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Periodical Rivers
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Abstract

In this paper, we prove the existence of periodical solutions for a
vector field Lθ of the plan, presenting periodically saddle-points. The
main interest is devoted to the slow-fast vector field of R3 studied in
the paper [5].
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1 Introduction

In the literature many authors are interested in the slow-fast vector fields

of the plan presenting critical points of Morse’s type (or saddle point) [1], [2]

and river type solutions [3],[4]. In the present study, we give an example of
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plan field Lθ presenting a priori periodically saddle points. We show in this

paper the transition between plan systems and R3 systems vector fields with

primary integrals. This allows us to show the existence of periodic solutions

of Lθ from the existence of limit cycles of Eε.

2 Problematic

Let us consider the following system

Eε





x′ = −y

y′ = x

εz′ = y2 − z2

(1)

as a local model for a system:

Eε





x′ = Q(x, y)

y′ = P (x, y)

εz′ = h1(y, z)h2(y, z)

where ε is a small positive parameter, P and Q of class S1, satisfying the

following hypothesis : the primitives of Pdx−Qdy = 0 are primary integrals.

h1and h2 standard functions verifying close to the critical points the following

conditions:

Jac(h1, h2) 6= 0,
−−→
gradh1 =

−−→
gradh2, h′1z = h′2z

The fold is defined by h1(y, z) = h2(y, z) = 0. The system (1) is a slow-fast

vector field, with a slow-manifold’s equation y2 − z2 = 0; it admits primary

integral F (x, y) = x2 + y2.

Let be the standard cylinder’s equation : x2 + y2 = ρ2, then the critical

points A1 (ρ, 0, 0) , A2 (−ρ, 0, 0) belonging to the fold (fold’s equation : z =

0, y = 0) are Morse’s points.

According the proposition 4.3 in [5], A1, A2 are Morse’s point of false canard

type (because P = x and h = 0 see [5]) and the curve C of equation

{
z = |y|

x2 + y2 = ρ2
is positively stable.
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Figure 1: intersection of the cylinder and the slow manifold

Noting by C ′, the reflection curve of C across the plan z = 0, is given by

the equation C ′ : {
z = − |y|

x2 + y2 = ρ2

Proposition 2.1. for any ρ positive, Eε admits two closed orbits, the first

one in the halo of C, the second one in the halo of C ′ (see Figure 1).

Proof. It’s sufficient to prove for ρ standard since the property is internal.

A1, A2 are of Morse’s type (by the proposition 4.3 [5]) with false-canards.

In the neighborhood of A1, V ′
a which is an equivalent system to Eε is ex-

pressed by :

(V ′
a)





w′ =

√
ρ2 − (εv+w)2

4
− wv

εv′ =

√
ρ2 − (εv+w)2

4
+ wv

(II)

the reduced system is:

(V ′
a)





w′ =
√

ρ2 − w2

4
− wv

0 =
√

ρ2 − w2

4
+ wv

(II0)

The system (II0) is an integrable one, the equation of the slow-curve Cl is:

k (w, v) =
√

ρ2 − w2

4
+ wv, it does not admit critical points since k (w, v) =

∂vk (w, v) = 0 does not have solutions.
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Hence the fields (II) and (II0) are equivalent in the halo of C.l and the

trajectories of (II0) are shadows of trajectories of (II) .

The equation of C
′
1 in the plan (w, v) is: v =

√
ρ2

w2 − 1
4

with−2ρ ≺ w ≺ 0.

2.1 Application of the cross-section

Let consider a Poincaré’s section S with the cylinder F (x, y) = ρ2 (see

Figure 3), we choose S as the plan x + y = 0, denoting by ∆ the intersection

of S with the cylinder, then ∆ corresponds in the plan (w, v) to a straight line

of equation v + w = −ρ
√

2(see Figure 2).

Figure 2:

Let (I) be an interval containing z′0(z
′
0 = −y0), such z′0 is the unique point

belonging to the slow manifold S.l (see figure 3, I is limited by two brackets).

(I) is transverse to C and to the field Eε, from a point of (I), a path of Eε

cross after a period (2π), because the cylinder is an invariant manifold and the

functions x(t) and y(t) are 2π periodic.

denoting by I+ = {(x, y, z) ∈ I / y2 − z2 ≺ 0} and I− = {(x, y, z) ∈
I/y2 − z2 º 0}.

The return map T leaves invariant the first two components of a point

P ∈ I .

Let be P0(x0, y0, z0) ∈ I such that z(0) = z0, T (z0) = z(2π) and succes-

sively, we define T k(z0) = z(2kπ), and thus the recursive sequence zk+1 =

T (zk).
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Figure 3: Poincare’s section

First case: If P0ε I+ with the condition y2
0−z2

0 ¿ 0 (i.e y2
0−z2

0 non infinitely

small and negative), since the flows is fast, the trajectory Γ0 crossing P0 is such

that z is decreasing.

The sequence z0
k is decreasing bounded below by z

′
0 (see Figure 2) since Γ0

rushes to C
′
1 in infinitely small time in the vicinity of w = −2ρ and remain

alongside the latter before overlap I+.

Second case: Let be P1(x0, y0, z1)ε I− such that z(0) = z1, the trajectory

Γ1 crossing P1 is such that z is increasing. So the sequence z1
k is increasing

bounded above by the previous sequence z0
k since we have: ∀j ≥ 0,∀k ≥ 0

z1
j ≤ z0

k.

The relationship holds for j = k = 0, if there exists k, j , such that

k ≤ j, then Γ0 intersects Γ1 on the cylinder, which is absurd (because of the

uniqueness of the trajectory of the Cauchy’s problem).

The Poincare’s return map is defined as S-continuous on I, since by two

points infinitely close in I the paths have the same shadow.

The sequences z1
j and z0

k converge, and therefore T admits a fixed point l

as the limit of z0
k.

Ca(x(t), y(t), l(t)) is a closed orbit (called attractive cycle).

Substitution of the time parameter (ie t = −t), leads to a change of the

orientation’s field, and by the same process we deduce the existence of the

cycle Cr for the field −Eε which is repellent for Eε.

Cr is located in the halo of C
′
.
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Proposition 2.2. ( Existence of limit cycles for E) The unperturbed

system: E





X ′ = −Y

Y ′ = X

Z ′ = Y 2 − Z2

admits two closed orbits.(see Figure 4)

Proof. It has been shown that Eε admits two closed orbits (attractive cycle)

and (repelling cycle) in the proposition 1 for ε infinitely small.

denoting by Kε = {ε Â 0/ Eεadmits 2 cycles } is an internal set not empty

since it contains infinitely smalls numbers.

Kε ⊃ { ε Â 0/ ε i.small} = Half-halo positive of 0, wich is strictly external.

By ”Permanence lemma” Kε contains at least one standard α Â 0.

Therefore Eα admits two closed orbits, but Eα is simply a scaling standard,

so it does not distort the topological form of paths.

denote by x = αX, y = αY, z = αZ, we find E.

Figure 4: Figures of the two cycles in (x,y,z) for E

Consequences: Existence of periodical solutions for the plan vector field Lθ

Let be the plan vector field : Lθ

{
θ′ = 1

Z ′ = ρ2 sin2(θ)− Z2
, it admits two

periodic solutions.(see Figure 5)

Proof. Lθ is 2π periodic in θ, as seen in R3 on the plan ρ = const is a trans-

formation [modulo 2π] of the vector field (E) in cylindrical coordinates.

The cycles Ca and Cr correspond to periodical solutions; the first one at-

tractive and the other repulsive of system Lθ, we qualify them periodical rivers.
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Figure 5: Periodic rivers for Lθ

3 Conclusion

In this paper, the transition between differential systems of R3 with primary

integrals and the one parameter field of the plan, can be usefull, such as the

previous example (result 2) In the treated example we note that the existence

of periodic solutions of plan systems Lθ depends on the nature of the critical

points P.N.P.S (see definition on [5],[6]).

The results can be generalized to perturbations of Lθ of type:

Lθ

{
θ′ = 1

Z ′ = ρ2 sin2(θ)− Z2 + εh(θ, ρ, z)
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