Theoretical Mathematics & Applications, vol.3, no.1, 2013, 1-10 ISSN: 1792-9687 (print), 1792-9709 (online) Scienpress Ltd, 2013

Coefficient Inequality for Certain New Subclasses of Analytic Bi-univalent Functions

B. Srutha Keerthi¹ and Bhuvaneswari Raja²

Abstract

In this paper, we investigate two new subclasses of the function Σ of bi-univalent functions defined in the open unit disc. In this work, we obtain bounds for the coefficients $|a_2|$ and $|a_3|$ for functions in these new sub-classes.

Mathematics Subject Classification : 30C45.

Keywords: Analytic and univalent functions; bi-univalent functions; λ -convex functions; co-efficient bounds

1 Introduction and Definitions

Let A denote the class of functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

¹ Department of Applied Mathematics, Sri Venkateswara College of Engineering, Sriperumbudur, Chennai - 602105, India, e-mail: sruthilaya06@yahoo.co.in

Article Info: Received : December 14, 2012. Revised : January 28, 2013 Published online : April 15, 2013

² Department of Mathematics, Aalim Muhammed Salegh College of Engineering, "Nizara Educational Campus", Muthapudupet, Avadi IAF, Chennai - 600 055, e-mail: shri_bhuva@yahoo.co.in

which are analytic in the open unit disc $U = \{z : |z| < 1\}$. Further, by δ we shall denote the class of all functions in A which are univalent in U. It is well known that every function $f \in S$ has an inverse f^{-1} , defined by

and
$$f^{-1}(f(z)) = z \ (z \in U)$$

 $f(f^{-1}(w)) = w\{|w| < r_0(f); r_0(f) \ge 1/4\}$

where $f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \dots$

A function $f(z) \in A$ is said to be bi-univalent in U if both f(z) and $f^{-1}(z)$ are univalent in U [see [5]].

Let Σ denote the class of bi-univalent functions in U given by (1) Brannan and Taha [6] (see also [7]) introduced certain subclasses of the bi-univalent function class Σ similar to the familiar subclasses. $\delta^*(\alpha)$ and $K(\alpha)$ of starlike and convex functions of order α (0 < α < 1) respectively (see [8]). Thus, following Brannan and Taha [6] (see also [7]), a function $f(z) \in U$ is the class $\delta^*_{\Sigma}(\alpha)$ of strongly bi-starlike functions of order α (0 < α < 1) if each of the following conditions is satisfied:

$$f \in \Sigma, \left| \arg\left(\frac{z^2 f''(z) + z f'(z)}{z f'(z)}\right) \right| < \frac{\alpha \pi}{2} \quad (0 < \alpha \le 1, z \in U)$$

and

$$\left| \arg\left(\frac{w^2 g''(w) + w g'(w)}{w g'(w)} \right) \right| < \frac{\alpha \pi}{2} \quad (0 < \alpha \le 1, w \in U)$$

where g is the extension of f^{-1} to U. The classes $\delta_{\Sigma}^*(\alpha)$ and $K_{\Sigma}(\alpha)$ of bi-starlike functions of order α and bi-convex functions of order α , corresponding to the function classes $\delta^*(\alpha)$ and $K(\alpha)$, were also introduced analogously. For each of the function classes $\delta_{\Sigma}^*(\alpha)$ and $K_{\Sigma}^*(\alpha)$, they found non-sharp estimates on the first two Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ (for details, see [6, 7]).

The object of the present paper is to introduce two new subclasses of the function class Σ and find estimates on the coefficients $|a_2|$ and $|a_3|$ for functions in these new sub-classes of the function class Σ employing the techniques used earlier by Srivastava et al. [5] (see also [6, 7, 8]).

In order to derive our main results, we have to recall here the following lemma [12].

Lemma 1.1. If $h \in P$, then $|c_k| \leq 2$, for each k, where P is the family of all functions h analytic in U for which Re(h(z)) > 0.

$$h(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots$$
 for $z \in U$

2 Co-efficient Bounds for the Function Class $B_{\Sigma}(lpha,\lambda,\mu)$

Definition 2.1. A function f(z) given by (1) is said to be in the class $B_{\Sigma}(\alpha, \lambda, \mu)$ if the following conditions are satisfied:

$$f \in \Sigma : \left| \arg \left[\frac{\lambda \mu z^3 f'''(z) + (2\lambda \mu + \lambda - \mu) z^2 f''(z) + z f'(z)}{\lambda \mu z^2 f''(z) + (\lambda - \mu) z f'(z) + (1 - \lambda + \mu) f(z)} \right] \right| < \frac{\alpha \pi}{2}, \quad (2)$$
$$(0 \le \alpha \le 1, 0 \le \mu \le \lambda \le 1, z \in U)$$

and

$$\begin{aligned} \left| \arg \left[\frac{\lambda \mu w^3 g'''(w) + (2\lambda \mu + \lambda - \mu) w^2 g''(w) + w g'(w)}{\lambda \mu w^2 g''(w) + (\lambda - \mu) w g'(w) + (1 - \lambda + \mu) g(w)} \right] \right| &< \frac{\alpha \pi}{2}, \qquad (3) \\ & (0 \le \alpha \le 1, 0 \le \mu \le \lambda \le 1, w \in U) \end{aligned}$$

where the function g is given by

$$g(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$
(4)

We note that for $\mu = 0$, we get the class $B_{\Sigma}(\alpha, \lambda)$ which is defined as follows:

$$f \in \Sigma, \left| \arg\left[\frac{\lambda z^2 f''(z) + z f'(z)}{\lambda z f'(z) + (1 - \lambda) f(z)} \right] \right| < \frac{\alpha \pi}{2} \quad (0 < \alpha \le 1, z \in U) \qquad (2.1.2)$$

and

$$f \in \Sigma, \left| \arg \left[\frac{\lambda w^2 g''(w) + w g'(w)}{\lambda w g'(w) + (1 - \lambda) g(w)} \right] \right| < \frac{\alpha \pi}{2} \quad (0 < \alpha \le 1, w \in U) \quad (2.1.3)$$

We begin by finding the estimates on the coefficients $|a_2|$ and $|a_3|$ for functions in the class $B_{\Sigma}(\alpha, \lambda, \mu)$.

Theorem 2.2. Let f(z) given by (1) be in the class $B_{\Sigma}(\alpha, \lambda, \mu)$, $0 \le \alpha \le 1$ and $0 \le \mu \le \lambda \le 1$, then

$$|a_2| \le \frac{2\alpha}{\sqrt{4\alpha(1+2\lambda-2\mu+6\lambda\mu)+(1-3\alpha)(1+\lambda-\mu+2\lambda\mu)^2}}$$
(5)

and

$$|a_3| \le \frac{4\alpha^2}{(1+\lambda-\mu+2\lambda\mu)^2} + \frac{\alpha}{(1+2\lambda-2\mu+6\lambda\mu)}.$$
(6)

Proof. We can write the argument inequalities in (2) and (3) equivalently as follows:

$$\frac{\lambda\mu z^3 f'''(z) + (2\lambda\mu + \lambda - \mu)z^2 f''(z) + zf'(z)}{\lambda\mu z^2 f''(z) + (\lambda - \mu)zf'(z) + (1 - \lambda + \mu)f(z)} = [p(z)]^{\alpha}$$
(7)

and

$$\frac{\lambda\mu w^3 g'''(w) + (2\lambda\mu + \lambda - \mu)w^2 g''(w) + wg'(w)}{\lambda\mu w^2 g''(w) + (\lambda - \mu)wg'(w) + (1 - \lambda + \mu)g(w)} = [q(w)]^{\alpha}.$$
(8)

Respectively, where p(z) and q(w) satisfy the following inequalities Re(p(z)) > 0, $(z \in U)$ and Re(q(w)) > 0, $(w \in U)$.

Furthermore, the functions p(z) and q(w) have the forms,

$$p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \cdots$$
(9)

and

$$q(w) = 1 + q_1 w + q_2 w^2 + q_3 w^3 + \cdots$$
 (10)

Now, equating the coefficients in (7) and (8) we get,

$$(1 + \lambda - \mu + 2\lambda\mu)a_2 = p_1\alpha \tag{11}$$

$$(2+4\lambda-4\mu+12\lambda\mu)a_3 = p_2\alpha + \frac{\alpha(\alpha-1)}{2}p_1^2 + \alpha^2 p_1^2$$
(12)

and

$$-(1+\lambda-\mu+2\lambda\mu)a_2 = q_1(\alpha) \tag{13}$$

$$(2+4\lambda-4\mu+12\lambda\mu)(2a_2^2-a_3) = q_2\alpha + \frac{\alpha(\alpha-1)}{2}q_1^2 + \alpha^2 q_1^2 \qquad (14)$$

from (11) and (13) we get

$$p_1 = -q_1 \tag{15}$$

and

$$2a_2^2(1+\lambda-\mu+2\lambda\mu)^2 = \alpha^2(p_1^2+q_1^2).$$
(16)

Now from (12), (14) and (16) we obtain

$$4a_2^2(1+\lambda-\mu+2\lambda\mu)^2 = \alpha(p_2+q_2) + \frac{\alpha(\alpha-1)}{2}(p_1^2+q_1^2) + \alpha^2(p_1^2+q_1^2).$$
(17)

Therefore, we have

$$a_2^2 = \frac{\alpha^2 (p_2 + q_2)}{4\alpha (1 + 2\lambda - 2\mu + 6\lambda\mu) + (1 - 3\alpha)(1 + \lambda - \mu + 2\lambda\mu)^2}.$$

B. Srutha Keerthi and Bhuvaneswari Raja

Applying Lemma 1.1 to the coefficients p_2 and q_2 we have

$$|a_2| \leq \frac{2\alpha}{\sqrt{4\alpha(1+2\lambda-2\mu+6\lambda\mu)+(1-3\alpha)(1+\lambda-\mu+2\lambda\mu)^2}}$$

Next, in order to find the bound on $|a_3|$, by subtracting (12) from (14), we get

$$(2a_3 - 2a_2^2)(2 + 4\lambda - 4\mu + 12\lambda\mu) = \alpha(p_2 - q_2) + \frac{\alpha(\alpha - 1)}{2}(p_1^2 - q_1^2) + \alpha^2(p_1^2 - q_1^2)$$

upon substituting the value of a_2^2 from (16) and observing that $p_1^2 = q_1^2$, it follows that

$$a_3 = a_2^2 + \frac{\alpha(p_2 - q_2)}{2(2 + 4\lambda - 4\mu + 12\lambda\mu)}$$

$$a_3 = \frac{\alpha^2(p_1^2 + q_1^2)}{2(1 + \lambda - \mu + 2\lambda\mu)^2} + \frac{\alpha(p_2 - q_2)}{2(2 + 4\lambda - 4\mu + 12\lambda\mu)}.$$

Applying Lemma (1.1) once again for coefficients p_1, p_2, q_1 and q_2 we get,

$$|a_3| \le \frac{4\alpha^2}{(1+\lambda-\mu+2\lambda\mu)^2} + \frac{\alpha}{(1+2\lambda-2\mu+6\lambda\mu)}.$$

This completes the proof of Theorem 2.2.

Now, putting $\mu = 0$ in Theorem 2.2 we have.

Corollary 2.3. Let f(z) given by (1) be in the class $B_{\Sigma}(\alpha, \lambda)$ then,

$$|a_2| \le \frac{2\alpha}{\sqrt{4\alpha(1+2\lambda) + (1-3\alpha)(1+\lambda)^2}} \tag{18}$$

and

$$|a_3| \le \frac{4\alpha^2}{(1+\lambda)^2} + \frac{\alpha}{(1+2\lambda)}.$$
 (19)

3 Coefficient Bounds for the Function Class $N_{\Sigma}(eta,\lambda,\mu)$

Definition 3.1. A function f(z) given by (1) is said to be in the class $N_{\Sigma}(\beta, \lambda, \mu)$ if the following conditions are satisfied,

$$f \in \Sigma, Re\left[\frac{\lambda\mu z^3 f'''(z) + (2\lambda\mu + \lambda - \mu)z^2 f''(z) + zf'(z)}{\lambda\mu z^2 f''(z) + (\lambda - \mu)z f'(z) + (1 - \lambda + \mu)f(z)}\right] > \beta,$$
$$(0 \le \beta \le 1, 0 \le \mu \le \lambda \le 1, z \in U)$$
(20)

and

$$Re\left[\frac{\lambda\mu w^{3}g^{\prime\prime\prime}(w) + (2\lambda\mu + \lambda - \mu)w^{2}g^{\prime\prime}(w) + wg^{\prime}(w)}{\lambda\mu w^{2}g^{\prime\prime}(w) + (\lambda - \mu)wg^{\prime}(w) + (1 - \lambda + \mu)g(w)}\right] > \beta,$$

$$(0 \le \beta \le 1, 0 \le \mu \le \lambda \le 1, w \in U)$$

$$(21)$$

where the function g(w) is defined by (4).

Definition 3.2. We note that for $\mu = 0$, the class $N_{\Sigma}(\beta, \lambda, \mu)$ reduces to $N_{\Sigma}(\beta, \lambda)$ which satisfies the following conditions

$$f \in \Sigma, Re\left[\frac{\lambda z^2 f''(z) + zf'(z)}{\lambda z f'(z) + (1 - \lambda)f(z)}\right] > \beta, \quad (0 \le \beta \le 1, 0 \le \lambda \le 1, z \in U)$$

$$(3.1.1)$$

and

$$Re\left[\frac{\lambda w^2 g''(w) + wg'(w)}{\lambda wg'(w) + (1-\lambda)g(w)}\right] > \beta, \quad (0 \le \beta \le 1, 0 \le \lambda \le 1, w \in U) \quad (3.1.2)$$

Theorem 3.3. Let f(z) given by (1) be in the class $N_{\Sigma}(\beta, \lambda, \mu)$, $0 \le \beta \le 1$ and $0 \le \mu \le \lambda \le 1$, then

$$|a_2| \le \sqrt{\frac{2(1-\beta)}{(2+4\lambda-4\mu+12\lambda\mu) - (1+\lambda-\mu+2\lambda\mu)^2}}$$
(2)

and

$$|a_3| \le \frac{4(1-\beta)^2}{(1+\lambda-\mu+2\lambda\mu)^2} + \frac{(1-\beta)}{(1+2\lambda-2\mu+6\lambda\mu)}.$$
(3)

B. Srutha Keerthi and Bhuvaneswari Raja

Proof. It follows from (20) and (21) that there exists p(z) and q(w) such that

$$\frac{\lambda\mu z^3 f'''(z) + (2\lambda\mu + \lambda - \mu)z^2 f''(z) + zf'(z)}{\lambda\mu z^2 f''(z) + (\lambda - \mu)z f'(z) + (1 - \lambda + \mu)f(z)} = \beta + (1 - \beta)p(z)$$
(4)

and

$$\frac{\lambda\mu w^3 g'''(w) + (2\lambda\mu + \lambda - \mu)w^2 g''(w) + wg'(w)}{\lambda\mu w^2 g''(w) + (\lambda - \mu)wg'(w) + (1 - \lambda + \mu)g(w)} = \beta + (1 - \beta)q(w)$$
(5)

where p(z) and q(w) have the forms (9), (10) respectively.

Equating the coefficients in (4) and (5) yields

$$(1 + \lambda - \mu + 2\lambda\mu)a_2 = (1 - \beta)p_1 \tag{6}$$

$$(2+4\lambda - 4\mu + 12\lambda\mu)a_3 = (1-\beta)p_2 + (1-\beta)^2 p_1^2 \tag{7}$$

and

$$-(1 + \lambda - \mu + 2\lambda\mu)a_2 = (1 - \beta)q_1$$
(8)

$$(2+4\lambda-4\mu+12\lambda\mu)(2a_2^2-a_3) = (1-\beta)q_2 + (1-\beta)^2q_1^2$$
(9)

from (6) and (8) we get

$$p_1 = -q_1 \tag{10}$$

and

$$2a_2^2(1+\lambda-\mu+2\lambda\mu)^2 = (1-\beta)^2(p_1^2+q_1^2).$$
(11)

Now from (7), (9) and (11) we obtain,

$$4(1+2\lambda-2\mu+6\lambda\mu)a_2^2 = (1-\beta)(p_2+q_2) + (1-\beta)^2(p_1^2+q_1^2)$$

= $(1-\beta)(p_2+q_2) + 2a_2^2(1+\lambda-\mu+2\lambda\mu)^2.$

Therefore we have,

$$a_2^2 = \frac{(1-\beta)(p_2+q_2)}{2[(2+4\lambda-4\mu+12\lambda\mu)-(1+\lambda-\mu+2\lambda\mu)^2]}$$

Applying Lemma 1.1 for the coefficients p_2 and q_2 we have,

$$|a_2| \le \sqrt{\frac{2(1-\beta)}{(2+4\lambda-4\mu+12\lambda\mu)-(1+\lambda-\mu+2\lambda\mu)^2}}$$

Next, in order to find the bound on $|a_3|$, by (7) from (9) we get, and from (11),

$$(2+4\lambda-4\mu+12\lambda\mu)(2a_3-2a_2^2) = (1-\beta)(p_2-q_2) + (1-\beta)^2(p_1^2-q_1^2).$$

Since $p_1^2 = q_1^2$ it follows that,

$$(2 + 4\lambda - 4\mu + 12\lambda\mu)(2a_3 - 2a_2^2) = (1 - \beta)(p_2 - q_2)$$

$$2a_3(2 + 4\lambda - 4\mu + 12\lambda\mu) = 2a_2^2(2 + 4\lambda - 4\mu + 12\lambda\mu)$$

$$+ (1 - \beta)(p_2 - q_2)$$

$$2a_3(2 + 4\lambda - 4\mu + 12\lambda\mu) = \frac{(1 - \beta)^2(p_1^2 + q_1^2)}{(1 + \lambda - \mu + 2\lambda\mu)^2} \cdot (2 + 4\lambda - 4\mu + 12\lambda\mu) + (1 - \beta)(p_2 - q_2).$$

Once again for the coefficients p_1, q_1, p_2 and q_2 applying Lemma 1.1, we get,

$$|a_3| \le \frac{4(1-\beta)^2}{(1+\lambda-\mu+2\lambda\mu)^2} + \frac{(1-\beta)}{(1+2\lambda-2\mu+6\lambda\mu)}.$$

This completes the proof of Theorem 3.3.

Now, putting $\mu = 0$ in Theorem 3.3, we have the following corollary.

Corollary 3.4. Let f(z) given by (1) be in the class $N_{\Sigma}(\beta, \lambda)$, $(0 \le \beta \le 1)$ and $(0 \le \lambda \le 1)$ then,

$$|a_2| \le \sqrt{\frac{2(1-\beta)}{2(1+2\lambda) - (1+\lambda)^2}}$$
(12)

and

$$|a_3| \le \frac{4(1-\beta)^2}{(1+\lambda)^2} + \frac{(1-\beta)}{1+2\lambda}.$$
(13)

ACKNOWLEDGEMENTS. The first author thanks the support provided by Science and Engineering Research Board (DST), New Delhi Project No: SR/S4/MS:716/10.

References

- M. Fekete, G. Szegö, Eine Bermerkung uber ungeraade schlichte funktionen, J. London Math. Soc., 8, (1933), 85-89.
- [2] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
- [3] D. Breaz, N. Breaz, H.M. Srivastava, An extension of the univalent condition for a family of integral operators, *Appl. Math. Lett.*, 22, (2009), 41-44.
- [4] H.M. Srivastava and S.S. Eker, Some applications of a subordination theorem for a class of analytic functions, *Appl. Math. Lett.*, **21**, (2008), 394-399.
- [5] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, *ppl. Math. Lett.*, 23, (2010), 1188-1192.
- [6] M. Lewin, On a coefficient problem for bi-univalent functions, *Proc. Amer. Math. Soc.*, 18, (1967), 63-68.
- [7] D.A. Brannan and J.G. Clunie (Eds.), Aspects of Contemporary Complex Analysis, Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, (1979), Academic Press, New York and London, 1980.
- [8] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal., **32**, (1969), 100-112.
- [9] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), *Mathematical Analysis and its Applications*, Kuwait; February 18-21, 1985; in: KFAS Proceedings Series, Vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60. see also *Studia Univ. Babes-Bolyai Math.*, **31**(2), (1986), 70-77.

- [10] T.S. Taha, Topics in univalent function theory, Ph.D. Thesis, University of London, 1981.
- [11] D.A. Brannan, J.G. Clunie and W.E. Kirwan, Coefficient estimates for a class of starlike functions, *Canad. J. Math.*, 22, (1970), 476-485.
- [12] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Götingen, 1975.
- [13] Xiao-Fei Li and An-Ping-Wang, Two new subclasses of bi-univalent functions, China.