then, pop (X3) = (X223,T3) = ({Tll,T2}§3,T3). Then, push (X223,T3) =
({78, 12,15}, 13 = ({11, 13,13} , T = (X3, 1) and first (X3,T*) =
Xz,

Example 4.18. For a given length | = 3, let be the code
X198 = {1}, T8, T8} (%) = 1953). The last two trinucleotides are limit

trinucleotides Tiim. Thus, pop (X3%3) = (X&%M,Tl) = ({}(1)9354, 1), Then,
push (X&%M,Tl) = <{T2}}9§4,T2>. Then,

push ({TE15,17) = ({12, 13155 1°) and
push ({Tf,T3};9§’4, ) ({Tf,T§,T4 1954,T4) = (X194, TY). Finally,

first (X394, 1) = X194,

In order to generate a code leﬂ from a code le, the subfunction push is
applied (l — m) times to the result of pop (Xi’) (X"Jrl T'esty | |,

m,l

push(— (XJ+1 Thest) = (leH, T') . This repeated operation is noted

push* (anﬁl, T'*") according to the Kleene notation.

Definition 4.19. The function next (le) generating a new code is defined

by
next (Xf) = first (push* (pop (le))) = leH

The repeated application of the function next starting with next (X}') al-
lows, by construction, to generate uniquely all trinucleotide codes of length [

in the lexicographical order.

4.1.3 The necklace test

The necklace test is presented here under the assumption that the trinu-
cleotide codes contain neither {AAA, CCC,GGG,TTT} nor conjugate trinu-
cleotides, i.e. they have no necklace 2LDCCN (Proposition 3.5). Let | € Ay
be a letter (nucleotide) and d € A3, a diletter (dinucleotide).

Notation 4.20. A trinucleotide T° in the lexicographical order is noted
T" = I'd’. Similarly, a trinucleotide T, at position p in a code le 18 noted
T, = l,d,.
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Notation 4.21. Two trinucleotides T = I'd* and T9 = l'd’ can be combined
into two new trinucleotides T = d'lV and T = d’l'. Two trinucleotides
T, = l,d, and T, = l,d, at the positions p and q in a code le can be combined
into two new trinucleotides T, , = dyl, and T, = d,l,.

Definition 4.22. The generated trinucleotide matriz M (Xl]) = M{ of a
code le ={lidy,...,ldy, ..., [id;} is defined by the trinucleotides T, , and T,

at row p and column q, and row q and column p, respectively,

@ dily - dyl, - e dil,
doly @ :
M=M= dly - - @ -y
: : %] di—1ly
dly e e dily, e A, @
The main diagonal is empty: the trinucleotides d,l,, p = 1,...,l, are not

generated as the necklace 2LDCCN is not tested (Section 4.1.1).

Example 4.23. The generated trinucleotide matriz M (Xf) = Mé of the
code X = {l1dy, lydy, Isds} of length | = 3, is

Lidy  lady  l3ds

lidy @ dyly dyls
l2d2 d2l1 1%} d2l3
l3ds dsly dsly @

Following Definition 3.3 (the indices of letters and diletters are not associ-
ated to a position in a code), a trinucleotide code le = {lidy, lads, l3ds, . .., [d;}
has a necklace (n + 1) LDCC'N if an ordered sequence S = R N PN

Tt VPR YD
I,, of letters and diletters have trinucleotides 7' € X7.

Remark 4.24. The sequence S = ly,d4,13,ds3, 1 can potentially lead to a
necklace whereas the sequence li,dy,ls, ds, [y cannot and is never constructed
by the algorithm NA.

Definition 4.25. The sequence 8" = dp s by, dp, 1y is deduced from the

sequence S =, ,dp U, ... 1y dy 1, by removing the first letter I, . The
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sequence 8" of n trinucleotides (n being related to the (n+ 1) LDCCN) is
deduced from the sequence 8’ where each dp., lp; is replaced by the trinucleotide
T; -

Example 4.26. The sequence S = li,dq,13,d3, 11 is associated to the se-

quences 8" = dy, l3,ds, 1y and 8" =T, 3,151 of two trinucleotides.

The generated trinucleotide matrix M (Xl] ) contains all relevant combi-
nations of trinucleotides of le. If the n trinucleotides of the sequence S”
belong to le, then the code le has a necklace (n+ 1) LDCCN and thus is

not circular.

Example 4.27. If T} 3 = ./\/l(le)l3 and T, = M(le)?)l belong to le,
then X has a necklace (2 + 1) LDCCN and thus is not circular.

As a conclusion, the search for a necklace (n + 1) LDCCN in a code le is
equivalent to search a sequence
S = Tplypw TP2,P§7 T 7TPini+17Tpi+1,Pi+27 T 7Tpn71apn7 Tpmpn+1 with
Tyipiss €M (X)) and Tp, ., € X] for all 1 <i < n and py41 = pi.

Notation 4.28. A trinucleotide chain C (Xl]) of a code le IS a sequence
M (Xl])m,pz’ oM (le)piypwl’ M (Xl])Pi+1:pi+2_7 oM (Xl])pn,pnﬂ with distinct
1 <p; <1 of n trinucleotides such that M(Xl])

€ Xj.
PisPi+1

Definition 4.29. For a code Xij, the trinucleotide chain
C, (Xiy) = C (Xiy) ’ Tpn+1;pn+2 i )
M (X{) added at the end of C (X]) = M(X])
distinct 1 < p; <.

is composed of the trinucleotide T, p.., €

L M(XY) with

p1,p2’ PnsPn+1

Remark 4.30. The operation - is used between a chain, where trinucleotides

are separated by commas, and a trinucleotide which s added at the end of the

chain.

Example 4.31. For a code XZ = {l1dy, lody, l3ds, l4ds} and a trinucleotide
chain C (Xl]) =Ty, 1Ty, C' (Xz]) =C (Xl]) Ty =T, Tog, T34 with T; 5 =
M(X]). .

2Y)

Definition 4.32. For a code Xij, a trinucleotide chain C (Xl]) of length n

15 closed when its first trinucleotide is ./\/l(le)p1 . and its last trinucleotide 1s

M(Xf)p oy forming a sequence S", i.e. with a necklace (n+ 1) LDCCN.
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Definition 4.33. For a code Xij and a trinucleotide chain
C (le) = M(le) ,M(Xf) , the trinucleotide M(le) is the

p1,p2’ " P1,P2
seed of the chain.

PnsPn+1

In our case, only closed chains (i.e. sequences S”) of length 2, 3 and
4 are searched (Proposition 3.4). Precisely, only one closed chain has to
be found to prove that a code is not circular. Thus, the boolean function
chain (Start, Current,C,Xf) searchs for a closed chain C in a trinucleotide
code le, returning 7'rue as soon as a closed chain is found (Start and Current
are indices defined below).

The function chain uses the function row (C’urrent, le) defined as follows.

Definition 4.34. For a code Xij, row (Current, Xij), 1 < Current < 1,
gives the set of trinucleotides from the Current row of M (Xf) belonging to Xij

row (Current, Xl]) =

{ M (Xl]) Current,Col

M(X;)Current Col < Xi77 1 S COl S l
with Col # Current

Definition 4.35. For a trinucleotide code Xij, the boolean function
chain (Start, Current,C,le), 1<|C|<3,C= M(Xl])

M (le)pn,Current’
defined by

Start,ps’ "~ " "

1 < Start <1, 1 < Current <1 and Start # Current, is

chain (Start, Current,C, Xf) =
( True if |C| <3 and isClosed = True

\/ chain (Start, Col,C - Tourrent,Cols XZJ)
Tcurrent,Col ETOW (Current,le)
X if |C| <3 and isClosed = False and |row (Current, X{)| > 0

False if |C] <3 and isClosed = False and |row (Current, le)‘ =0
True if |C| =3 and isClosed = T'rue

False otherwise

\

with the boolean predicate isClosed = M(Xl]) € le.

Current,Start

The function chain is a recursive boolean function that grows an initial
chain C from a seed belonging to le . This seed is mandatory and, ac-

cording to the preconditions, the initial call to chain must have the pattern
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chain (Start, Current,M(le)SWt Current,le). The seed matches with the

predicate isClosed = M(le)cmrent,smrt
closed chain exists. At each recursive call, chain first tries to grow the chain
C by closing it with M(Xij)c*uwem,smrt' If isClosed succeeds then it exits a
closed chain C - M (Xi’)Cu”em,Stm of length |C| +1 = n trinucleotides that be-
longs to X]. Thus, X} has at least one necklace (n + 1) LDCCN. If isClosed

fails then there are two cases. If |C| = 3 trinucleotides then False is returned as

€ le which is currently testing if a

a closing chain of length |C|+ 1 = 4 trinucleotides does not exist for C and, by
definition, there is no need to search for longer closed chains as the maximum
length of |C| is 4 trinucleotides. On the other hand, if |C| < 3 trinucleotides
then longer chains starting with C must be built and tested.

There is a link between Current and C parameters of the function chain.
Indeed, C always has the pattern C = M (le)Start,p1’ oM (le)pn,Cuwent, ie.
it ends with a trinucleotide from the Current column of M (X). Thus, C
can grow by concatenating a trinucleotide from the C'urrent row of M (X l] )
Note that this remark also applies to the predicate isClosed. Thus, the func-
tion row (Current, Xf) is defined in order to return the set of trinucleotides
Tcurrent,coi belonging both to the current row and the code le. The col-
umn Col of the trinucleotide Teyrrent,coi, the last trinucleotide of the chain
C - Tourrent,col, 18 passed to the recursive function
chain (Start, Col,C - Tourrent,Cols le) . As there is ‘row (Current, Xf)‘ recur-
sive function calls, i.e. a call per item of the set row (Current, Xij), a logical
boolean operator OR is used to gather all results in one boolean. If a recursive
function call returns True then there is a necklace and the result of the cur-
rent chain is True. If all recursive function calls fail or row (Current, X l] ) is
empty, then there is no necklace and the result of the current chain function

call is False.

Example 4.36. Based on the matriz of Example 4.23 with the code
X?‘f = {lidy, lads, I3ds} of length | = 3 trinucleotides and the initial call chain
(1,2,C:d1l2,Xg). As |C| < 3, isClosed is tested. If isClosed is true
then Xg has a necklace (24 1) LDCCN associated with the trinucleotide se-
quence dyly, dyly from the matriz M (Xl]) If 1sClosed is False then the row
2 18 searched for a trinucleotide T co € X?‘f. The only possibility here s
Ty cop = dols as isClosed is Fulse then dyly ¢ Xg. If dols ¢ Xg, Fualse is

returned and the code Xg does not have a closed chain starting with the seed
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dily. If doly € X3, the call chain (1,3,C = (dils, doly) , X3) is performed. The
trinucleotide dsly is tested by 1sClosed. If isClosed is true then Xg has a neck-
lace (34 1) LDCCN associated with the trinucleotide sequence dyly, dyls, dsly
from the matriz M (le), else the call chain (1, 2,C = (dily, dols, dsly) ,Xg) is
performed.

Two tmportant points should be adressed. Firstly, the chain dils, dsls, dsls
has a length of 3 trinucleotides, thus it is the last recursive call. Secondly, if
the factor dolsdsly of the chain dqly, dols, dsly is a necklace SLDCCN then it
15 not identified with the last call which only tries to close the chain with dsly
without success. Further calls of the function chain based on different seeds
are necessary to identify the necklace, e.g. chain (2, 3,C = dyl3, Xg) Figure 1
tllustrates the function chain with the dotted arrows for the search of the neck-
lace 3SLDCCN associated with the trinucleotide sequence dils, dsly from the
matric M (Xf) and the plain arrows for the search of the necklace ALDCCN
assoctated with dyls, dols, dsly .

1d1 | 12d2 | 13d3

1d1 dli3
12d2 d2i3
13d3

-=-=-» 3-LDCCN : d112,d2I1
—> 4-LDCCN : d112,d2I3,d3I1

Figure 1: A search example of necklaces (2 + 1) LDCCN and (3+ 1) LDCCN
in the generated trinucleotide matrix M (Xl]) of Example 4.23.

A function test (X l” ) browses the matrix M (X i7 ) using each trinucleotide

as a seed for a call to the function chain. However, unnecessary tests can be
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avoided. Firstly, the seed must belong to X lJ . Secondly, the test is symmetric
with respect to the main diagonal of M (le)

Example 4.37. With Xg = {l1dy, lads, I3d5}, the necklace 3LDCCN asso-
ciated with the trinucleotide sequence dsls, dsly from the matriz M (Xf) can be
found either with the seed dylz yielding to the necklace associated with dsls, dslo
or with the seed dsly yielding to the necklace associated with dsls, dyls.

More generally, thanks to this matrix symmetry, only trinucleotides above
(or under) the main diagonal of M (X, J ) are needed as seed to identify neck-
laces. The boolean function test (Xf) returns T'rue if the code Xij has a
necklace (n+ 1) LDCCN, n € {2,3,4}, i.e. is not circular, and False other-
wise. It only uses trinucleotides above the main diagonal of M (Xl] ) as seed

of chains C and is defined as follows.

Definition 4.38. For a trinucleotide code X{, the boolean function test (X{)

18

test (Xf) =
\/ chain (Start, Current, M(le)Start Current’ le) if 1 >1
1<Start<l ,
Start<Current<l
'/\/l()(lj)Sta,'r15,(7u'rrent6){27
False if | =1

Note that, as the trinucleotides {AAA, CCC,GGG,TTT} are not consid-

ered, returning False for [ =1 is correct.

4.1.4 Branch pruning

The trinucleotide code generation (Section 4.1.2) can be associated to a
forest F; of trinucleotide codes of a given length [. This forest F; is a disjoint
union of trinucleotide trees 7;. Its structure allows the branch pruning method
which is now described. Figure 2 gives an illustration of such a forest.

A trinucleotide code le represents a complete branch of a tree 7' in F,
1 <t < (64+1—1), from the root Xj (1) = T¢ to the leaf X7 (1) with internal
nodes Xij (m) at depth 1 < m < [. In particular, if [ = 1 then the tree has
only one trinucleotide which is the root of the tree itself, i.e. X7 (1) = 7%
The trees 7' are ordered by their root trinucleotides 77, from left to right.
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T1 T2 femmmmme-- T61

T2 and T3 form

a 3LDCCN 62 Te?
T4 T63 T63
: \ \ 4 \ 4 A\ 4
I : T5
_____ = T64 T64
: | 39172
| Skip all 61 codes ' T T |

Repeated 3LDCCN {T63,T64}

Figure 2: Example of a forest for the 64 trinucleotides T' € A3 of length [ = 4.
Dotted line represent non-contiguous branches. A grey background represent
a necklace. The dotted trapezoid shows branch pruning caused by a necklace

detected on an incomplete branch.

Thus, a forest F, has (64 + 1 —[) distinct trees, the last tree 77! being
the root X7/ (1) = TP~ which is, by definition, the limit trinucleotide
Tiimy = Tp*7~" at position p = 1. The tree 7" has |T| = (5*)") distinct codes
of length [ as the first trinucleotide, i.e. T}, is fixed by the tree itself. In a

given tree, codes are also ordered from left to right.

A nonempty subcode X;yl € 7' in F, with 1 < m < [ is an incomplete
branch from the root Xf;lyl (1) = X/ (1) = T! to an internal node an,l (m) =
X} (m) at depth m. A subcode is usually shared by several complete distinct
codes from the same tree 7;* in Fj, i.e. for two distinct codes lel and Xih,
J1 # jo in T}, X;Q’l = errf’l are the same incomplete branch from the root
ngyl (1) = ng,z (1) = {T}} to the internal node Xﬁ,z (m) = ng,z (m) for some
given m with 1 < m < [. In particular, they always share the same root of
T} ie. Xf}l = Xffl = X/' (1) = X* (1) = T¢. If m =1 — 1, the two codes only
differ by their last trinucleotides. Thus, an incomplete branch (subcode) X, ,

in a tree 7, participates to a set of contiguous complete branches (codes) noted
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(Xpny)*. The cardinality of (X,g)™ is [Xog| = (4 7'") with Xy (m) = T
being the i,,th trinucleotide in the alphabet. So, several codes X/ € (X,,,)",
I'={i,i+1,i+2,...,i+|X,,,| — 1}, share the same subcode an’l. As these
codes X/ are contiguous, the subcode number is the number of the lowest
complete code sharing it, i.e. X} , = XTr:lljlrl(I). All complete branches from
(Xm.)" can be skipped in the trinucleotide generation process by applying the

function next to the subcode X, ;.

Example 4.39. In a forest for the 64 trinucleotides T € A3 of length | = 4
(Figure 2), let be three trinucleotide codes X; = {T*,T* T3 T*} in the tree T},
X8 ={TY,T% T, T5} in the tree T} and X3°™2 = {12,713, T*,T°} in the tree
TZ. The first code in T2 has the number | T;'|+1 = (644:11)—1-1 = (633)+1 = 39172
(t=1andl=4), i.e. the code X}*"?. The two codes X} and X$* share two
nonempty subcodes, i.e. X|, = X3 ={T"} and X}, = X373 = {T", 7%} which
are in the same tree T, The incomplete branch X3, = {Tl,TQ,T?’}:,)y4 in the
tree Tt yields to | Xpy| = (°/ ) = (%)) = 61 complete branches (I =4, m =
3 and i,, = 3), i.e. ({TI,TQ,T?’}?)A)* has 61 codes. Hence, the first complete
branch of the next incomplete branch {T",T?, T}, has the number 62. As
a consequence, if {Tl,TZ,T?’}g,4 has a necklace then 61 codes can be skipped
in one step. The code X3°™2 in the tree T} shares no nonempty subcodes
with the codes X}, ..., X% in the tree T as their trees are distinct. However,
due to the trinucleotide generation scheme, not all subcodes with necklaces
allow to prune branches definitively. For example, if the trinucleotides T
and T form a necklace 3SLDCCN, all codes containing T% and T will be
however generated. Note that the number |T| of codes per tree decreases, i.e.
‘771‘ > ‘772‘ for ty < ty. The last tree TP is composed of only one code, i.e.
(T, 762, 753, 764},

The principle of the algorithm NA consists in generating trinucleotide codes
Xij for a given length [. Then, for each code le, the associated generated

trinucleotide matrix M (Xf) is built and the LDCCN necklace test is per-
J

formed. However, several subcodes X7
)

, are previously generated. According
to Proposition 3.6, if a subcode in,l has a necklace then the code le has also
a necklace. Thus, performing the necklace test on subcodes allows to avoid
Xj

m,l ‘

the complete generation of the non circular code Xij . Furthermore,

contiguous codes share the same subcode X7 ;. Hence, all ‘anl‘ contiguous
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codes can be skipped by pruning the incomplete branch X;l and carrying on
the calculation process on the next incomplete branch X;’;‘j“. If X;’;‘j“ does

not exist then the computation stops. Thus, several new subfunctions must
be defined for subcodes.

Definition 4.40. The function next’ (ng,z) generating a new code le 18
defined by

next’ (X3,) = push” (popf (X)) = (Xfr= 71%)

the
subfunction pop' (an l) returning a couple (subcode, last removed trinucleotide)

15 defined by

Definition 4.41. For a trinucleotide subcode XT];ZJ ={Ty,..., T J

m Jm,l’

m—1,0? m—1,0?
ierJﬁ,z ={T\,....,Tp1, T}y } and T); # Tiim
pop' (an,z) = (Xt Tier) = ({Tl,...,Tp,Q}j+1 Tipfl)

p—2,17 p—2,10

of X;yl = {TI, ooy, T;ZI,TéM_Hp), o 7Tr(le—zﬂn)}

[ (T = (T T, )

with m — p + 1 limat trinucleotides Tiim

The definition of the function pop’ (Xf?‘l,l) is closed to the definition of the
function pop (le) However, although the subcode length is equal to m, the
limit trinucleotide is still defined on the code of length [. As with pop (le), the
function pop’ (ng,z) is undefined when the subcode ng,z contains only limit
trinucleotides, stopping the process. The new subfunction push’ (XZLJ,T“’“)
tests if the subcode ern’l has a necklace before pushing the trinucleotide 7@
on ern’l. If the subcode Xiz,l has a necklace then the next subcode without a
necklace must be computed. It is not necessary to redefine the function test
for subcodes. Indeed, a subcode ng,z can arbitrarily be considered as a code
Y,, of length m, i.e. in,l = {I},...,Tin} = Y,, and tested with test (¥;,).
Hence, if a subcode Xiz,l has a necklace then no shorter subcode Xg,l with

n < m has a necklace.

Definition 4.42. For a trinucleotide subcode ern,l ={Ty,... ,Tﬁlm}‘znyl and
a trinucleotide Tt > Xﬁlyl (m), i, < last < 64 — [ + m, the subfunction

push’ (Xf?‘l,l,Tl“St) is defined by
ush! (Xill,Tl”t) _ ) push (X%,Z,Tl“St) Z'f_X;il,l is circular (no necklace)
’ next' (anyl) otherwise
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Definition 4.43. The function next” (Xf) generating a new complete code
Xij 15 defined by

next” (Xl]) = first (push”™ (pop (le))) = Xret

Note that the first call of the function pop is the same as the one in Defini-
tion 4.14 because the function next” applies on a complete code. The definition
of the value of j,ez¢ is more technical than the one in Definition 4.19 with the
function next as now several codes can be skipped. A first way is to count the
number ‘le,z‘ of skipped codes each time a subcode ng,z has a necklace in
the function push’. A second way is to compute j,..; from the trinucleotides

composing the code itself.

Definition 4.44. For a code le = {Tfl, e ,Tf’}{, its number j is defined
by

j = number (X;) =1+ ii (64 B 5) (1)

with A =iy — i,y — 1, X, (p) = Tp*, X, (p— 1) = T*7 and X, (0) = TP, i.c.

p
o = 0.

Intuitively, in the tree representation where trees and codes are ordered
from left to right, the number j of the code le in a given tree is the number
of all previous codes plus one. In Example 4.39, the first code {1, 72,73 T}
has no previous code/left branch. Its number is 1 + 0 = 1. For the first code
of the second tree {T2,T3,T* T°}, the previous codes are all codes from the
first tree. Its number is 1 + (633) = 39172. For the first code of the third
tree {1,1%,T°,T%}, the previous codes are all codes from the first and the
second trees. Its number is 1+ (%) + (%) = 1+ 39171 4 37820 = 76992.
The number of previous codes in the current tree is obtained with the number
| X,.| of complete branches X, ; that shared the incomplete branch Xf;lyl, ie.
| Xy = (6?:;’”) with 7,, being the ordering number of the last trinucleotide
of ern’l (ern’l (m) = Ti). A virtual trinucleotide 7° which is the root of a
new tree 7;31 built from the forest F; allows to apply the formula to tree roots
(Figure 3).

The double sum in Formula 1 stands for two dimensions: the current trinu-
cleotide depth in the tree, i.e. Z;Zl, and the gap width to the leftmost possible

position at that depth, i.e. Z?leith A =i, —1i, ;1 —1 (dotted arrows labelled
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Figure 3: Representation of gaps A for calculating the number j of the code
XJ ={1% 17,78, 7™} (grey background). The forest F; is anchored in a new

tree 7,9, with a virtual trinucleotide 7°. Dotted arrows represent gaps, plain

arrows represent real links, dashed arrows represent virtual links and trapezoids
represent (X,,;)" sets. The number of the code X] = {T2,T7,T% T"} is
determined in Example 4.45.

“Gap A” in Figure 3). The gap formula A = i, —i, ; —1 is determined accord-
ing to the parent node of the current node: by construction, the leftmost son of

an internal node Tp* in 73, is 1,7, i.e. 4p11 =14y + 1. As a consequence, A is

never negative. So, for a given depth p, the gap represents the number A of dis-

tinct previous incomplete branches X, = {Tfl, . ,T;ﬂ_ll,T;p‘l+6} with 1 <

p—

| X, = (64*;51’6) must be computed leading to the term 35, (647;.{;176).

Example 4.45. For the code X = {T% 17, 1%, T} (in grey in Figure 3),
j = 46141, d.e. XMW = {1277 T8 T}, Indeed, by computing Formula 1,
we have the following partial results.
Forp=1, A =i,—ig—1 =2-0-1=1andfor§ =1, (*,°7") = (%) = 39171.
Forp=2,A=iy—iy—1=7-2-1=4andford =1, (* %) = (%) = 1830,
1

d<AofX, = {Tfl, . ,Tip_ll,Tzfp}. For each incomplete branch, the number

4-2

for 6 =2, (%) = 1770, for 6 =3, () = 1711 and for 6 =4, () = 1653.

2 2
Forp=3 A=i3—ip—1=8-7—-1=0.
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Forp=4,A=ij—is—1=14-8—1=5and foro =1, (** ") = (}) =1,
for 6 = 2, (504) =1, for 6 = 3, (503) =1, for 6 =4, (502) =1 and for 6 =5,
(501) =L

The sum of all numbers lead to 1 + 46140 = 46141.

4.1.5 Parallelization

The sequential algorithm NA generates a code X lJ from its preceding code
using the function next” (le_l). A first way for its parallelization consists
to launch a thread per tree root. Indeed, the first code X, of a tree 7, is
obtained by X; = {T",...,T""='}. However, this approach is inefficient as
the workload is not well shared. For example, the first tree has much more
codes than the last tree (only one code) and the branch pruning also introduces
some unpredictability as the number of skipped codes per tree is unknown. A
good parallelization depends also on the computer on which the algorithm
runs, e.g. a parallelization with eight threads on a computer with four cores is
useless. So, the number of threads will be a parameter of the parallel algorithm
NA.

The parallel algorithm NA is based on the thread pool model. A pool of
n threads, n being the number of available processor cores, waits for tasks.
When a task needs to be done, a thread is taken from the pool to compute
the task. When the task is finished, the thread is returned to the pool. In
the algorithm NA, tasks are sets of x contiguous codes. This number x is
determined by the number of tasks and the number of codes to be tested for
a given length [. Code slices in the forest F; allows an implementation of this
procedure (Figure 4). The number of tasks is also a parameter of the parallel
algorithm NA. For our benchmark (Section 5), this parameter is set to 512
tasks.

A slice starts at a code number j, spans for the x next codes which can
cover several trees or only a portion of one tree, and ends at code j+x. Hence,
a task is defined by two codes being the inclusive boundaries of a code slice,
ie. le is the lower bound of the task while le” is its upper bound. The
code le is built from its number j. Then, the necklace test is performed on
Xij before calling the function next”. This operation is repeated until next”
either stops by itself or produce a code greater than Xf”. So, the problem to

build a code from a number is the inverse operation of calculating the number
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Figure 4: Example of slices in the forest JF;. Slices have equal size in contrast

]

to the trees where the first trees have more codes than the last trees.

of a code (Definition 4.44). Thus, the concepts are very similar to previously.

A code number j, as before, is the number of previous codes plus one. But
instead of finding how many codes a previous incomplete branch represent in
order to calculate 7, we determine if a given incomplete branch X, ; has enough
codes so that Xij € (Xony)", ie. j < |X,uy]- Thus, we define two functions: the

function doC'ode which encapsulates the function doCode’.

Notation 4.46. For a trinucleotide subcode X,,; and a trinucleotide K
with T* > Xy (m), the concatenation of T* after X, (m) is noted X1y =
Xono Tifm+1<lorX;=X,,- T ifm+1=1

Definition 4.47. For a code length 1 < | < 20, a number 1 < jgqp <
Jmax (1), a position parameter 1 < p <1, an order parameter 1 < i < 64 and a

code X,_1,, the recursive function doCode' (jgap,i,Xj

pfl,l) computes the code
X, as follows

doCode’ (jgap; ia X;Zfl,l) -

( doCode’ (Jgap — ms 7+ 1, XI{_U) withn = (571 if joap > 1

doCode' (jyap,i + 1, X1,) with XJ, =XJ_| |- T" and n = ()

l—p
if Jgap < moand p <1

X[ with X{ = X)_| - T" withn = (614:;) if Jgap =1 and p =1

undefined otherwise

\
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Definition 4.48. For a code length 1 <1 < 20 and a code number 1 < j <
jmax (1), the function doCode (1, 5) = doCode' (j,1,{}y1) gives the code Xj .

The function doCode’ enumerates, counting backward, the possible trinu-
cleotides T* for a given current position p in order to grow the subcode X;_1 ;
The parameter j,,, represents the distance from the desired code X7 . Initially,
Jgap = J, 1.e. the code Xij has a distance j,,, from the beginning of the forest

JFi. There are three main cases:

L. If the number j,q, is greater than the number |Y,;| of codes in (Y},)"
with Yy, = {X,_1,, 7} then the desired code X/ is beyond Yy, i.e.
its trinucleotide Xij (p) at position p is greater than 7. The function
recursively calls itself for 7%*! at the current position while substracting
1Y,.| to j as codes in (Y,;)" just have been skipped. Intuitively, we travel
in F; from left to right, skipping over (Y,,)" when X} ¢ (V).

2. If the number j,, is less or equal than the number |Y};| of codes in
(Yp.)" with Y, = {X,_1,, T} } then Y, is a subcode of X/. The function
recursively calls itself in order to compute the trinucleotide at the next

position. Intuitively, we travel in JF; from top to bottom.

3. When the code X lJ is complete, it is returned by the function doCode'.

Example 4.49. Ezample 4.45 is used to determine the code
XML =72 T7 T8 T} from the number j = 46141 (1 =4). We have
doCode (4,46141) = doCode’ (46141, 1, {}074)

As 46141 > (1)) = 39171 then doCode’ (6970,2, {}, )
(6970 = 46141 — 39171).
As 6970 < () = 37820 then doCode’ (6970,3, {17}, ).

— 1830 then doCode’ (5140, 4, {T?}M).
1770 then doCode’ (3370, 5, {T?}M) .
1711 then doCode’ (1659,6,{T2}1,4).
As 1659 > 1653 then doCode’ (6, 7, {T?}M).
As 6 < (*17) = 1596 then doCode’ (6, 8, {172, T7}24).
As 6 < (%)) =56 then doCode’ (6 9,{1? 17, 1%}, 4)

As 6970 >

As 3370 >

(64 3)
As 5140 > (%))
(64 5)
(64 6)
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A5 6> (1) =1 then doCode’ (5,10, {T%,T7, T%}, ).
As5 > (°173%) =1 then doCode’ (4 11,{T%,T7, 1%}, 4)
As 4> (°173) =1 then doCode’ (3 12,{T%,T7, 1%}, 4).
As 3> (°173%) =1 then doCode’ (2 13,{1%, 17, 1%}, 4).
As2> (°17}%) =1 then doCode’ (1 14,{T* T7,T%}, 4)
As1< (U3 =1 andp = 4 = | then {T?, 17, T8}y T = {12, 77, 7%, 7%},

4.2 The necklace algorithm NA in two dimensions (con-

jugate class order)

We extend the previous definitions to a conjugate class order. From Propo-
sition 3.5, the trinucleotide codes are generated by the algorithm NA according
to the following partition of B into the 20 conjugate classes (Table 1).

Table 1: Trinucleotide partition of B} into 20 classes of 3 permuted trinu-

cleotides.

| Permutation v |
| Class ¢ | 1 | 2 | 3 |

1 AAC | ACA | CAA

2 AAG | AGA | GAA

3 AAT | ATA | TAA

4 ACC | CCA | CAC

5 ACG | CGA | GAC

6 ACT | CTA | TAC

7 AGC | GCA | CAG

8 AGG | GGA | GAG

9 AGT | GTA | TAG

10 ATC | TCA | CAT

11 ATG | TGA | GAT

—
[\

ATT | TTA | TAT
cCcaq | CGe | oo
ccrT | CTC | TCC
CGG | GGC | GG
CGT | GTC | TCG
CTG | TGC | GCT
CTT | TTC | TCT
GGT | GTG | TGG
GTT | TTG | TGT

e el e e e
© 00 N OO W

[\
(=)

Notation 4.50. For a class number 1 < ¢ < 20 and a permutation number
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1 <wv <3, B} (c,v) =T is the trinucleotide T“" belonging to the class ¢ and

the permutation v according to Table 1.
Example 4.51. B} (2,1) = AAG.

Remark 4.52. The symbol v (for “variant”) is used for the permutation as

the symbol p is already used for “position”.

The previous notation 7" in one dimension (i dimension) is extended to two
dimensions (¢ and v dimensions). This extension does not modify the necklace
test which is based on the position of trinucleotides and not on the order of
trinucleotides. In fact, the necklace test already relies on B} as trinucleotide
codes without {AAA, CCC, GGG, TTT} and without conjugate trinucleotides
are prerequisites for the test. However, this extension affects the trinucleotide
code generation process and its related formulas. The different functions de-
pending on the ¢ dimension, 1 <7 < 64, now depend on the ¢ first dimension,
1 < ¢ <20, and on the v second dimension, 1 < v < 3.

Definition 4.53. For two trinucleotides T and T2, TV < T2 4f

either ¢; < ¢g or ¢y = ¢y and vy < vg.

Definition 4.54. A trinucleotide code le of length 1 < [ < 20 with 1 <
J < Jmax (1) = (ZZO) x 3 (consequence of Proposition 3.5) is composed of |
trinucleotides from distinct classes, i.e.
X] = {1 Tt T T with 1< py < py <1 and

CPl < CP2'

Definition 4.55. For a code length 1 < [ < 20, a trinucleotide T is
a limit trinucleotide T in the code X, = {T{™", ..., T,7", ..., T;""} at
position 1 < p < [ if T% = T?04P=13 " Limit trinucleotides only exist in the

last column of Table 1.

Example 4.56. The code X3 = {Tf’l, T2, Tf’?’} has no limit trinucleotide.

The code Y5 = {Tf’l,Tzlg’?’,ngo’?’} has two limit trinucleotides T, and T2,

Remark 4.57. Contrary to the classical lexicographical order, limit trinu-
cleotides are not always contiguous and at the end of the code in the conjugate
class, e.g. Z3 = {Tf’l,T;9’3,T§O’1} 1$ a valid trinucleotide code with a limit

trinucleotide Ty"* and a non-limit trinucleotide T320’1.
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In the trinucleotide code generation process, only the two functions push
and push’ need a redefinition. However, for completeness, all functions are

adapted to the two dimensions.

Definition 4.58. For a trinucleotide T, the function next (T") giving
the successor of T" is defined by

T if ¢ <20 and v =3
next (T") = ¢ Tt jfv < 3
undefined for T*3

Definition 4.59. For a trinucleotide T%", the function nextClass (T°")
giving the first permutation of the following class of T%" is defined by

Terbl if ¢ < 20

tCl 7% =
newtClass (1) { undefined for ¢ = 20

Definition 4.60. For a trinucleotide code le, the function pop (Xl]) re-

turning a couple (subcode, last removed trinucleotide) is defined by

( . '
(¢ o) = (1 T o)
if X] ={T1,....,Ti_1, T/} and T # T,
pop (Xij) = < (XZ)‘——'—;,“ TCp—l,Up—l) = ({Tb . ’Tp_Q};t;,P TCp—l,Up—1>

if le = {Tl, ooy Tyg, T;f—ll,uP_l,ngzopr),S, . ,leo,:a}
with | —p + 1 limit trinucleotides Ty,

Definition 4.61. For a trinucleotide subcode Xiz,l = {Ty,...,T¢m"m J

m,l

and a trinucleotide TCast:Viast > X;il,l (m), 1 < Cast <20+m —1and 1 <
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Viast < 3, the function push (X Tclasf’”last) 15 defined by

( (Xr]nﬂlv ) = <{T1,-- Lrmoom Tm+1}m+“, )
with T = next (T “lastVast)
if m <l—1 and ¢y # Clast

(Xgn+1l7 T)= <{T1,-- Lo om Tm+1}m+1z= )
with T' = nextClass (T lastVast)
ifm<l—1 and ¢, = Clast

(X}, 1) = ({TI,...,T;;’LWUW,Z} {,T)
with T = next (T “lastVast)
ifm=1—1 and ¢, # Cast

(X7, 7) = ({T,.... T, TH, T)
with T' = nextClass (T lastVast)

ifm=1—1 and ¢, = Clast

push, (XJ

m,l?

Tclastzulast) — <

The new function push has two times more cases as it must consider the
second dimension. If the last trinucleotide of the subcode Xiz,l is different
from Test¥ast then the code X7 has just been removed and the successor
next (TCest:Vast) of TCast:Viast must be pushed. Otherwise, the subcode ng,z
must be completed by the trinucleotides T' = nextClass (T est:Vest) from the

classes after ¢;u5; (Figure 5).
The function next (Xf) is unmodified and based on Definition 4.19.

The functions for branch pruning are quite similar.

Definition 4.62. For a trinucleotide subcode X°
15 defined by

the function next’ (le,l)

m,l?

next' (X;il,z) = push™ (pop' (anl)) = (Xrest, TtastVtast)
The function next” (X l] ) is unchanged and based on Definition 4.43.

Definition 4.63. For a trinucleotide subcode Xiz,l = {T\,..., T ™ J

m,l’

the function pop' (X;il,z) returning a couple (subcode, last removed tmnucleotzde}
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pop() pop()
> (4,1) I »{ (20,3)
v (3.1)
(4,1) (4,2) (20,3) push(next()) (4,1) jpush(nextdass())
(3.1) (3,1) (3.1) (3.1) »| (3.2)
(2,1) (2,1) (2,1) (2,1) (2,1) (2,1)
(1,1) (1,1) (1,1) pr========m===- » (1,1) (1,1) (1,1) f=-~
el 1
: pop() pop()
: »{ (20,3) »{ (20,3)
: (3.3) (19,3)
v [203) (5.1) push(nextClass()) | (20,3) (18,3) (4.1) push(nextClass())
] push(next())
' (3,3) > (4,1) q (19,3) (1,1) (3,1) push(nextClass())
' (2,1) (2,1) (2,1) (18,3) (2,1) push(nextClass())
] push(next())
> (1.1) (1,1) (11) === - > (1.1) > (1,2)

Figure 5: Graphical representation of the generation of codes from
{rtt =t 3t b, to {TH,TH T3 THY, with the functions pop and
push in B;. Codes are represented vertically from bottom to top, with trinu-
cleotides (¢, v) (see Table 1).

15 defined by

pop' (X)) =
CXZthJITmﬂMﬁ ::({]H’H_JJ}%J}ithjjmmﬂm>

if X2, ={T1,...., Tuey, T} and T £ Tiip,
< (th;,l; TCp—l,Up—l) = ({T17 e ;TP—Q}j+1 TCP_I’UP_I)

p p—2,0°

if X7 — {Tl, Ty, Tpcf—ll,vp—l7 T15207Z+p)’3, o 7TT(nZO—l+m),3}

with m — p+ 1 limit trinucleotides Ty

Definition 4.64. For a trinucleotide subcode Xﬂ‘n’l = {T,... ,T,%m’”m}‘;yl
and a trinucleotide T last:Vast > X;,l (m), 1 < ¢lase <204 m — 1, the function
push’' (XZM,T%S“”IW) is defined by

J ClastsV YT e g
push (mel, Tciastviast ) if X, Us circular

next' (X an) otherwise

push' (Xj Tclast,vlast) —

m,l?

The functions number (X;) and doCode' (j) also need some extension. The
number (X;) depends on the trinucleotide position in the code and the trin-

ucleotide order which has now two dimensions. For the class dimension, the
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number of codes is counted in previous classes and for the permutation dimen-
sion, the number of codes is counted in the current class but in the previous
permutation number. The definition of |X,, ;| must also be adapted for the

formula number (X;).

Definition 4.65. The number of complete trinucleotide codes sharing a
subcode Xiny is [Xp| = 37" (50m) with Xy (m) = Tem.

Example 4.66. With the code length | = 20 and m = 19, |X,,,| =
32019 (ggjg) = 3. Indeed, if | = 20, all classes are used, i.e. for m = 19,
cm = 19 and the next trinucleotide 1s in the 20th class with three permutation
choices (Table 1). Note also that in the particular case with | = 20, as all

classes are used, p = ¢, and T = Xy (p) for all positions 1 < p < 20.

| Xn,| gives the number of codes sharing a subcode X,,; whose class of
the last trinucleotide 7% is ¢, i.e. the number of codes sharing X,,; per
permutation of ¢,,. It does not consider the three permutations of ¢, itself. So,
the total number of codes sharing X,,,; with X,,, (m) =T for 1 <w,, <3
is obtained by 3 | X, |-

Definition 4.67. For a code le = {17, .. T {, its number j is
defined by

J = number (X;)

—14 Xi: g f: (20 ~ T 5) 4357 (0, — 1) (20 - Cp)] (2)

— [=p [=p
with A = ¢, —c,.1 — 1, X (p) = 1,77, X;(p—1) = 1,77 and X, (0) =

p—1
0,0
1y, te. g = 0.

The 1st term 3'~?P*! Z?:l (207&;176) is associated to the code computa-

tion in the trinucleotide classes and is equal to 32?:1 | Xp| with X, =

c1,U1 Cp—1,Up—1 rCp—1+0,Up I— 20—c :
T T T } The 2nd term 317 (v, — 1) (*-%) s re-

lated to the code computation in the previous permutations of the current

trinucleotide class ¢, and is equal to (v, — 1) |.X,,

Example 4.68. For the code X] = {T"?2, T3’2,T5’3}‘; = {ACA, AT A, GAC}%,
j = 1758, i.e. X1 = {ACA, AT A, GAC};HS, Indeed, by computing For-

mula 2, we have the following partial results.
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Forp=1A=¢—-¢—-1=1-0-1=0,v—-1=2-1=1,

311 () =9(3) = 1539.

Forp=2, A=c—-—c—-1=3-1-1=1,v,—1=2—-1=1 and ford =1,

33201 (20711 = 9('F) =162, and then 3372 (1) (37)) = 3(Y) =51.

Forp=3, A=c;—c—1=5—-3-1=1,v3—1=3-1=2 and for d =1,
_ 20-3-1 16 _ 205 15

B =3(y) =3, and then 3373 (2) (377) =2() = 2.

The sum of all numbers lead to 1 + 1757 = 1758.

For the inverse formula, the function doCode is unmodified and based on
Definition 4.48. The function doCode’ must be adapted to the two dimensions

of class and permutation.

Definition 4.69. For a code length 1 <1 < 20, a code number 1 < jgqp <
Jmax (1), a position parameter 1 < p <, a class number 1 < ¢ < 20 and a code
Xp_14, the function doCode' (jgap, c, X;_U) computes the code X

r

doCode (Jgap — 31, ¢+ 1, Xp-1)

with n =37 (37°) if joap > 30

doCode (jgap — (v —1)n,c+1,X,))

n

and n = 37 (210_;0) if Jgap < 3n and p <

Xy with Xy = Xpqg- T, v = | 22|
and n = 3P (2lo:pc) if Jgap < 3n and p =1
undefined otherwise

doCode' (jgap, c, Xjfl,l) = 4

p

\

The principle is similar to the one dimension case. The current subcode
X, must be shared by enough complete codes so that the code X, belongs
to (X,,)". However, the number |X,,| = n = 31_”(2[0_;0) of complete codes
is computed for a class number and multiplied by 3 for considering the 3
permutations of the current class c¢. If the current class ¢ is the one that
must be considered, the permutation number is computed by v, = Pf’%w,
i.e. the ceiling of the number j,,, of the code divided by the number n of
codes per permutation of the current class ¢. When a trinucleotide is found,
doCode (jgap — (v — 1) n,c+ 1, X,,) eliminates the (v — 1) n previous permu-
tations. Note that when v = 1, doCode' (jyqp, ¢+ 1,X,,;) matches the one

dimension Definition 4.47 as no permutation is counted.
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Example 4.70. Ezample 4.68 is used to determine the code
X318 = 712 732 T53Y from the number j = 1758 (I = 3). We have
doCode (3,1758) = doCode' (1758, 1, {}073).

As 1758 < 3n = 33"1(37]) = 1539 and v = [H28] = 2, then

doCode’ (219, 2, {Tlﬂ}l’g) (219 = 1758 — (2 — 1) x 1539).

As 219 > 3p = 3372(%)7) = 54, then

doCode’ (57, 3, {Tlﬂ}l,g) (57 = 219 — 3 x 54).

As 57 <3n=3"2(}7)) =51 and v = [Z] =2, then

doCode’ (6, 4, {12, T3’2}2,3> (6 =57 (2— 1) x 51).

As6 > 3n = 333(27)) = 1, then doCode’ (3, 5,{T"?, T3’2}273> (3=6-3x1).
As3<3n=33()=1v=[3] =3 andp=3 =1 then (T2, 17}, 4
T53 — {Tl,z7 T3,27 T5’3};758.

All formulas being defined for the conjugation classes on B3, the algo-
rithm NA is complete. It generates, by construction, trinucleotide codes with-
out {AAA,CCC,GGG, TTT} and without conjugate trinucleotides. It uses
branch pruning while generating trinucleotide codes. It can recover the num-
ber 7 of a code from its trinucleotides and can generate a trinucleotide code
from a number j and a length, allowing to define lower and upper boundaries

for a parallel program.

4.3 Implementation hints

We now give some implementation hints for coding the necklace algorithm

NA in the Java programming language.

4.3.1 Trinucleotide representation

A letter on A4 can be coded on two bits and a trinucleotide, on six bits.
The permutation number can also be coded on two bits and the class number
on five bits. Thus, a Java 16 bits integer can represent a trinucleotide with the

following conventions (Figure 6):

e The first 6 bits represent a trinucleotide which is masked with the hex-

adecimal value 0X3F.
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— The first letter is masked by the hexadecimal value 0X30.
— The second letter is masked by the hexadecimal value 0XC.
— The third letter is masked by the hexadecimal value 0X3.

e The 2 following bits represent the trinucleotide permutation number

which is masked with the hexadecimal value 0XCO.

e The 6 following bits represent the trinucleotide class number (even if 5
bits are enough) which is masked with the hexadecimal value 0X3F00.

The letter A is coded by the hexadecimal value 0X0, the letter C' by 0X1,
the letter G by 0X2 and the letter 7" by 0X3.

2 bits 3 x 2 bits 2 bits 3 x 2 bits

1yi12]13

Unused Class Permutation Trinucleotide

Figure 6: Representation of a trinucleotide on a 16 bits java integer. Each

square stands for 2 bits. [1, [2 and [3 are the letters of the trinucleotide.

Such a representation is efficient in time and space because it only uses one
integer which is a basic type in Java. Indeed, there is no dynamic memory

allocation, i.e. no call to any new object creation method.

4.3.2 Trinucleotide code representation

Trinucleotide codes are composed of trinucleotides which are implemented
by integers. A trinucleotide code of length [ is allocated with an array of [
integers. This array is then used as a stack by the functions pop and push,
using an integer count to keep track of the current length of the code. The
same array is used for all the codes.

One of the most used operations on the code is the inclusion test which tests
if a trinucleotide 7" belongs or not to a code X. Considering the maximum
length of the code, i.e. [ = 20, a linear time search could be acceptable.
However, this operation is performed billions of times. Hence, a constant time

search is better for the inclusion test. For that purpose, the code contains a
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64 boolean array BArray. The boolean BArray[i] (0-indexed) is set to true
when a trinucleotide is pushed in the code, 0 < ¢ < 63 being the value formed
by the six lower bits of the trinucleotide code representation.

For the necklace test, a matrix M is used. This matrix is updated by the
function push. Indeed, when a trinucleotide is pushed, the top row and top
column are updated. As the necklace test only considers the number count of
trinucleotides in the code when it is executed, there is no need to erase any
row or column when popping. They are simply ignored and overwritten later
by the function push. So, the matrix M evolves along with the code, and as

for the code, it is preallocated according to the length (.

4.3.3 Sequential necklace test

The necklace test is coded sequentially with four imbricated loops instead
of recursive calls. However, note that the 2nd case in the function chain' uses a
“or” clause allowing to stop immediately (without calculating all chains) when
a closed chain is found. The implementation uses that fact to bail out as soon
as possible. The same remark applies to the function test.

Another optimization is added to the necklace test. If the trinucleotide
Tyipe = dplp, € le participates to a necklace then there is a trinucleotide
Ty ps = dpylp, € le. Thus, if d,, is not a diletter prefix of a trinucleotide in
Xij then the necklace search can be stopped earlier. So, an additional inclusion
test based on diletters of the code, instead on trinucleotides, is performed with
a new 16 integer array [Array. When a trinucleotide 7' = dl is pushed in
the code, IArray[d] is incremented. Conversely, it is decremented when a
trinucleotide dl is removed from the code.

A last optimization is added as the necklace is sequentially implemented.
When the function row (Current, Xl]) (Definition 4.34) searches for a trinu-
cleotide in the C'urrent row of matrix M (X lJ ), it searchs for all trinucleotides
belonging to X lJ . However, this search yields unnecessary tests. For example,
if the first trinucleotide is dyly in M (le), the necklace search can begin with
the trinucleotide d4l3 as the trinucleotides d4l; and d4l, were already tested
with the previous search of chains dily, dsly and dsly, dyls, i.e. two necklaces
3LDCC N would have been found in the cases d4l; € le and dyly € Xij. Hence,

the search of trinucleotides 7}, ,, and T}, ,,, i.e. in the poth and psth rows of
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M (Xij), can begin at the column p; + 1 of M (Xf) as the trinucleotides T,

p2,9
and T, , for ¢ < p; + 1 were already tested.

5 Benchmark

The algorithm NA was executed on a quad core processor, precisely an Intel
Core i7 K875 running at 2.93 Ghz (processor launched in 2010). The branch
pruning necklace test in the function push can be tuned to search only for
some chain lengths. The effect of the branch punning method developed here
is evaluated with the three possible necklace tests: 3LDCCN which searches
only for chains of length 2, {3,4} LDCCN which search for chains of lengths
2 and 3 and the complete test {3,4,5} LDCCN which searches for chains of
length 2, 3 and 4.

Table 2 shows the effect of branch pruning on the number of generated codes
for the lengths [ = 1,...,20. For each length, the first column gives the number
nbCode (1) = (2l0) x 3 of trinucleotide codes that would have been generated
by the algorithm NA without branch pruning. A necklace test should have
been necessary on each code in order to decide if a given trinucleotide code is
circular or not. The last column presents the number of circular trinucleotide
codes per length (identifical to Table 1 in [18]). The 2nd, 3rd and 4th columns
give the number of codes generating by the algorithm NA using branch pruning.

Table 2 shows that the branch pruning method is very efficient. Indeed,

the number of generated codes by the three configurations 3SLDCCN,
{3,4} LDCCN and {3,4,5} LDCCN is very close to the number of circular
trinucleotide codes. Most of the codes are already pruned by the 3LDCCN
configuration, the {3,4} LDCCN and {3,4,5} LDCCN configurations only
making a little improvement. The 3LDCCN configuration eliminates 923,207,
967,450 codes in total (for all lengths) where the maximum of eliminated codes
for a given length is 194,470,034,181 at [ = 15, i.e. 21% of total.

Figure 7 associated to Table 2 gives a graphical representation of the per-
centage of generated codes by the three configurations 3LDCCN,

{3,4} LDCCN and {3,4,5} LDCCN compared to the number nbCode (1) =
(20) x 3' of codes. The percentage of circular codes is also plotted for refer-

l
ence.
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Table 2: Number of generated trinucleotide codes per code length [ without
branch pruning, with branch pruning according to the three configurations
3LDCCN, {3,4} LDCCN and {3,4,5} LDCCN, and the number of trinu-

cleotide circular codes (identical to Table 1 in [18]).

|| (%) x 3’ | 3LDCON | {3,4} LDCCN | {3,4,5} LDCCN | Circular codes |
1 60 60 60 60 60
2 1,710 1,710 1,710 1,710 1,704
3 30,780 30,693 30,693 30,693 30,432
4 392,445 387,468 387,468 387,468 382,164
5 3,767,472 3,658,512 3,658,512 3,658,449 3,568,212
6 28,256,040 26,638,389 26,629,337 26,627,573 25,507,512
7 169,536,240 152,130,729 151,843,008 151,817,208 141,639,780
8 826,489,170 686,579,037 682,549,435 682,313,431 614,568,102
9 3,305,956,680 2,452,006,920 | 2,419,691,796 2,418,260,871 2,086,742,208
10 10,909,657,044 | 6,911,500,197 | 6,747,894,348 6,742,190,448 5,542,646,244
11 290,753,610,120 | 15,297,084,089 | 14,748,959,697 | 14,734,064,286 | 11,503,061,124
12 66,945,622,770 | 26,413,731,079 | 25,158,454,482 | 25132,808,781 | 18,615,667,124
13 | 123,591,918,960 | 35,205247,416 | 33,310,067,612 | 33,280,806,827 | 23,403,485,556
14 | 185,387,878,440 | 36,144,717,927 | 33,961,014,334 | 33,938,995,390 | 22,700,634,924
15 | 222,465454,128 | 27,995419,947 | 26,330,532,852 | 26,319,844,311 | 16,787,523,072
16 | 208,561,363,245 | 16,081,427,528 | 15,214,026,244 | 15210,848,227 | 9,279,022,320
17 | 147,219,785,820 | 6,637,219,234 | 6,337,298,075 6,336,779,999 3,708,717,048
18 73,609,892,910 | 1,861,836,717 | 1,796,714,409 1,796,678,841 1,012,099,740
19 23,245,229,340 318,131,676 310,192,548 310,192,140 168,726,792
20 3,486,784,401 25,010,988 24,603 481 24,603,481 12,964,440

| Total | 1,099,511,627,775 | 176,303,660,325 | 167,224,550,101 | 167,110,910,284 | 115,606,988,558 |

25,01 .
For example, for [ = 20. only 22010988 o 197 of codes are generated with
’ J 3,486,784,401

3LDCCN. The running time is 15,550s, i.e. 4h19mn, for generating the
176,303,660,325 codes with 3SLDCCN, 15,825s, i.e. 4h24mn, for generating
the 167,224,550,101 codes with {3,4} LDCCN and 16,249s, i.e. 4h31mn, for
generating the 167,110,910,284 codes with {3,4,5} LDCCN.

6 Conclusion

We have proposed a necklace algorithm NA, unique in its class, to deter-
mine the growth function of trinucleotide circular codes. It involves several
computer techniques based on a generated trinucleotide matrix, branch prun-
ing, parallelization and different implementation hints. We are currently trying

to determine the growth function of tetranucleotides, i.e. words of 4 letters on
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3LDCCN configuration —5—
{3,4}LDCCN configuration - -G -
{3,4,5}LDCCN configuration —->—-

80 - y
| circular — & —-
= 60
- \
S i
S 40 -
Q :
< |
20 +
|
0 L,¢,,J,, I | 1 b - = J 1 1 1 T "4Gr= N B—m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Trinucleotide codes length |

Figure 7: Percentage of generated codes by the three configurations 3SLDCCN,
{3,4} LDCCN and {3,4,5} LDCC'N and circular codes compared to the num-

ber nbCode (1) = (*) x 3’ of codes.

a 4-letter alphabet, by extending the necklace algorithm NA.
Acknowledgements. We thank Prof. Giuseppe Pirillo for his advices.
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