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Abstract

Modeling the dependency between stock market returns is a diffi-
cult task when returns follow a complicated dynamics. It is not easy
to specify the multivariate distribution relating two or more return se-
ries. In this paper, a methodology based on fitting ARIMA, GARCH
and ARMA-GARCH models and copula functions is applied. In such
methodology, the dependency parameter can easily be rendered con-
ditional and time varying. This method is used to the daily returns
of five major stock markets (Telecom (TE), Sina darou (SI), Motojen
(MO), Mellat bank (ME), and Esfahan oil refinery (ES)). Then Value-
at-Risk of Tehran Stock Exchange portfolio including mentioned assets,
is estimated.
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1 Introduction

Value-at-Risk (VaR) has been one of the most popular tools for estimat-

ing market risk. VaR can provide information about the loss of a portfolio

with a given confidence level. Modeling dependence through estimating time-

varying conditional correlations between variables, is the key of portfolio con-

struction and VaR (Alexander J. McNeil, Rudiger Frey and Paul Embrechts.

(2005)). Traditionally, normal distribution was frequently assumed and corre-

lation was used to describe the dependence between random variables. But in

many cases normal distribution could not perform well. So researchers have

suggested copula functions as an effective tool for modeling the correlation

between variables. Regarding to data structure, time-varying data, usually

GARCH model (Franco Ch. and Zakoian J.(2010) and Cherubin U.,Luciano

E. and Vecchiato W. (2004)) is used to describe the dependency and together

with copula, copula-GARCH model is used to model of conditional dependen-

cies (Eric Jondeau and Micheal Rockinger (2006)). In section 2, we outline

the methodological approach. Section 3 presents a step-by-step programme

for estimating VaR of a portfolio of Tehran stock market price index.

2 Methodology

In this section some necessary concepts for estimating Tehran Market Stock

Exchange Value-at-Risk, are briefly presented.

2.1 Copula

Consider a random vector (X1, X2, . . . , Xd). Suppose its margins,F1, F2, . . . , Fd,

are continuous functions. By applying the probability integral transform to

each component, the random vector

(U1, U2, . . . , Ud) = (F1(X1), F2(X2), . . . , Fd(Xd))

has uniform margins.
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The copula of (X1, X2, . . . , Xd) is defined as the joint cumulative distribu-

tion function of (U1, U2, . . . , Ud):

C(u1, u2, . . . , ud) = P (U1 ≤ u1, U2 ≤ u2, . . . , Ud ≤ ud)

The copula C contains all information on the dependence structure between

the components of (X1, X2, . . . , Xd) whereas the marginal cumulative distri-

bution functions Fi contain all information on the marginal distributions. The

above formula for the copula function can be rewritten to correspond to this

as:

C(u1, u2, . . . , ud) = P (X1 ≤ F−1
1 (u1), X2 ≤ F−1

2 (u2), . . . , Xd ≤ F−1
d (ud))

In probabilistic terms, C : [0, 1]d → [0, 1] is a d-dimensional copula if C is

a joint cumulative distribution function of a d-dimensional random vector on

the unit cube [0, 1]d with uniform marginals.

In analytic terms (Nelsen(1999)), C : [0, 1]d → [0, 1] is a d-dimensional

copula if

(i) C(u1, . . . , ui−1, ui+1, . . . , ud) = 0,

(ii)C(1, . . . , 1, u, 1, . . . , 1) = u,

(iii) C is d-increasing.

Sklar’s theorem provides the theoretical foundation for the application of

copulas. Sklar’s theorem states that a multivariate cumulative distribution

function H(x1, . . . , xd) of a random vector (X1, . . . , Xd) with marginals Fi can

be written as

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (1)

where C is a copula.

The converse is also true: given a copula C : [0, 1]d → [0, 1] and margins

Fi then C(F1(x1), . . . , Fd(xd)) defines a d-dimensional cumulative distribution

function.

For example the Gaussian copula is a distribution over the unit cube [0, 1]d.

It is constructed from a multivariate normal distribution over Rd by using the

probability integral transform. For a given correlation matrix Σ ∈ Rd×d, the

Gaussian copula with parameter matrix Σ can be written as

CΣ(u) = ΦΣ(Φ−1(u1), . . . , Φ
−1(ud)) (2)
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where Φ−1 is the inverse cumulative distribution function of a standard normal

and ΦΣ is the joint cumulative distribution function of a multivariate normal

distribution with mean vector zero and covariance matrix equal to the corre-

lation matrix Σ .

Another famous copula family is Archimedean copula family. In practice,

Archimedean copulas are popular because they allow modeling dependence in

arbitrarily high dimensions with only one parameter, governing the strength

of dependence.

A copula C is called Archimedean if it admits the representation

C(u) = ΨΣ(Ψ−1(u1) + . . . + Ψ−1(ud)) (3)

where Ψ is the so called generator.

The above formula yields a copula if and only if Ψ is d-monotone on [0,∞),

that is, if the kth derivatives of Ψ satisfy (−1)kΨ(k)(x) ≥ 0 for all x ≥ 0 and

k = 0, 1, . . . , d− 2 and (−1)d−2Ψd−2(x) is non-increasing and convex.

The generators in Table 1 are the most popular ones. All of them are

completely monotone.

Table 1: The most popular Archimedean copulas

name ψ(t) ψ−1(t) parameter

Ali-Mikhail-Haq 1−θ
et−θ

log
(

1−θ+θt
t

)
θ ∈ [0, 1)

Clayton (1 + θt)−1/θ 1
θ
(t−θ − 1) θ ∈ (0,∞)

Frank − log(1−(1−e−θ))e−t

θ
−log( e−θt−1

e−θ−1
) θ ∈ (0,∞)

Gumbel exp(−t1/θ) (−log(t))θ θ ∈ [1,∞)

Joe 1− (1− e−t))1/θ −log(1− (1− t)θ) θ ∈ [1,∞)

2.2 Value-at-Risk

Given a confidence level α ∈ (0, 1) , the VaR of the portfolio at the confi-

dence level α is given by the smallest number such that the probability that

the loss L exceeds l is at most (1−α) (Alexander J. McNeil, Rudiger Frey and

Paul Embrechts. (2005)). Mathematically, if L is the loss of a portfolio, then

V aRα(L) is the level α-quantile, i.e.

V aRα(L) = inf{l ∈ R; P (L > l) ≤ 1− α} = inf{l ∈ R; FL(l) ≥ α} (4)
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Risk managers typically assume that some fraction of the bad events will have

undefined losses, either because markets are closed or illiquid, or because the

entity bearing the loss breaks apart or loses the ability to compute accounts.

Therefore, they do not accept results based on the assumption of a well-defined

probability distribution. On the other hand, many academics prefer to assume

a well-defined distribution, usually one with fat tails. This point has probably

caused more contention among VaR theorists than any other.

In this paper the VaR of a portfolio return is considered. This portfolio

includes some assets, Xi, (i = 1, ..., d) and the portfolio return, Rpt, is equal to

Rpt =
d∑

i=1

γiXi,t (5)

where Xi,t is the value of ith asset at time t, and the coefficient γi(i = 1, ..., d)

should be such that
∑d

i=1 γi = 1.

2.3 Generalized AutoRegressive Conditional Heteroskedas-

ticity (GARCH) models

AutoRegressive Conditional Heteroskedasticity (ARCH) models are used

to characterize and model observed time series. They are used whenever there

is reason to believe that, at any point in a series, the terms will have a charac-

teristic size, or variance. In particular ARCH models assume the variance of

the current error term or innovation to be a function of the actual sizes of the

previous time periods error terms: often the variance is related to the squares

of the previous innovations.

Suppose one wishes to model a time series using an ARCH process. Let

εt denote the error terms (return residuals, with respect to a mean process)

i.e. the series terms. These εt are split into a stochastic piece and a time-

dependent standard deviation σt characterizing the typical size of the terms so

that εt = σtzt. The random variable zt is a strong White noise process. The

series σ2
t is modeled by

σ2
t = α0 + α1ε

2
t−1 + ... + αqε

2
t−q = α0 +

q∑
i=1

αiε
2
t−i (6)

Where α0 > 0 and αi ≥ 0, i > 0 (Franco Ch. and Zakoian J.(2010)).
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An ARCH (q) model can be estimated using ordinary least squares. A

methodology to test for the lag length of ARCH errors using the Lagrange

multiplier test was proposed by Engle (1991). This procedure is as follows:

1. Estimate the best fitting autoregressive model AR(q)

yt = α0 + α1yt−1 + ... + αqyt−q + εt = α0 +

q∑
i=1

αiyt−i + εt

2. Obtain the squares of the error ε̂2 and regress them on a constant and

q lagged values

ε̂2
t = α̂0 +

q∑
i=1

α̂iε̂
2
t−i

where q is the length of ARCH lags.

3.The null hypothesis is that, in the absence of ARCH components, we have

αi = 0 for all i = 1, ..., q. The alternative hypothesis is that, in the presence

of ARCH components, at least one of the estimated αi coefficients must be

significant.

If an AutoRegressive Moving Average model (ARMA model) is assumed

for the error variance, the model is a Generalized AutoRegressive Conditional

Heteroskedasticity (GARCH) model.

In that case, the GARCH(p,q) model (where p is the order of the GARCH

terms σ2 and q is the order of the ARCH terms ε2 is given by

σ2
t = α0+α1ε

2
t−1+...+αqε

2
t−q+β1σ

2
t−1+...+βpσ

2
t−p = α0+

q∑
i=1

αiε
2
t−i+

p∑
i=1

βiσ
2
t−i

(7)

Generally, when testing for heteroskedasticity in econometric models, the best

test is the White test. However, when dealing with time series data, this means

to test for ARCH errors in (6) and GARCH errors in (7).

The lag length p of a GARCH (p,q) process is established in three steps:

1. Estimate the best fitting AR(q) model of equation 3.

2. Compute and plot the sample autocorrelations of ε2 by

ρ(i) =
ΣT

t=i+1(ε̂
2
t − σ̂2

t )(ε̂
2
t−1 − σ̂2

t−1)

ΣT
t=1(ε̂

2
t − σ̂2

t )
2
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3. For large samples, standard deviation of ρ(i) is 1/
√

T . Individual val-

ues that are larger than this indicate GARCH errors. To estimate the

total number of lags, use the Ljung-Box test until the value of these

are less than, say, 10% significant. The Ljung-Box Q-statistic follows

χ2distribution with n degrees of freedom if the squared residuals ε2
t are

uncorrelated. It is recommended to consider up to T/4 values of n. The

null hypothesis states that there are no ARCH or GARCH errors. Re-

jecting the null thus means that there are existing such errors in the

conditional variance.

Assuming the density f of the strong white noise zt is known, and given

the observations ε1, . . . , εT the conditional likelihood function is defined as:

LT,f (θ|{εt}) = ΠT
t=1

1

σ̂2
t

f(
εt

σ̂2
t

) (8)

Where θ is the vector of the parameters that is estimated for conditional mean

and variance and σ̂2
t is recursively defined by (7). A maximum likelihood

estimator (MLE) is obtained by maximizing the likelihood function defined by

(8).

3 Data analysis

The applications of copulas in quantitative finance are numerous, both in

the real-world probability of risk/portfolio management and in the risk-neutral

probability of derivatives pricing. Here, we estimate the joint density of the

five main assets in the Tehran stock exchange, based on the data from 22 June

2010 to 23 March 2011, using the methodology described above, and we use

this estimated joint density to compute the VaR. Each univariate process is

modeled with GARCH(p,q) model selected using the AIC criterion and an

appropriate marginal distribution is chosen for the residuals. After estimating

the parameters, an appropriate copula , is fitted for all series residuals.

The data set is the value of the following assets during 22 June 2010 to 23

March 2011:

Telecom (TE), Sina daroo (SI), Motojen (MO), Mellat bank (ME) and

Esfahan oil refinery (ES).
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Table 2 shows the summary statistics on daily returns about the mentioned

assets.

Table 2: Summary statistics on daily returns

TE SI MO ME ES

Mean 0.0031 0.0026 0.0046 0.0013 -0.0008

(0.0015) (0.0042) (0.0074) (0.0021) (0.0043)

Std 0.0194 0.0538 0.0944 0.0273 0.0546

Skewness -0.1845 -0.1368 -0.5235 -1.1429 0.5720

Kurtosis 0.0975 3.0769 8.7104 9.6452 6.3256

Correlation matrix

TE 1 0.1418 0.0951 -0.0381 0.0228

SI 0.1418 1 0.0260 0.2286 0.1689

MO 0.0951 0.0260 1 -0.08148 -0.1859

ME -0.0381 0.2286 -0.08148 1 0.2909

ES 0.0228 0.1689 -0.1859 0.2909 1

3.1 Fitting ARMA-GARCH

Each of time series has been considered separately. Table 3 shows the values

of test statistics for ARIMA, GARCH and ARMA-GARCH models residuals

and Table 4 shows the best model characterized for each of them.

Table 3: Values of test statistics for ARMA/GARCH models residuals

TE SI MO ME ES

LM Arch Test(TR22) 2.4696 a 0.4608 2.8766 5.8340

p-Values (0.9983) a (0.9999) (0.9963) (0.9242)

QW(10) for R 4.8990 a 8.2820 4.6730 10.5474

p-Values (0.8978) a (0.6003) (0.9119) (0.3938)

QW(10) for R2 1.7618 a 0.3510 2.9921 6.7104

p-Values (0.9979) a (0.9999) (0.9816) (0.7525)

a.ARMA(0,4)
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Table 4: The best model for each of the assets
asset model

TE arma(0,1)+garch(1,1)

SI arma(0,4)

MO garch(1,1)

ME garch(1,1)

ES arma(0,1)+garch(1,0)

3.2 Selecting the Marginal Distributions

After specifying model for each asset (TE, SI, MO, ME and ES) it is neces-

sary to fit an appropriate marginal distribution to the residuals. Some known

distributions (normal, t-Student, skewed t-Student, skewed generalized error,

generalized error, Cauchy, skewed normal and ... ) has been fitted to them,

and by Anderson-Darling statistic the model adequacy has been considered.

The best marginal distribution has been characterized by AIC criteria showing

in Table 5.

Table 5: The marginal distribution of asset residuals
Asset Marginal distribution Anderson-Darling

( estimated parameter ) test statistic

TE T-Student 1.437077

(mean=0.053, sd=1.07,d.f.=3)

SI Normal 1.945678

(mean= 6.181236e-06,sd= 0.045)

MO T-Student 1.037849

(mean= 0.044, sd= 0.86, d.f.=3)

ME Skewed generalized error 2.511184

( mean= -8.173e-14, sd= 1.22e-01, d.f.=1, γ = 1)

ES Skewed T-Student 1.656944

(mean=0.167, sd= 1.13, d.f=3, γ = 1.55)
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3.3 Modeling dependency (Copula selecting)

The copula families used in modeling the data are: Frank, Joe, Clayton,

AMH, Gumble, T-student and Normal, for details on these classes see Nelsen

(1999). The choice of copula models is partly based on previous analysis,

tractability. In this step, to all assets residuals, with selected marginal distri-

butions, seven mentioned copula models were fitted (Fermanian,J.D. (2005)),

the suitable ones are determined in Table 6 and by Cramer-Von Mises test cri-

teria, there were two suitable copulas, T-student and Normal. Between these

two copulas, by AIC criteria (AIC(T-student)= -1.881099 that is less than

AIC(Normal)= 5.877649), it was found that Normal copula is more suitable

for five assets residuals as their joint distribution.

Table 6: The Cramer-Von Mises test statistic values
copula Cramer-Von Mises test statistic sig.

Frank 0.3456018 sig. < 0.01

Joe 0.3530452 sig. < 0.01

Clayton 0.3570421 sig. < 0.01

AMH(Ali-Mikhail-Hag) 0.367845 sig. < 0.01

Gumble 0.3465347 sig. < 0.01

T- Student 0.04091816 sig. > 0.2

Normal 0.03493014 sig. > 0.2

3.3.1 Estimating the Copula Parameters

After selecting the Normal copula as the joint distributions for five assets

residuals marginals, it is necessary to estimate its parameters. The maximum

likelihood method is used. Maximization can be performed by Newton method

on the first derivative or by an interval search. The parameter estimates for

Normal copula models are reported in Table 7.
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Table 7: Parameters estimates for Normal copula

ρ TE SI MO ME ES

TE 1 0.1917 0.1008 -0.0027 -0.0342

SI 1 0.1384 0.0591 0.1013

MO 1 -0.0736 0.0277

ME 1 -0.0016

ES 1

Mean 0.7693 0.01768 0 0 -0.0001

Variance 0.0349 1 0.0461 0.0066 0.01791

3.4 Estimating Value at Risk

Now the question is how to compute the Value-at- Risk of a portfolio us-

ing copulas. In order to minimize the portfolio variance, lagrange multipliers

method is used and estimation of coefficients are obtained in the following

table:

Table 8: The results of Coefficient of assets
Asset Coefficient of assets

TE 4.484788e-10

SI 9.245571e-01

MO 2.101806e-04

ME 7.523272e-02

ES 5.681134e-09

By assuming Normal copula fitted to the data and substituting the table 8

coefficients, VaR is estimated for two levels α = 0.01 and α = 0.05 as follows.

P (Rportfolio < V aRportfolio = 0.1021410904) = 0.99

and

P (Rportfolio < V aRportfolio = 0.0592324264) = 0.95

where

Rportfolio = (4.484788e− 10)TE + (9.245571e− 01)SI + (2.101806e− 04)MO +

+ (7.523272e− 02)ME + (5.681134e− 09)ES.
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