Theoretical Mathematics \& Applications, vol.3, no.1, 2013, 11-18
ISSN: 1792-9687 (print), 1792-9709 (online)
Scienpress Ltd, 2013

Periodical Rivers

M.Z. Hadadine ${ }^{1}$, L. Belaib ${ }^{2}$ and R. Bebbouchi ${ }^{3}$

Abstract

In this paper, we prove the existence of periodical solutions for a vector field L_{θ} of the plan, presenting periodically saddle-points. The main interest is devoted to the slow-fast vector field of \mathbb{R}^{3} studied in the paper [5].

Mathematics Subject Classification : 34D10,34D15,34D20
Keywords: Canards trajectories; singular perturbations; Morse form; Slowfast vector eld; Non standard analysis; Poincares return maps

1 Introduction

In the literature many authors are interested in the slow-fast vector fields of the plan presenting critical points of Morse's type (or saddle point) [1], [2] and river type solutions [3],[4]. In the present study, we give an example of

[^0]Article Info: Received : December 20, 2012. Revised : January 30, 2013
Published online : April 15, 2013
plan field L_{θ} presenting a priori periodically saddle points. We show in this paper the transition between plan systems and \mathbb{R}^{3} systems vector fields with primary integrals. This allows us to show the existence of periodic solutions of L_{θ} from the existence of limit cycles of E_{ε}.

2 Problematic

Let us consider the following system

$$
E_{\varepsilon}\left\{\begin{align*}
x^{\prime} & =-y \tag{1}\\
y^{\prime} & =x \\
\varepsilon z^{\prime} & =y^{2}-z^{2}
\end{align*}\right.
$$

as a local model for a system:

$$
E_{\varepsilon}\left\{\begin{aligned}
x^{\prime} & =Q(x, y) \\
y^{\prime} & =P(x, y) \\
\varepsilon z^{\prime} & =h_{1}(y, z) h_{2}(y, z)
\end{aligned}\right.
$$

where ε is a small positive parameter, P and Q of class S^{1}, satisfying the following hypothesis : the primitives of $P d x-Q d y=0$ are primary integrals. h_{1} and h_{2} standard functions verifying close to the critical points the following conditions:

$$
\operatorname{Jac}\left(h_{1}, h_{2}\right) \neq 0, \overrightarrow{\operatorname{grad}_{1}}=\overrightarrow{\operatorname{grad} h_{2}}, h_{1 z}^{\prime}=h_{2 z}^{\prime}
$$

The fold is defined by $h_{1}(y, z)=h_{2}(y, z)=0$. The system (1) is a slow-fast vector field, with a slow-manifold's equation $y^{2}-z^{2}=0$; it admits primary integral $F(x, y)=x^{2}+y^{2}$.

Let be the standard cylinder's equation : $x^{2}+y^{2}=\rho^{2}$, then the critical points $A_{1}(\rho, 0,0), A_{2}(-\rho, 0,0)$ belonging to the fold (fold's equation : $z=$ $0, y=0$) are Morse's points.

According the proposition 4.3 in [5], A_{1}, A_{2} are Morse's point of false canard type (because $P=x$ and $h=0$ see [5]) and the curve C of equation

$$
\left\{\begin{aligned}
z & =|y| \\
x^{2}+y^{2} & =\rho^{2}
\end{aligned}\right. \text { is positively stable. }
$$

Figure 1: intersection of the cylinder and the slow manifold

Noting by C^{\prime}, the reflection curve of C across the plan $z=0$, is given by the equation C^{\prime} :

$$
\left\{\begin{aligned}
z & =-|y| \\
x^{2}+y^{2} & =\rho^{2}
\end{aligned}\right.
$$

Proposition 2.1. for any ρ positive, E_{ϵ} admits two closed orbits, the first one in the halo of C, the second one in the halo of C^{\prime} (see Figure 1).

Proof. It's sufficient to prove for ρ standard since the property is internal. A_{1}, A_{2} are of Morse's type (by the proposition 4.3 [5]) with false-canards.

In the neighborhood of A_{1}, V_{a}^{\prime} which is an equivalent system to E_{ϵ} is expressed by :

$$
\left(V_{a}^{\prime}\right)\left\{\begin{array}{r}
w^{\prime}=\sqrt{\rho^{2}-\frac{(\epsilon v+w)^{2}}{4}}-w v \tag{II}\\
\epsilon v^{\prime}=\sqrt{\rho^{2}-\frac{(\epsilon v+w)^{2}}{4}}+w v
\end{array}\right.
$$

the reduced system is:

$$
\left(V_{a}^{\prime}\right)\left\{\begin{aligned}
w^{\prime} & =\sqrt{\rho^{2}-\frac{w^{2}}{4}}-w v \\
0 & =\sqrt{\rho^{2}-\frac{w^{2}}{4}}+w v
\end{aligned}\left(I I_{0}\right)\right.
$$

The system $\left(I I_{0}\right)$ is an integrable one, the equation of the slow-curve Cl is: $k(w, v)=\sqrt{\rho^{2}-\frac{w^{2}}{4}}+w v$, it does not admit critical points since $k(w, v)=$ $\partial_{v} k(w, v)=0$ does not have solutions.

Hence the fields $(I I)$ and $\left(I I_{0}\right)$ are equivalent in the halo of C.l and the trajectories of $\left(I I_{0}\right)$ are shadows of trajectories of $(I I)$.
The equation of C_{1}^{\prime} in the plan (w, v) is: $v=\sqrt{\frac{\rho^{2}}{w^{2}}-\frac{1}{4}}$ with $-2 \rho \prec w \prec 0$.

2.1 Application of the cross-section

Let consider a Poincaré's section S with the cylinder $F(x, y)=\rho^{2}$ (see Figure 3), we choose S as the plan $x+y=0$, denoting by Δ the intersection of S with the cylinder, then Δ corresponds in the plan (w, v) to a straight line of equation $v+w=-\rho \sqrt{2}$ (see Figure 2).

Figure 2:

Let (I) be an interval containing $z_{0}^{\prime}\left(z_{0}^{\prime}=-y_{0}\right)$, such z_{0}^{\prime} is the unique point belonging to the slow manifold S.l (see figure 3, I is limited by two brackets).
(I) is transverse to C and to the field E_{ε}, from a point of (I), a path of E_{ε} cross after a period (2π), because the cylinder is an invariant manifold and the functions $x(t)$ and $y(t)$ are 2π periodic.
denoting by $I^{+}=\left\{(x, y, z) \in \mathrm{I} / y^{2}-z^{2} \prec 0\right\}$ and $I^{-}=\{(x, y, z) \in$ $\left.I / y^{2}-z^{2} \succeq 0\right\}$.

The return map T leaves invariant the first two components of a point $P \in I$.

Let be $P_{0}\left(x_{0}, y_{0}, z_{0}\right) \in I$ such that $z(0)=z_{0}, T\left(z_{0}\right)=z(2 \pi)$ and successively, we define $T^{k}\left(z_{0}\right)=z(2 k \pi)$, and thus the recursive sequence $z_{k+1}=$ $T\left(z_{k}\right)$.

Figure 3: Poincare's section

First case: If $P_{0} \in \mathrm{I}^{+}$with the condition $y_{0}^{2}-z_{0}^{2} \ll 0\left(\right.$ i.e $y_{0}^{2}-z_{0}^{2}$ non infinitely small and negative), since the flows is fast, the trajectory Γ_{0} crossing P_{0} is such that z is decreasing.

The sequence z_{k}^{0} is decreasing bounded below by z_{0}^{\prime} (see Figure 2) since Γ_{0} rushes to C_{1}^{\prime} in infinitely small time in the vicinity of $w=-2 \rho$ and remain alongside the latter before overlap I^{+}.

Second case: Let be $P_{1}\left(x_{0}, y_{0}, z_{1}\right) \in \mathrm{I}^{-}$such that $z(0)=z_{1}$, the trajectory Γ_{1} crossing P_{1} is such that z is increasing. So the sequence z_{k}^{1} is increasing bounded above by the previous sequence z_{k}^{0} since we have: $\forall j \geq 0, \forall k \geq 0$ $z_{j}^{1} \leq z_{k}^{0}$.

The relationship holds for $j=k=0$, if there exists k, j, such that $k \leq j$, then Γ_{0} intersects Γ_{1} on the cylinder, which is absurd (because of the uniqueness of the trajectory of the Cauchy's problem).

The Poincare's return map is defined as S-continuous on I, since by two points infinitely close in I the paths have the same shadow.

The sequences z_{j}^{1} and z_{k}^{0} converge, and therefore T admits a fixed point l as the limit of z_{k}^{0}.
$C_{a}(x(t), y(t), l(t))$ is a closed orbit (called attractive cycle).
Substitution of the time parameter (ie $t=-t$), leads to a change of the orientation's field, and by the same process we deduce the existence of the cycle C_{r} for the field $-E_{\varepsilon}$ which is repellent for E_{ε}.
C_{r} is located in the halo of C^{\prime}.

Proposition 2.2. (Existence of limit cycles for E) The unperturbed system: $E\left\{\begin{array}{c}X^{\prime}=-Y \\ Y^{\prime}=X \\ Z^{\prime}=Y^{2}-Z^{2}\end{array}\right.$ admits two closed orbits.(see Figure 4)

Proof. It has been shown that E_{ε} admits two closed orbits (attractive cycle) and (repelling cycle) in the proposition 1 for ε infinitely small.
denoting by $\mathrm{K}_{\varepsilon}=\left\{\varepsilon \succ 0 / E_{\varepsilon}\right.$ admits 2 cycles $\}$ is an internal set not empty since it contains infinitely smalls numbers.
$\mathrm{K}_{\varepsilon} \supset\{\varepsilon \succ 0 / \varepsilon i . s m a l l\}=$ Half-halo positive of 0 , wich is strictly external.
By "Permanence lemma" K_{ε} contains at least one standard $\alpha \succ 0$.
Therefore E_{α} admits two closed orbits, but E_{α} is simply a scaling standard, so it does not distort the topological form of paths.
denote by $x=\alpha X, y=\alpha Y, z=\alpha Z$, we find E.

Figure 4: Figures of the two cycles in ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) for E

Consequences: Existence of periodical solutions for the plan vector field L_{θ}
Let be the plan vector field : $L_{\theta}\left\{\begin{array}{c}\theta^{\prime}=1 \\ Z^{\prime}=\rho^{2} \sin ^{2}(\theta)-Z^{2}\end{array}\right.$, it admits two periodic solutions.(see Figure 5)

Proof. L_{θ} is 2π periodic in θ, as seen in \mathbb{R}^{3} on the plan $\rho=$ const is a transformation [modulo 2π] of the vector field (E) in cylindrical coordinates.

The cycles C_{a} and C_{r} correspond to periodical solutions; the first one attractive and the other repulsive of system L_{θ}, we qualify them periodical rivers.

Figure 5: Periodic rivers for L_{θ}

3 Conclusion

In this paper, the transition between differential systems of \mathbb{R}^{3} with primary integrals and the one parameter field of the plan, can be usefull, such as the previous example (result 2) In the treated example we note that the existence of periodic solutions of plan systems L_{θ} depends on the nature of the critical points P.N.P.S (see definition on $[5],[6]$).

The results can be generalized to perturbations of L_{θ} of type:

$$
L_{\theta}\left\{\begin{array}{c}
\theta^{\prime}=1 \\
Z^{\prime}=\rho^{2} \sin ^{2}(\theta)-Z^{2}+\varepsilon h(\theta, \rho, z)
\end{array}\right.
$$

References

[1] V. Gautheron and E. Isambert, Finitely Differentiable Ducks and Finite Expansions, Proceedings of a Conference held in Luminy, France, March 5-10, (1990), 14-19.
[2] E. Benoît, Canards et enlacements, Publ. Math. Inst. Hautes Etudes Sci, 72, (1985), (1990) 63-91.
[3] S.N. Samborski, Rivers from the Point of View of the Qualitative Theory, Proceedings of a Conference held in Luminy, France, March 5-10, (1990).
[4] I.P. van den Berg, Macroscopic Rivers, Proceedings of a Conference held in Luminy, France, March 5-10, (1990).
[5] M.Z. Hadadine and L.Belaib, A non generic case of differential system of \mathbb{R}^{3}, Applied mathematical sciences, 6(100), (2012), 4955-4964.
[6] E. Benoît, Canards de \mathbb{R}^{3} These, Paris VII, 1984.

[^0]: ${ }^{1}$ Department of Mathematics and Informatics USTOMB, Oran, Algeria, e-mail: mhadadine@gmail.com
 ${ }^{2}$ Department of Mathematics, Faculty of sciences, University of Oran, Algeria, e-mail: belaib_lekhmissi@yahoo.fr
 ${ }^{3}$ Department of Mathematics, Faculty of Mathematics, USTHB , Algiers, e-mail: rbebbouchi@hotmail.com

