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Abstract 

In this paper, we establish the existence of the moments of a Cauchy distribution 

with parameters, a and b denoted by Cauchy ( , )a b , via a simple transformation of 

dividing with a suitable constant. As a result of this transformation every Cauchy 

( , )a b  would be distributed on the interval [-1, 1]. The results for the first four 

crude moments were given in view of their importance in obtaining the very 

important statistical measures namely variance, skewness and kurtosis. 
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1  Introduction  

The probability density function of a Cauchy distribution (cd) with the location 

parameter, a  and scale parameter b  is given by 
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Equation (1) is referred to as Cauchy ( , )a b . The standard form of (1) can be  

obtained by replacing a  with 0 and b  with 1 and is given by 
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The Cauchy distribution represents an extreme case and serves as counter 

examples for some well accepted results and concepts in statistics. For example 

the central limit theorem does not hold for the limiting distribution of the mean of 

a random sample from a Cauchy distribution [3]. Because of this special nature, 

some authors consider the Cauchy distribution as a pathological case. However, it 

can be postulated as a model for describing data that arise as n realizations of the 

ratio of two normal random variables. Other applications given in literature: [4] 

found that Cauchy distribution describes the distribution of velocity differences 

induced by different vortex elements. An application of the Cauchy distribution to 

study the polar and non-polar liquids in porous glasses is given in [5]. In [1] 

pointed out that the Cauchy distribution describes the distribution of hypocenters 

on focal spheres of earthquakes. It is shown in the paper by [7] that the source of 

fluctuations in contact window dimensions is variation in contact resistivity, and 

the contact resistivity is distributed as a Cauchy random variable. 

In spite of the wide applications of the Cauchy distribution in various fields, the 

non-existence of its moments is of huge concern inasmuch as it has undefined 

expectation value and higher moments diverge. For the expectation value, the 

integral 
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is not completely convergent, that is 

                        
2,

1
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does not exist. However the principal values 
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does exist and is equal to zero [6]. In any case the convention is to regard the 

expectation value of the Cauchy distribution as undefined. 

 Attempts had previously been made to solve the problem of non-definition of 

the Cauchy distribution through truncation. For a symmetric truncation 

,y x y    the renormalized probability density function given by 
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which has expectation value, ( ) 0E x  ,
 

and variance, ( ) 1
arctan

x
Var x

x
  , 

third central moment 3 = 0, and fourth central moment 
2

4
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The fraction of the original Cauchy distribution within the symmetric interval is 

2
( ) arctan .f x x


  

 Now the crucial question is “why would someone truncate?” simply because 

of the need to obtain a distribution whose moments are mathematically tractable. 

Therefore the purpose of this paper is to employ a simple transformation on a 

finite distribution of a Cauchy random variable in order to obtain a distribution 

whose moments are mathematically tractable. For this purpose we would consider 

the Cauchy random variable X , whose distribution is given in equation (1) and 

whose realizations are from the non-compact real space ( ). That is, a real space 

( ) without the two points,  and   [2]. That is X : r x q   , with 

,r q  or 
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                    1 0 1,..., , , ,...,r qX x x x x x            (7) 

If we let 

                  1 0 1| | | ,..., , , ,..., |m r qx Max x x x x x               (8) 

and dividing (8) by | |mx , we obtain the distribution of Y , whose values will lie 

in the interval 1 1y   , where 
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Under the transformation in (9), the probability density function (pdf) of Y is 

given by 
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where   is the pdf stabilization term which can be obtained by evaluating the 

integral in (10), equating to unity and solving for  . If 
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which implies that  

1
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b
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. 

Therefore the pdf of Y  is given by 

          2 2

1 1
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1 ( )2arctan ( )
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b
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Having obtained the pdf of Y , the next task is to obtain the first four moments of  

Y ,  ( )kE Y , 1, 2,3,4k  . Interest is limited to these moments because the basic 

statistical measures namely; mean, variance, skewness and kurtosis are obtained 

from them. For the purpose of establishing the moments, we would adopt the 

notation 
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2 Some Moments of the Cauchy Distribution Under 

Transformation 

2.1  First Moment E(Y) 

By definition  
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2.2  Second Moment E(Y2 ) 

1 12 2
2 2

2 2 2 2
1 0

12 2
2 2 2

0

( ) ( ) 2
( ) ( )

2 ln( 2 ) arctan( )

y y
E Y K y f y dy K dy K dy

b y a b y a

a b y a
K y a a b y ya

b b



  
   

  
      

 

  

 

This implies that 
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2.3  Third Moment E(Y3 )  

By definition, 
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Having obtained the moments, ( )kE Y  using the transformed distribution, one can 

obtain those of X  using 

  ( )
k k

mx E Y
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Lemma 2.1  The following expression for the mean, variance, skewness for 

1( , )a b  and kurtosis for 2 ( , )a b of a random variable Y  defined in (9) are 

given as follows: 
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Proof.  The first four cummulants ( )iK Y , 1, 2,3,4i   are given respectively by 
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 From the above four expressions for the moments of Y , we have that 
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Hence the limiting values of the kurtosis as tends to zero and b tends to infinity are 

given by 
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3  Conclusion 

Considering the non-existence of the moments of the Cauchy distribution 

with parameters a and b denoted by X  such that X  ~ Cauchy ( , )a b , 

r x q       , the fundamental findings of this study is that, we can obtain 

the moments of a Cauchy distribution through a simple transformation of dividing 
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with a suitable constant which converts X  to be distributed on the interval [-1, 1] 

denoted by Y  such that Y  ~ Cauchy ( , )a b , 1 1y   . The beauty of this 

study is that having obtained the moments of Y ~ Cauchy ( , )a b , 1 1y   , we 

can easily generate those of those of X  ~ Cauchy ( , )a b , r x q       . 
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