
Journal of Computations & Modelling, vol.3, no.2, 2013, 111-124
ISSN: 1792-7625 (print), 1792-8850 (online)
Scienpress Ltd, 2013

Mutative Genetic Algorithms

Taisir Eldos1

Abstract

Genetic Algorithms have been successfully used for a long time in solving

optimization problems in so many diversified fields. Most of the research effort

focused on devising a suitable mapping for the problem in hand, or proposing

efficient types of operations, finding an optimal set of parameters like crossover

and mutation rates, mutation step size and crossover format, or selection methods

towards optimizing the search in the sense of reducing the run time, computational

burden, escaping local minima, etc.. In this research work, we present an intensive

mutation with fitness based step size as a main player in the space exploration and

exploitation. The test results show that mutation can be as good as the crossover

operation in upgrading the population fitness, and the longer time it takes to

execute population-wide mutation pays off in terms solution quality under time

constraint and chance of getting an optimal solution, compared to the classical

genetic algorithm.

Keywords: Genetic Algorithms, Knapsack Problem, Mutation, Adaptive Operator

1 Department of Computer Engineering, Salman bin Abdulaziz University, Saudi Arabia,
 & Jordan University of Science and Technology, Jordan.

Article Info: Received : April 28, 2013. Revised : June 2, 2013
 Published online : June 20, 2013

112 Mutative Genetic Algorithms

1 Introduction

Genetic Algorithms have been applied to a wide range of problems, with

acceptable performance despite of the long run time, which is quite natural due to

its evolutionary nature. GAs are exceptionally good in solving problems with large

solution space and non-differentiable fitness landscape. Typically, they use two

basic functions to change the individuals of a population towards more fit one

generation after generation. The evolution process employs three main operators;

selection, crossover and mutation. The first operator selects the fittest individuals

to survive to the next and transfer the genetic content to new populations in each

generation, the second operators mates highly fit pairs of individuals to produce

new individuals with a good probability of having higher fitness values. Mutation,

on the other hand is a low rate unary operator; one or more of the offspring is

slightly disturbed to get a clone. Mutation is necessary to maintain an acceptable

diversification degree in the population, which might get at risk due to successive

selection of most fit individuals for crossover operations.

The encoding and parameters settings depends on the problem in hand, but

the general behavior of the Classical Genetic Algorithm can be expressed by the

following outline:

1. Choose the initial population of individuals randomly

2. Compute the fitness of each individual in the initial population

3. While Stopping Criteria = False,

3.1. Select the best-fit individuals for reproduction

3.2. Apply crossover operation to give birth to offspring

3.3. Apply mutation operation to one of the offspring

3.4. Compute the fitness of the new individuals

3.5. Replace least-fit population with new individuals

The effects of genetic operators on the search vary widely, and hence a good

mix is needed; selection alone tends to fill the population with copies of the best

Taisir Eldos 113

individuals from the population, while mutation alone induces a random walk

through the search space. However, selection and crossover operators together

tend to cause the algorithm to converge on a local optima; a good but sub-optimal

solution, while selection and mutation together create a parallel, noise-tolerant,

hill climbing algorithm. The wise use of those three operations with properly sized

population offer a search strategy with good possibility of converging at global

optima within practically reasonable amount of time. Typical sopping criteria

include; time limit, number of generations, less than threshold improvement rate,

sufficient fitness achieved, etc.

Most of the previous work in this fields assumed a relatively low rate of

mutation in an effort to mimic the nature from which the concept was borrowed;

evolutionary theorem's survival of the fittest. A typical mutation rate of 1/ n for n

binary values chromosome, and operation carried out on the offspring following a

crossover operation. Also, a light disturbance is recommended in what is known as

step size. In this research, we consider the mutation as an active player in both the

exploration and exploitation process, in its rate and step size aspects. We apply

mutation with the following three things in mind: stand alone primary operation

that gets applied to solutions rather than offspring, relatively high rate compared

to the standard genetic algorithms and typically involve every individual in the

population, and a step size that is determined by the fitness of the individual to be

mutated or cloned.

Adaptation of strategy parameters and genetic operators has become an

important and promising area of research in genetic algorithms. Today, the focus

is more on solving optimization problems using adaptive techniques as away to

cope with the dynamics of the solution spaces.

As an alternative to the fixed rate mutation, being relatively high or low, and

to the adaptive mutation operations which most of the time adapts the rate to the

dynamics of the population, the "mutative" scheme pushes the rate to the limit by

operating on every individual, but with an adaptive size.

114 Mutative Genetic Algorithms

The inspiration of this idea came from the psychology, where "mutative"

was coined by Strachey (1934) in relation to transference interpretations aimed at

modifying the superego. To achieve this not one but a great number of mutative

interpretations might be needed. Today it is more appropriate to use this happy

term in a broader sense to refer to all those procedures and events in therapy,

which bring about a shift, a change in the patient. In the context of optimization

and using genetic algorithms in particular, a patient is a low fitness solution in the

population and intensive mutation (in rate and step size) is what would bring such

a solution into a higher fitness state causing the whole population to get better,

which is highly likely to produce an optimal solution.

2 Literature Review

In 1975, John Holland laid the foundation for Genetic Algorithms (GAs),

which have been since then used as a popular alternative to the classical

optimization methodologies [1]. Since then, researchers have suggested different

static mutation probabilities for GAs. These static mutation probabilities are

derived from experience or by trial-and-error; 0.001, 0.005, 0.01, 1/n, 0.5/n, 2/n,

2.5/n, and even 1.75/(N * n 1/2), where N and n are the population size and length

of individual, respectively. It is very difficult to find an appropriate parameter

setting for the optimal performance [2].

Instead of fixed operator and parameters, an ensemble of mutation strategies

and control parameters from a pool may coexists throughout the evolution process,

to compete in offspring production. In [3], performance improvements was

demonstrated through a set of bound-constrained problems in comparison with

conventional methods and several state-of-the-art parameter adaptive variants. The

problem with this approach is that it needs pre-processing time to figure out

strategies and parameters for such a pool.

Taisir Eldos 115

Typical self-adaptation mutation starts with a small frequency, that increases

generation after generation. Tests results show success through reducing the

chance of premature convergence to a local minima due to the use of the elitism in

the selection process [4]. The mutation probability increases generation after

generation, test on knapsack problems shows that it outperforms state of the arts

algorithms [5]. A mutation operator, based on greedy search and a distortion

element [6], has increased the genetic algorithm performance in solving the TSP;

two different greedy search methods tested on 14 different TSPLIB examples have

shown more effective results in terms best and average error values. Another

adaptive mutation rate [7] makes use of the state of the sandpile and the fitness

values of the population. The results show that, at least under the proposed

framework, a genetic algorithm with the sandpile mutation self-adapts the

mutation rates to the dynamics of the problem and to the characteristics of the

base-function.

The feasibility of using adaptive operators in genetic algorithms as opposed

to using fixed parameters found using some methods of optimal ones was

examined through a set of experiments, with a conclusion that although the

adaptive genetic algorithms tend to need longer time to run, the price is worth to

pay as the time spent finding the optimal mutation operator and rate for the non-

adaptive versions can be considerable [8].

Another way to maintain sufficient diversity in the population, is a gene

based adaptive mutation scheme [9], where the information on gene based fitness

statistics and on gene based allele distribution statistics are correlated to explicitly

adapt the mutation probability for each gene locus over time. A convergence

control mechanism is combined with the proposed mutation scheme to.

Experimental results show that the proposed mutation scheme efficiently improves

the genetic algorithm performance.

A selective mutation method for improving the performances of genetic

algorithms [10], ranks individuals then mutates one bit in a part of their strings

116 Mutative Genetic Algorithms

which is selected in correspondence with their ranks. Tests on four optimization

problems have shown that it could escape local minima and find an optimal

solution faster.

However, the performance of different adaptive mutation operators depends on

the test problem and the gene level adaptive mutation operators are usually more

efficient than the population level adaptive mutation operators, as reported by [2],

in a comparative analysis of different population-level and gene-level adaptive

mutation operators for genetic algorithms based on a set of benchmark

optimization problems.

3 The Problem
As a proof of concept, the binary or 0/1 knapsack problem is used for

evaluation. The general problem can be described as follows: given two sets of n

items and m knapsack constraints (or resources), for each item j a profit jp is

assigned and for each constraint i a consumption value ijw is designated. The

goal is to determine a set of items that maximizes the total profit, not exceeding

the given constraint capacities ci. Formally:

Maximize 𝑧 = ∑ 𝑝𝑗𝑥𝑗𝑛
𝑗=1 (1)

Subject

∑ 𝑤𝑖𝑗𝑥𝑗𝑛
𝑗=1 ≤

i=1, 2,

(2)

Where 𝑥𝑗 ∈ {0,1} j=1, 2,

(3)

This problem is included in the general class of covering and packing

problems. According to Gottlieb [11], these two types of problems are structurally

equivalent since we can locate the global optima on the boundaries of the feasible

regions. In the particular case of the MKP, the feasible solutions contained on the

boundary cannot be improved since the insertion of more items will cause the

violation of resource capacities. While the uni-dimensional knapsack problem is

solvable in pseudo-polynomial time (only weakly NP-Hard), the multi-

Taisir Eldos 117

dimensional knapsack problem is strongly NP-Hard [12]. Hence, exact techniques

and exhaustive search algorithms are only of practical use in solving instances of

small size, making evolutionary algorithms more significant in instance of large

size.

4 Intensive Mutation Approach

Research in the evolutionary algorithms has focused on applying them to

specific problems, with two major lines of approach; applying a standard

implementation of an evolutionary algorithm to a new problem, and proposing

techniques to improve the performance of previous approaches. The focus has

always been on showing a way to solve a problem with these algorithms, with less

attention to how the proposed approach was able to deal with the dynamics of the

solution space.

The choice of mutation rate is a vital factor in the success of any genetic

algorithm, and for permutation representations this is compounded by the

availability of several alternative mutation operators. It is now well understood

that there is no one “optimal choice”; rather, the situation changes per problem

instance and during evolution. This is why self-adaptation pops up as a choice; it

has been proven to be successful for mutation step sizes in the continuous domain,

and for the probability of applying bitwise mutation to binary encodings, and [8]

examines whether this can translate to the choice and parameterization of mutation

operators for permutation encodings.

The proposed algorithm, Mutative Genetic Algorithm, is a two-phase

variant; in phase one we perform crossover operation only, just like classical

genetic algorithm but with no mutation, and in the second phase, perform mutation

operation only. the mutation is intensive in the sense that it involves every

individual, but with a step size inversely proportional to its fitness. The least fit

118 Mutative Genetic Algorithms

among all are dropped to maintain the population size fixed. The outline of the

proposed is depicted in the pseudo-code below:

1. Choose the initial population of individuals randomly

2. Compute the fitness of each individual in the initial population

3. Repeat on this 2-phase generation until termination (time limit, sufficient

fitness achieved, etc.):

3.1. Crossover Phase

3.1.1. Select the best-fit individuals for reproduction

3.1.2. Apply crossover operation to give birth to offspring

3.1.3. Compute the fitness of new individuals

3.1.4. Replace least-fit population with new individuals

3.2. Mutation Phase

3.2.1. Compute the mutation step size for every individual

3.2.2. Apply mutation operation to individuals with own step sizes to

create a clone

3.2.3. Compute the fitness of new individuals

3.2.4. Replace least-fit population with new individuals

The idea behind the variable step size mutation is that high fit solutions may

need only a small perturbation to get to a better state while a large perturbation is

likely to move it to a far state with possible decrease in fitness. On the other hand,

low fit solutions have not much to lose, in the sense that large perturbations are

likely to take them into better states, while small ones are likely to keep them

around the low fitness part of the solution space. However, in the unlikely event

that this leads to an unwanted outcome, they get ejected from the population soon.

This approach enhances the chances of escaping local minima that the selection

process is likely to fall into. With this in mind, we introduce a step size that is

inversely proportional to the fitness and with pre-set limit:

 () ()1 (1) max

max min

F F iS i L
F F

−
= + −

−
 (4)

Taisir Eldos 119

where S(i) is the step size of the ith solution, ()F i is the fitness of the ith solution,

minF and maxF are the minimum and maximum fitness of the population, and the

L is a limiting value, representing the largest step size, we will use / 4L n= for

an n-value string representing a solution.

The 2-phase loop of each generation takes more time than the classical 1-

phase loop due to the intensive mutation, but this extra computational burden is

greatly compensated for by the outcome after every generation, which pays off

immediately in better chance of more ones. The step size represents the amount of

change to clone an individual; in the binary knapsack problem it represents the

number of bits to be flipped. This mutation scheme adapts to the population

characteristics; when the population is highly diversified and fitness span wider

range, the step size automatically decreases, and this happens naturally in the early

stage, while it tends to enlarge when the crossover starts giving birth to quite

similar individuals.

Mutation and crossover operations are performed alternatively; the

population undergoes a crossover in a generation and mutation in the next, and

each stage involves all the individuals. In the crossover turn, the highest fit half of

the population is mated as random pairs, while in the mutation turn, every

individual is mutated with a step size determined by its fitness. the selection

process at the end of each generation maintains the population fixed.

5 Results

Tests on fitness landscape using fitness distance measures and correlation

measures have shown that the selection of a suitable representation is crucial when

solving combinatorial optimization problems, and that encodings with a strong

heuristic bias are more efficient and the addition of local optimization techniques

further enhance its performance [13]. The standard test problem sets available lack

120 Mutative Genetic Algorithms

sufficient diversity particularly in the correlation structure and the constraint

slackness settings, and using test problems that provide an insufficient breadth of

diversity leads to questionable heuristic performance generalization, particularly

since the structure of industrial problems are ill-defined [14].

To avoid encoding problems, the uni-dimensional knapsack problems is

used, due to its simple straightforward encoding, and to avoid any performance

bias due to ill-defined data sets, we opted to use Knapsack instances with random

integral values (in the range 1 to 100 for the weight and profit vectors), with low

complexity set of instances: 20, 30 and 40 objects, where the optimal solution can

be found for every instance in a reasonable amount of time, and medium

complexity: 40, 60, 80 and 100 for the best effort tests. Most of the tests were

conducted using concurrent runs of the same code on laboratory machines with i7

CPU at 3.4 GHz, 8 MB Cache and 4 GB DRAM running C programs generated

from Matlab Scripts and clock based seeds for the random number generators.

Table 1: Mutative vs. Classical Performance

 GA-Classical GA-Mutative

Quality Time

(min)

Generations Time

(min)

Generations

80% 7.15 10,234 7.30 10,076

85% 8.93 12,793 8.98 12,393

90% 11.35 16,246 10.96 15,120

95% 14.86 21,283 13.48 18,598

Table 1 shows how the proposed model performs in comparison with the

classical genetic algorithm; GA- Classical seems to perform better only when the

expectations are low, while the GA-Mutative beats it when higher quality

solutions are to be found. In this experiment, Time (min) and Generations to reach

Taisir Eldos 121

Target Quality (% of Optimal), Size=40 Objects, Capacity=1863, Optimal =3246,

and population size of 40.

Table 2 compares the performance in terms of the success rate; the

possibility of getting an optimal solution in a given amount of time. The two

versions have equal performance in problems with small size, while the mutative

version has significant increase in success rate for larger problems. We made 20

runs per instance, and population size=number of objects.

Table 2: Mutative vs. Classical Success Rate

 Success Rate

Problem Size Run Time

(min)

GA-Classical GA-Mutative

20 20 70 % 70 %

30 30 65 % 70 %

40 40 55 % 65 %

Table 3: Mutative vs. Classical Population Fitness Stats

 Final Population Stats (Values)

 Initial

Population

GA-Classical GA-Mutative

Max 1857 2982 3145

Min 1225 2743 2794

Mean 1604.6 2761.7 2974.3

Range 632 239 351

Std. Dev. 172.8 81.3 126.2

122 Mutative Genetic Algorithms

Table 3, shows the population fitness characteristics of the two algorithms,

the range (difference between max and min fitness values), stays relatively large,

which is a sign of more diversified population when read in the context of larger

standard deviation. We used 10 runs for 40 minutes each; Size=40 Objects,

Capacity=1863, Optimal=3246, and Population Size=40.

Figure 1 shows the progress of the two algorithms over time, while the

average is about the same in the early stages, the mutative algorithm (solid line)

continues to improve the population average fitness at better rates. The setting

used here is: Size=60 Objects, Capacity=2638, Optimal=3109, Population

Size=40.

Figure 1: Mutative vs. Classical, Average Fitness Against Time (min)

6 Conclusion

Compared to the classical genetic algorithm, the variable step size intensive

mutation proposed has shown slightly better performance in some aspects like the

likelihood of finding global optima, which contradicts some of the findings that

claims insignificant advantage of higher rates of mutation, and supports the

1400

1600

1800

2000

2200

2400

2600

2800

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Taisir Eldos 123

significance of adaptability in general. This opens the doors for better mutation

application towards higher performance implementation while providing a general

framework for optimization with genetic algorithms, as opposed to the genetic

algorithm variants, that tends to be problem specific, through a set of tailored

operations or parameters. While this approach is only slightly better than the

classical implementation of genetic algorithms, several tests have shown that this

improvement becomes more significant in handling larger solution spaces. Future

work may focus on using MKP benchmarks, apply to other problems like TSP,

reduce time by performing mutation every other generation, finding a better value

for the limit L. Study ergodicity trend of the algorithm using a distance measure

based homogeneity index.

References

[1] John Holland, Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control and Artificial Intelligence,

MIT Press Cambridge, MA, USA, 1992.

[2] Imtiaz Korejo, Shengxiang Yang and Changhe Li, A Comparative Study of

Adaptive Mutation Operators for Genetic Algorithms, The VIII

Metaheuristics International Conference, Hamburg, Germany, (2009).

[3] R. Mallipeddi, P. Suganthan, Q. Pan and M. Tasgetiren, Differential

evolution algorithm with ensemble of parameters and mutation strategies,

Journal of Applied Soft Computing, 11(2), (2011), 1679-1696,

doi:10.1016/j.asoc.2010.04.024

[4] Sunith Bandaru, Rupesh Tulshyan and Kalyanmoy Deb, Modified SBX and

Adaptive Mutation for Real World Single Objective Optimization, IEEE

Proceedings of Congress on Evolutionary Computation, (2011), 1335-1342.

http://dx.doi.org/10.1016/j.asoc.2010.04.024

124 Mutative Genetic Algorithms

[5] Farhad Djannaty and Saber Doostdar, A Hybrid Genetic Algorithm for the

Multidimensional Knapsack Problem, International Journal Contemporary

Mathematical Sciences, 3(9), (2008), 443-456.

[6] Murat Albayrak, Development a new mutation operator to solve the

Traveling Salesman Problem by aid of Genetic Algorithms, Journal of Expert

Systems with Applications, 38(3), Pergamon Press, Inc. NY, USA, (2011).

[7] Carlos Fernandes, Juan Laredo, Antonio Mora, Agostinho Rosa and Juan

Merelo, A Study on the Mutation Rates of a Genetic Algorithm Interacting

with a Sandpile Applications of Evolutionary Computation, Lecture Notes in

Computer Science, 6624/2011, (2011), 32-42.

[8] Martin Serpell and James Smith, Self-Adaptation of Mutation Operator and

Probability for Permutation Representations in Genetic Algorithms, Journal

of Evolutionary Computation, 18(3), MIT Press, USA, (2010).

[9] Shengxiang Yang and Sima Uyar, Adaptive mutation with fitness and allele

distribution correlation for genetic algorithms, Proceedings of the 21st ACM

Symposium on Applied Computing, (2006), 940-944.

[10] Sung Hoon Jung, Selective Mutation for Genetic Algorithms, World

Academy of Science, Engineering and Technology, 2009.

[11] Jens Gottlieb, Evolutionary Algorithms for Constrained Optimization

Problems, PhD thesis, Technical University of Clausthal, Germany, 1999.

[12] M. Garey and D. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman, New York, NY, USA, 1979.

[13] Jorge Tavares, Francisco Pereira and Ernesto Costa, Multidimensional

Knapsack Problem: The Influence of Representation, Centre for Informatics

and Systems of the University of Coimbra, Technical Report, (February,

2007).

[14] Raymond Hill and Chaitr Hiremath, Generation Methods for

Multidimensional Knapsack Problems and their Implications, Systemics,

Cybernetics, and Informatics, 5(5), (2007), 59-64.

	Typical self-adaptation mutation starts with a small frequency, that increases generation after generation. Tests results show success through reducing the chance of premature convergence to a local minima due to the use of the elitism in the selectio...

