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Abstract 

Volatility is a key parameter use in many financial applications, from derivatives 

valuation to asset management and risk management. Volatility measures the size of the 

errors made in modelling returns and other financial variables. It was discovered that, for 

vast classes of models, the average size of volatility is not constant but changes with time 

and is predictable. With the growth in the requirements of the risk management industry 

and the complexity of instruments that are used in finance, there has been a signicant 

growth in the forms of multivariate GARCH models. Multivariate ARCH/GARCH 

models and dynamic factor models, eventually in a Bayesian framework are the basic 

tools used to forecast correlations and covariances. For instance, time varying correlations 

are often estimated with Multivariate Garch models that are linear in squares and cross 

products of the data. A new class of multivariate models called dynamic conditional 

correlation (DCC) models proposed have the flexibility of univariate GARCH models 

coupled with parsimonious parametric models for the correlations. They are not linear but 

can often be estimated very simply with univariate or two step methods based on the 

likelihood function.In my paper, the general theoretical framework of GARCH models is 

presented in estimating the volatility in time series financial econometrics as well as i 

have investigated the empirical applications of the both models with respect to estimation 

implications. The two models which were investigated with R package are Engle‟s DCC 

MGarch and MGarch BEKK. 
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1  Introduction  

1.1 What is stock volatility ? 

Stock volatility is the conditional standard deviation of stock returns in statistical words. 

The explanation behind the fact that volatility is important is that it has many applications 

briefly described as below : 

 Option (derivative) pricing 

 Risk management, e.g. value at risk (VaR) 

 Asset allocation 

 Interval forecasts 

 

1.2 Properties of ARCH/GARCH Models 

Since our primary interest is modeling changes in variance because the volatility across 

markets and assets often move together over time, ARCH & GARCH models have many 

useful applications which include asset pricing models, portfolio selection, hedging, Var 

and volatility spillover among different assets and markets and modelling the temporary 

dependence of second moments among variables is challenging in financial econometrics. 

Main properties of ARCH/GARCH models are : 

 Provides improved estimations of the local variance (volatility) 

 Not necessarily concerned with better forecasts 

 Can be integrated into ARMA models 

 Useful in modeling financial time series 

 

1.3 Autoregressive Conditional Heteroscedasticity 

ARCH is invented by Engle (1982) in order to explain the volatility of inflation rates. In a 

basic ARCH (1) framework, conditional variance of a shock at time t is a function of the 

squares of past shocks. (Recall, h is the variance and Ɛ is a “shock,” “news” or “error”. 

Addingly, since the conditional variance needs to  be nonnegative, the conditions have to 

be met. If α1 = 0, then the conditional variance is constant and is conditionally 

homoskedastic.A major advantage of an ARCH model is its simplicity as well as it 

generates volatility clustering with heavy tails (high kurtosis). On the other hand, 

weaknesses can be summarized as being restrictive and providing no satisfactory 

explanation as it‟s not sufficiently adaptive in prediction. 

 

1.4 Garch Models 

The explanation of GARCH is described as below : 

 Generalized—more general than ARCH 

 Autoregressive—depends on its past 

 Conditional—variance depends on past info 

 Heteroscedasticity—non-constant variance. 

 

Because ARCH(p) models are difficult to estimate, and because decay very slowly, 

Bollerslev (1986) developed the GARCH model. GARCH models are conditionally 

heteroskedastic but have a constant unconditional variance. In a GARCH (1,1), the 
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variance (ht) is a function of an intercept (ω), a shock from the prior period (α) and the 

variance from the last period (β) : 

 
2

1 1 1 1t t th h        

 

High order Garch models are ; 

 

1.4.1 Linear Garch Variations 

a. Integrated GARCH (Engle and Bollerslev, 1986) : Phenomena is similar to 

integrated series in regular (ARMA-type) time-series. Integrated GARCH occurs 

when α+β=1. When this is the case, it means that there is a unit root in the conditional 

variance; past shocks do not dissipate but persist for very long periods of time. 

b. GARCH in Mean (Engle, Lilien and Robbins, 1987) : There is a direct relationship 

between risk and return of an asset. In the mean equation, a function of the conditional 

variance contained is usually the standard deviation. This allows the mean of a series 

to depend, at least in part, on the conditional variance of the series. 

 

1.4.2 Non-linear Garch Variations (Dozens in last 20 years)  

Linear GARCH models all allow prior shocks to have a symmetric effect on ht where as 

non-linear models allow for asymmetric shocks to volatility. Exponential GARCH (1,1) 

(EGARCH) model is developed by Nelson (1991) : 

 

Conditional Variance :  

 

1 1 1 1 1 1 1log( ) (| | [| |]) log( )t t t t th z z z h            

where /t t tz h  and is the standardized residual.   is the asymmetric component. 

 

1.5 Advantages of GARCH Models Compared to ARCH Models 

The main problem with an ARCH model is that it requires a large number of lags to catch 

the nature of the volatility, this can be problematic as it is difficult to decide how many 

lags to include and produces a non-parsimonious model where the non-negativity 

constraint could be failed. The GARCH model is usually much more parsimonious and 

often a GARCH (1,1) model is sufficient, this is because the GARCH model incorporates 

much of the information that a much larger ARCH model with large numbers of lags 

would contain. 

 

 

2  Multivariate GARCH Models 

Since the volatilities across the various markets and assets often move together over time, 

it becomes worthwhile in financial econometrics to model the temporary dependence of 

second moments among variables. Thus, we obviously can observe many useful 

applications such as asset pricing models, portfolio selection, hedging, VaR, and volatility 

spillover among different assets and markets. 
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Three approaches of MGarch are : 

1. Direct generalization of univariate Garch Model : Exponentially weighted 

covariance, Diagonal VEC Model, BEKK model 

2. Linear combinations of univariate Garch Model : Principal Component Garch 

Model, Factor Garch Model 

3. Nonlinear combinations of univariate Garch Models : Constant Conditional 

Correlation Model, Dynamic Conditional Correlation Model 

 

2.1 CCC Model Approaches 

Bollerslev (1990) : Bollerslev assumed that the conditional correlation matrix is constant 

over time. It is then desirable to test this assumption by reducing the number of 

parameters in the estimation of Mgarch models.  

Tsay (2000) :Tsay proposed a test for constant correlations. 

Bera & Kim (2002) : Bera & Kim developed a test for constancy of the correlation 

parameters in the CCC model of Bollerslev (1990). It is an information matrix-type test 

that besides constant correlations examines at the same time various features of the 

specified model.  

 

2.2 DCC Model 

DCC model is an extension of CCC Model. The assumption of Bollerslev‟s (1990) model 

that the conditional correlations are constant may seem unrealistic in many empirical 

applications. In that respect, Tse (2000), Engle and Sheppard (2001) showed that 

correlations are not constant over time. Engle (2002) and Tse and Tsui (2002) propose a 

generalization of Bollerslev‟s (1990) constant conditional correlation model by making 

the conditional correlation matrix time-dependent.  

DCC model calculates a current correlation between variables of interest as a function of 

past realizations of both the volatility between the variables & the correlations between 

them. 

 

2.3 DCC MGarch Model 

Conditional variance is:
t t t tH D R D where 

tR  is the time varying correlation matrix 

and 
tD  is estimated from the univariate GARCH model. 

The difference between the specification of Ht in DCC model and Bollerslev‟s (1990) 

CCC model is that Correlation, Rt is allowed to vary with time so that the dynamic nature 

of the correlation can be captured.  

In a four market DCC(1,1)-MGARCH(1,1) specification, the elements of the matrix D 

will take the form :  
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DCC-MGARCH uses a two-stage estimation procedure: 1-Conventional univariate 

GARCH parameter estimation for each zero mean series 2-The residuals from the first 

stage are then standardized and used in the estimation of the correlation parameters in the 

second stage.The correlation structure is given as 
* 1 * 1

1 t t tR Q QQ   

The covariance structure is specified by a GARCH type process as below:
'

1 1 1 1 1 1 1(1 ) ( )t t t tQ Q Q             where the covariance matrix is of 
tQ  is 

calculated as weighted average of Q  (the unconditional covariance of the standardized 

residuals) 
'

1 1t t    is the lagged function of the standardized residuals and 
1tQ 
 is the 

past realization of the conditional covariance. 

In DCC specification, only the first lagged realization of the covariance of the 

standardized residuals and the conditional covariance are used. This requires the 

estimation of two additional parameters, 
1  and 

1 . 
*

tQ  is a diagonal matrix whose 

elements are the square roots of the diagonal elements of 
tQ . 

Hence, for a four-market specification it would take the form: 
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The off diagonal elements in the matrix 
tR  will hence take the form 12, 11, 22,/t t tq q  

where 12,t  is the conditional correlation between market 1 and market 2. If Q  and 

'

1 1t t    are positive definite and diagonal then 
1Q  will also be positive and diagonal. 

The log likelihood for the parameter estimation in the second stage is:

' 1

1

1
( log(2 ) 2log log

2

T

t t t t t

t

L k D R R  



      where 
t  is the standardized 

residual derived from the first stage univariate GARCH estimation which is assumed to 

be i.i.d. with a mean zero a variance, ;tR  /t t th  . 
tR  is also the correlation 

matrix of the original zero mean returns. 
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2.4 Advantages of DCC Models over MGarch Models 

 The crucial point in MGARCH modeling is to provide a realistic but parsimonious 

specification of the variance matrix ensuring its positivity (Dilemma between 

flexibility and parsimony). 

 BEKK models are flexible but require too many parameters for multiple time series of 

more than four elements. 

 Diagonal VEC and BEKK models are much more parsimonious but very restrictive 

for the cross-dynamics(May be sufficient for some applications like asset pricing 

models). 

In the contrast, Factor GARCH models allow the conditional variances and covariances to 

depend on the past of all variances and covariances, but they imply common persistences 

in all these elements. DCC models allow for different persistence between variances and 

correlations, but impose common persistence in the latter. They open the door to handling 

more than a very small number of series. (extension of the CCC model which is relatively 

easy to estimate.) 

 

2.5 DCC of Engle  

This model is invented by Engle by 2002 as a generalized version of the Constant 

Conditional Correlation (CCC) model of Bollerslev [1990]. DCC of Engle belongs to a 

group of multivariate models that can be seen as nonlinear combinations of univariate 

GARCH models. It is similar to the constant conditional correlation formulation by 

Bollerslev but where the correlations are allowed to vary over time. 

Defining the variance-covariance matrix, 
tH , as 

tD  is a diagonal matrix containing the 

conditional standard deviations on the leading diagonal and 
tR  is the conditional 

correlation matrix. Forcing 
tR  to be time-invariant would lead to the constant 

conditional correlation model of Bollerslev(1990). Numerous explicit parameterisations 

of 
tR  are possible, including an exponential smoothing approach discussed in 

Engle(2002). More generally, a model of the MGARCH form could be specified as  

' '

1 1 1( )t t t tQ S ıt A B A u u B Q  

        

Where S is the unconditional correlation matrix of the vector of standardized disturbances, 
1

t t tu D   and 
tR =

1 1{ } { }t t tdiag Q Q diag Q 
. This specification for the intercept term 

simplifies estimation and reduces the number of parameters to be estimated but is not 

necessary. Engle (2002) also proposes a GARCH-esque formulation for dynamically 

modeling
2

tD . 

The model may be estimated in one single stage using maximum likelihood, although this 

will still be a difficult exercise in the context of large systems. Consequently, Engle 

advocates a two-stage estimation procedure where each variable in the system is first 

modelled separately as a univariate GARCH process and then, in a second stage, the 

conditional likelihood is maximised with respect to any unknown parameters in the 

correlation matrix. Under some regularity conditions, estimation using this two-step 

procedure will be consistent but inefficient. Other DCC models are proposed by Tse and 

Tsui [2002] or Christodoulakis and Satchell [2002]. 
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2.6 DCC Model of Tsay&Tsui(2002) 

1 2 1 1 2 1(1 )t t tR R R           
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where: 

1 2 1 2, 0, 1      , R is a symmetric N x N positive definite matrix with 
11.ii t    

is the sample correlation matrix for 
1 1( , ,..., )t M t M ta a a   

 and 
tR  is a weighted 

average of correlation matrices 
1 1( , , )t tR R  . 

 

2.7 Drawback of the Both Models  

A primary drawback of DCC models is that all conditional correlations follow the same 

dynamic structure. In addition, the number of parameters to be estimated equals (N +1)(N 

+4)/2 is large when the N is large (Bauwens et al. 2006). Therefore Engle proposes the 

estimation of the DCC model by two-step procedure. Finally, if the conditional variances 

are specified as GARCH(1,1) models then the DCC(Tsay Tsui) and DCC(Engle) models 

contain (N +1)(N +4)/2 parameters. 

 

 

3  Empirical Investigation with DCC MGarch & MGarch BEKK 

Models 

3.1 R Package for DCC Garch Model of Engle  

In our empirical study based on the DCC Garch Modelling, we firstly obtained the index 

series of €/USD parity and Dow Jones. Our data consists of the index since the 

establishment of €/USD. The data range for the variables is 04.01.1999- 10.09.2010 with 

2913 observations. 

 

Elementary Statistics of Index & Return Series :  

 

Date      Eurusd     Dowjones 

01.02.1999    Min. :0.8252  Min. :6547 

01.02.2000 1st.Qu.:1.0101  1st Qu.:9779 

01.02.2001 Median:1.2144  Median:10483 

01.02.2002 Mean: 1.1853  Mean: 10471 

01.02.2005 3rd Qu.:1.3246  3rd Qu.: 11036 

01.02.2006 Max. :1.5990  Max.: 14164 

Std deviation  0.1954816   1354.852 
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Figure 1-2 : Histogram & Trend, €/USD 

 

Figure 3-4: Boxplot & Barplot, €/USD 

 

  
Figure 5-6 : Histogram & Trend, €/USD 
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Figure 7-8: Boxplot & Barplot, €/USD 

 

 Figure 9: Log Returns, €/US 

  

 
Figure 10: Log Returns, Dow Jones 
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3.2 Estimation a DCC Garch (1,1) Model  

Total time required for DCC Garch (1,1) estimation is 3,252 seconds. 

Parameter estimates and their robust standard errors: 

  estimates  std.err 

a1  0.0033573581 0.0005474677 

a2  0.004804514 0.020184682 

a3  0.001042704 0.021362648 

A11  0.203297911  0.000670264 

A22     0.28567690 0.02646125 

  estimates  std.err 

A33  0.14982199 0.0280499 

B11  0.7441735309 0.0002195436 

B22  0.6245203  0.0158647 

B33  0.80591610 0.02070841 

ddc alph 0.010276730 0.002331534 

dcc beta 0.981004256 0.005542793 

 

Rounded results are: 

  Estimates  std.err 

a1  0.003  0.001 

a2  0.005  0.020 

a3  0.001  0.021 

A11  0.203  0.001 

A22  0.286  0.026 

A33  0.150  0.028 

B11  0.744  0.000 

B22  0.625  0.016 

B33  0.806  0.021 

dcc alpha  0.010  0.002  

ddc beta 0.981  0.006 

     

Estimation of a DCC-GARCH model by R is performed in two steps. The function 

dcc.estimation internally calls two other functions, dcc.estimation1 and dcc.estimation2, 

that carry out the first and second stage optimisation. 

 

3.3 The Results of the First Stage Estimation 

$par 

[1] 0.05794271 0.06931460 0.03229092 0.45088570 0.53448751 0.38706846 0.86265493 

[8] 0.79026595 0.89772830 

$value 

[1] -2494.872 

The results of the second stage estimation 

$par 

[1] 0.01027673 0.98100426 

$value 

[1] 3922.696 
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3.4 The Ljung-Box Test of Autocorrelation  

The Ljung-Box (LB) test statistic for serial correlations can be calculated by 

ljung.box.test. The LB test is often applied to squared residuals to detect evidence for 

ARCH effects in the time series. When this is the case, the LB test is equivalent to the 

McLeod and Li (1983) test. However, since Li and Mak (1994) found that the asymptotic 

null distribution of the McLeod and Li (1983) test statistic is not a χ2 distribution when 

the test is applied to the residuals of an estimated GARCH equation, the McLeod and Li 

(1983) test is not suitable for this purpose. 

 

Returns on Euro/USD 

Test  stat   p-value 

Lag 5  5.241644 0.387107090 

Lag 10 16.323310 0.090743786 

Lag 15 32.000282 0.006437579 

Lag 20 37.638751 0.009799530 

Lag 25 48.675302 0.003093085 

Lag 30 51.519416 0.008577117 

Lag 35 55.293454 0.015888967 

Lag 40 57.628598 0.035078579 

Lag 45 68.643648 0.013136800 

Lag 50 78.697371 0.005915012 

 

Returns on Dowjones 

test  stat   p-value 

Lag 5 40.44241 1.215955e-07 

Lag 10 51.28926 1.544369e-07 

Lag 15 78.64875 1.232630e-10 

Lag 20 105.57621 1.249477e-13 

Lag 25 125.35354 2.491965e-15 

Lag 30 129.35159 2.662721e-14 

Lag 35 144.80999 2.621617e-15 

Lag 40 147.56788 3.082578e-14 

Lag 45 176.23872 1.957236e-17 

Lag 50 184.23035 2.985796e-17 

 

3.5 The Jarque-Bera Test of Non-normality  

We compute standard and robustified skewness measures of a vector or matrix of 

variables. The LJB test is implemented by jb.test which simultaneously returns test 

statistics and associated p-values for as many time series as desired. 

 

Eur/Usd Return Series 

series 1 

standard -0.098334945 

robust  0.008442489 
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Dowjones return series 

series 1 

standard -0.005726491 

robust  0.040548877 

 

In financial econometrics, it is well-known that stock returns exhibit negative skewness 

and large excess kurtosis which is regarded as evidence for non-normality of stock return 

distribution. Kim and White (2004), however, found out in the Monte Carlo simulations 

they conducted that the conventional measures of skewness and kurtosis are extremely 

sensitive to a small number of outliers, hence propose alternative measures based on 

quantiles that are robust against the existence of outliers. The functions „‟rob.sk‟‟ and 

„‟rob.kr‟‟ return both conventional and robustified measures of skewness and excess 

kurtosis, respectively. 

 

3.6 Standard and Robustified Skewness Measures of a Vector or Matrix of 

the Variables : 

Eur/Usd Return Series 

series 1 

standard -0.098334945 

robust  0.008442489 

 

Dow Jones return series 

series 1 

standard -0.005726491 

robust   0.040548877 

 

Standard and robustified excess kurtosis  

 

Eur/Usd Return Series 

series 1 

standard 2.7671388 

robust   0.1504004 

 

Dow Jones return series 

series 1 

standard 7.1429357 

robust   0.3070175 

 

Since the difference between the Standard statistics & the robust ones are large, it implies 

that the conventional measures are affected by a small number of outliers. 

 

The Jarque-Bera test of normality 

 

Eur/Usd Return Series 

series 1 

test stat 9.337493e+02 

p-value 1.733455e-203 
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Dow Jones return series 

series 1 

test stat   6190.628 

p-value    0.000 

 

3.7 R-Project for the Analysis of Multivariate Garch Models  

Harald Schmidbauer, Vehbi Sinan Tunalioglu & Angi Rösch have presented an R 

package which tries to provide elementary functionality to build a synchronized 

multivariate time series of daily or weekly returns, on the basis of separate univariate 

level series, which need not be in sync (i.e., different days may be missing). The main 

part of the package in which diagnostic tools are also included consists of functions which 

permit the estimation of MGARCH-BEKK and related models, among them a novel 

bivariate asymmetric model which is capable of distinguishing between positive and 

negative returns. 

 

3.7.1 MGarch BEKK Model  

The conditional covariance matrix is defined as 
'

1 1 1' ' 't t t tH C C A A B H B        

where: 
'

1 1' t tA A ARCH    term 

and 

1' tB H B GARCH  term 

A significant advantage of MGarh Bekk Model is that covariance matrix must be positive 

definite. 

With parameter matrices: 

 

11 12 11 12 11 12 2

22 22 22

, ,
0 0 0

c c a a b b
C A B r

c a b


     
       
     

 

 

In a bivariate asymmetric quadratic GARCH model, the conditional covariance matrix is 

defined as 

 
' '

1 1 1 1 1 1' ' ' ( ). 't t t t w t t tH C C A A B H B S                 

with an additional parameter matrix 
11 12

220
C

  
  

 
 and a weight function 

wS : 

1 2

1 2
1 2

1 2

cos . sin .
4 4

( , ) 0.5
2

w

w e w e

S e e
e e

    
     

    


 

Both DCC & BEKK models support the hypothesis at lower probabilities of 0.1-5.0% of 

VaR by assuming a significance level of 5%. Positive definiteness of the conditional 

covariance matrix is guaranteed in both of these models, and the forecasting accuracy of 
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the two models is equivalent on the basis of empirical excess rates. However, the BEKK 

model requires estimation of 24 parameters in the case of 3 variates where as DCC model 

involves 11 parameters. 

 

3.7.2 R Package for MGarch BEKK Model  

In an environment of scarce open-source packages for MGarch fitting, mgarchBEKK is 

able to simulate and estimate bivariate BEKK models, it allows for easy specification of a 

particular model structure, and helps in the diagnostic check of the fitted model. We 

applied the MGarch BEKK Model to the same data and initiated the estimation. In the 

application of the R package contemplated by Schmidbauer , Rösch & Tunalioglu; we 

obtained the data from separate sources and then combined the data sets of two variables. 

Return series of the variables are plotted following the combination of the data process : 

 

 
Figure 11 : Return Series 

 

3.7.3 Unit Root Test (ADF) of the Eurusd Return Series  

Dickey-Fuller = -13.5778, Lag order = 14, p-value = 0.01 

Alternative hypothesis: stationary 

Unit Root Test (ADF) of the Dowjones return series: 

Dickey-Fuller = -13.5778, Lag order = 14, p-value = 0.01 

Alternative hypothesis: stationary 

Below are the plotted autocorrelation & partial autocorrelation functions of the Eurusd 

returns & the squared return series : 
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Figure 12 : ACF of Returns, €/USD 

 

 
Figure 13 : Partial ACF of Returns, €/USD 

 

The plotted autocorrelation & partial autocorrelation functions of the Dow Jones returns 

& the squared return series: 

 

 
Figure 14 : ACF of Squared Returns, €/USD 
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Figure 15 : Partial ACF of Squared Returns, €/USD 

 

Significant autocorrelation properties are detected for Dowjones squared return series as 

well as there is partial autocorrelation in the Dowjones return series. We subtracted the 

arithmetic mean from each return series of (i.e. 'mean-correct') in the data, hence 

determine a data frame with all mean-corrected returns. The estimation results of the 

mean corrected data frame by MGarch BEKK Model are described as follows : 

 

 
Figure 16 : ACF of Returns, Dow Jones 

 

 
Figure 17 : Partial ACF of Returns, Dow Jones 
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Figure 18 : ACF of Squared Returns, Dow Jones 

 

 
Figure 19 : Partial ACF of Squared Returns, Dow Jones 

 

$`1` 

[,1] [,2] 

[1,] 1.103421 1.103334e+00 

[2,] 0.000000 -8.036241e-06 

$`2` 

[,1] [,2] 

[1,] -0.598543 -0.1486507 

[2,] -0.598543 -1.0484455 

$`3` 

[,1] [,2] 

[1,] -18.23163 -18.16444 

[2,] 18.25462 18.18755 

 

Total time required for estimation is 160.578 seconds. 

 

3.7.4 AIC(Akaike Criterion Information) of the Model : 

[1] -18542.16 

The estimation results after fitting an MGJR (i.e., baqGARCH) to the first two columns 

of ret.mc where ret.mc is a dataframe with all mean-corrected returns of the variables are 

described as follows : (Initial values for the parameters are set at: 2 0 2 0.4 0.1 0.1 0.4 0.4 

0.1 0.1 0.4 0.1 0.1 0.1 0.1 0.5) 
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$`1` 

[,1] [,2] 

[1,] 0.5012854 5.012910e-01 

[2,] 0.0000000 2.780518e-08 

 

$`2` 

[,1] [,2] 

[1,] 0.306878693 0.006879249 

[2,] 0.006880917 0.306879618 

 

$`3` 

[,1] [,2] 

[1,] -6.817573 -6.988166 

[2,] 6.012838 6.183428 

 

$`4` 

[,1] [,2] 

[1,] -0.01620412 -0.01620523 

[2,] -0.01620412 -0.01620523 

 

$`5` 

[1] -5.834395 

 

Through the Optimization Method ' BFGS ' (Default), the following is estimated : 

1. residuals 

2. correlations 

3. standard deviations 

4. eigenvalues 

 

Total time required is 301.76 for the BaqGarch estimation. 

 

 

4  Conclusion  

The standard statistics & the robust ones being large imply that the conventional measures 

are affected by a small number of outliers. We also detected autocorrelations among the 

residuals with respect to returns on Euro/USD by Ljung-Box test. In regards to Dow 

Jones data, significant autocorrelation properties are detected for the squared return series 

as well as there is partial autocorrelation in the Dow Jones return series. 
Having investigated with DCC & BEKK models, we can conclude that both models 

support the hypothesis at lower probabilities of 0.1-5% of Var by assuming a significance 

level of 5%. Positive definiteness of the conditional covariance matrix is guaranteed in 

both of these models as well as the forecasting accuracy of the two models is equivalent 

on the basis of empirical excess rates. However, the BEKK model requires estimation of 

24 parameters in the case of 3 variates where as the DCC model involves 11 parameters. 
In an environment of scarce open-source packages for MGarch fitting, mgarchBEKK is 

able to simulate and estimate bivariate BEKK models, it allows for easy specification of a 

particular model structure, and helps in the diagnostic check of the fitted model.  
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