Theoretical Mathematics \& Applications, vol.3, no.1, 2013, 1-10
ISSN: 1792-9687 (print), 1792-9709 (online)
Scienpress Ltd, 2013

Coefficient Inequality for Certain New Subclasses of Analytic Bi-univalent Functions

B. Srutha Keerthi ${ }^{1}$ and Bhuvaneswari Raja ${ }^{2}$

Abstract

In this paper, we investigate two new subclasses of the function Σ of bi-univalent functions defined in the open unit disc. In this work, we obtain bounds for the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new sub-classes.

Mathematics Subject Classification : 30C45.
Keywords: Analytic and univalent functions; bi-univalent functions; λ-convex functions; co-efficient bounds

1 Introduction and Definitions

Let A denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

[^0]which are analytic in the open unit disc $U=\{z:|z|<1\}$. Further, by δ we shall denote the class of all functions in A which are univalent in U. It is well known that every function $f \in S$ has an inverse f^{-1}, defined by
\[

\left.$$
\begin{array}{rl}
& f^{-1}(f(z))
\end{array}
$$\right)=z \quad(z \in U)
\]

where $f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots$
A function $f(z) \in A$ is said to be bi-univalent in U if both $f(z)$ and $f^{-1}(z)$ are univalent in U [see [5]].

Let Σ denote the class of bi-univalent functions in U given by (1) Brannan and Taha [6] (see also [7]) introduced certain subclasses of the bi-univalent function class Σ similar to the familiar subclasses. $\delta^{*}(\alpha)$ and $K(\alpha)$ of starlike and convex functions of order $\alpha(0<\alpha<1)$ respectively (see [8]). Thus, following Brannan and Taha [6] (see also [7]), a function $f(z) \in U$ is the class $\delta_{\Sigma}^{*}(\alpha)$ of strongly bi-starlike functions of order $\alpha(0<\alpha<1)$ if each of the following conditions is satisfied:

$$
f \in \Sigma,\left|\arg \left(\frac{z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{z f^{\prime}(z)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, z \in U)
$$

and

$$
\left|\arg \left(\frac{w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}{w g^{\prime}(w)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, w \in U)
$$

where g is the extension of f^{-1} to U. The classes $\delta_{\Sigma}^{*}(\alpha)$ and $K_{\Sigma}(\alpha)$ of bi-starlike functions of order α and bi-convex functions of order α, corresponding to the function classes $\delta^{*}(\alpha)$ and $K(\alpha)$, were also introduced analogously. For each of the function classes $\delta_{\Sigma}^{*}(\alpha)$ and $K_{\Sigma}^{*}(\alpha)$, they found non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ (for details, see $[6,7]$).

The object of the present paper is to introduce two new subclasses of the function class Σ and find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new sub-classes of the function class Σ employing the techniques used earlier by Srivastava et al. [5] (see also [6, 7, 8]).

In order to derive our main results, we have to recall here the following lemma [12].

Lemma 1.1. If $h \in P$, then $\left|c_{k}\right| \leq 2$, for each k, where P is the family of all functions h analytic in U for which $\operatorname{Re}(h(z))>0$.

$$
h(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots \text { for } z \in U
$$

2 Co-efficient Bounds for the Function Class $B_{\Sigma}(\alpha, \lambda, \mu)$

Definition 2.1. A function $f(z)$ given by (1) is said to be in the class $B_{\Sigma}(\alpha, \lambda, \mu)$ if the following conditions are satisfied:

$$
\begin{array}{r}
f \in \Sigma:\left|\arg \left[\frac{\lambda \mu z^{3} f^{\prime \prime \prime}(z)+(2 \lambda \mu+\lambda-\mu) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\lambda \mu z^{2} f^{\prime \prime}(z)+(\lambda-\mu) z f^{\prime}(z)+(1-\lambda+\mu) f(z)}\right]\right|<\frac{\alpha \pi}{2}, \tag{2}\\
(0 \leq \alpha \leq 1,0 \leq \mu \leq \lambda \leq 1, z \in U)
\end{array}
$$

and

$$
\begin{array}{r}
\left|\arg \left[\frac{\lambda \mu w^{3} g^{\prime \prime \prime}(w)+(2 \lambda \mu+\lambda-\mu) w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}{\lambda \mu w^{2} g^{\prime \prime}(w)+(\lambda-\mu) w g^{\prime}(w)+(1-\lambda+\mu) g(w)}\right]\right|<\frac{\alpha \pi}{2} \tag{3}\\
\quad(0 \leq \alpha \leq 1,0 \leq \mu \leq \lambda \leq 1, w \in U)
\end{array}
$$

where the function g is given by

$$
\begin{equation*}
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{4}
\end{equation*}
$$

We note that for $\mu=0$, we get the class $B_{\Sigma}(\alpha, \lambda)$ which is defined as follows:

$$
\begin{equation*}
f \in \Sigma,\left|\arg \left[\frac{\lambda z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}\right]\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, z \in U) \tag{2.1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f \in \Sigma,\left|\arg \left[\frac{\lambda w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}{\lambda w g^{\prime}(w)+(1-\lambda) g(w)}\right]\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, w \in U) \tag{2.1.3}
\end{equation*}
$$

We begin by finding the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the class $B_{\Sigma}(\alpha, \lambda, \mu)$.

Theorem 2.2. Let $f(z)$ given by (1) be in the class $B_{\Sigma}(\alpha, \lambda, \mu), 0 \leq \alpha \leq 1$ and $0 \leq \mu \leq \lambda \leq 1$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{4 \alpha(1+2 \lambda-2 \mu+6 \lambda \mu)+(1-3 \alpha)(1+\lambda-\mu+2 \lambda \mu)^{2}}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{(1+\lambda-\mu+2 \lambda \mu)^{2}}+\frac{\alpha}{(1+2 \lambda-2 \mu+6 \lambda \mu)} \tag{6}
\end{equation*}
$$

Proof. We can write the argument inequalities in (2) and (3) equivalently as follows:

$$
\begin{equation*}
\frac{\lambda \mu z^{3} f^{\prime \prime \prime}(z)+(2 \lambda \mu+\lambda-\mu) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\lambda \mu z^{2} f^{\prime \prime}(z)+(\lambda-\mu) z f^{\prime}(z)+(1-\lambda+\mu) f(z)}=[p(z)]^{\alpha} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\lambda \mu w^{3} g^{\prime \prime \prime}(w)+(2 \lambda \mu+\lambda-\mu) w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}{\lambda \mu w^{2} g^{\prime \prime}(w)+(\lambda-\mu) w g^{\prime}(w)+(1-\lambda+\mu) g(w)}=[q(w)]^{\alpha} . \tag{8}
\end{equation*}
$$

Respectively, where $p(z)$ and $q(w)$ satisfy the following inequalities $\operatorname{Re}(p(z))>$ $0,(z \in U)$ and $\operatorname{Re}(q(w))>0,(w \in U)$.

Furthermore, the functions $p(z)$ and $q(w)$ have the forms,

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\cdots \tag{10}
\end{equation*}
$$

Now, equating the coefficients in (7) and (8) we get,

$$
\begin{align*}
(1+\lambda-\mu+2 \lambda \mu) a_{2} & =p_{1} \alpha \tag{11}\\
(2+4 \lambda-4 \mu+12 \lambda \mu) a_{3} & =p_{2} \alpha+\frac{\alpha(\alpha-1)}{2} p_{1}^{2}+\alpha^{2} p_{1}^{2} \tag{12}
\end{align*}
$$

and

$$
\begin{align*}
-(1+\lambda-\mu+2 \lambda \mu) a_{2} & =q_{1}(\alpha) \tag{13}\\
(2+4 \lambda-4 \mu+12 \lambda \mu)\left(2 a_{2}^{2}-a_{3}\right) & =q_{2} \alpha+\frac{\alpha(\alpha-1)}{2} q_{1}^{2}+\alpha^{2} q_{1}^{2} \tag{14}
\end{align*}
$$

from (11) and (13) we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
2 a_{2}^{2}(1+\lambda-\mu+2 \lambda \mu)^{2}=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right) . \tag{16}
\end{equation*}
$$

Now from (12), (14) and (16) we obtain

$$
\begin{equation*}
4 a_{2}^{2}(1+\lambda-\mu+2 \lambda \mu)^{2}=\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}+q_{1}^{2}\right)+\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right) . \tag{17}
\end{equation*}
$$

Therefore, we have

$$
a_{2}^{2}=\frac{\alpha^{2}\left(p_{2}+q_{2}\right)}{4 \alpha(1+2 \lambda-2 \mu+6 \lambda \mu)+(1-3 \alpha)(1+\lambda-\mu+2 \lambda \mu)^{2}} .
$$

Applying Lemma 1.1 to the coefficients p_{2} and q_{2} we have

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{4 \alpha(1+2 \lambda-2 \mu+6 \lambda \mu)+(1-3 \alpha)(1+\lambda-\mu+2 \lambda \mu)^{2}}}
$$

Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (12) from (14), we get
$\left(2 a_{3}-2 a_{2}^{2}\right)(2+4 \lambda-4 \mu+12 \lambda \mu)=\alpha\left(p_{2}-q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}-q_{1}^{2}\right)+\alpha^{2}\left(p_{1}^{2}-q_{1}^{2}\right)$
upon substituting the value of a_{2}^{2} from (16) and observing that $p_{1}^{2}=q_{1}^{2}$, it follows that

$$
\begin{aligned}
& a_{3}=a_{2}^{2}+\frac{\alpha\left(p_{2}-q_{2}\right)}{2(2+4 \lambda-4 \mu+12 \lambda \mu)} \\
& a_{3}=\frac{\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{2(1+\lambda-\mu+2 \lambda \mu)^{2}}+\frac{\alpha\left(p_{2}-q_{2}\right)}{2(2+4 \lambda-4 \mu+12 \lambda \mu)} .
\end{aligned}
$$

Applying Lemma (1.1) once again for coefficients p_{1}, p_{2}, q_{1} and q_{2} we get,

$$
\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{(1+\lambda-\mu+2 \lambda \mu)^{2}}+\frac{\alpha}{(1+2 \lambda-2 \mu+6 \lambda \mu)}
$$

This completes the proof of Theorem 2.2.

Now, putting $\mu=0$ in Theorem 2.2 we have.

Corollary 2.3. Let $f(z)$ given by (1) be in the class $B_{\Sigma}(\alpha, \lambda)$ then,

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{4 \alpha(1+2 \lambda)+(1-3 \alpha)(1+\lambda)^{2}}} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{(1+\lambda)^{2}}+\frac{\alpha}{(1+2 \lambda)} \tag{19}
\end{equation*}
$$

3 Coefficient Bounds for the Function Class $N_{\Sigma}(\beta, \lambda, \mu)$

Definition 3.1. A function $f(z)$ given by (1) is said to be in the class $N_{\Sigma}(\beta, \lambda, \mu)$ if the following conditions are satisfied,

$$
\begin{array}{r}
f \in \Sigma, R e\left[\frac{\lambda \mu z^{3} f^{\prime \prime \prime}(z)+(2 \lambda \mu+\lambda-\mu) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\lambda \mu z^{2} f^{\prime \prime}(z)+(\lambda-\mu) z f^{\prime}(z)+(1-\lambda+\mu) f(z)}\right]>\beta \\
(0 \leq \beta \leq 1,0 \leq \mu \leq \lambda \leq 1, z \in U) \tag{20}
\end{array}
$$

and

$$
\begin{array}{r}
\operatorname{Re}\left[\frac{\lambda \mu w^{3} g^{\prime \prime \prime}(w)+(2 \lambda \mu+\lambda-\mu) w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}{\lambda \mu w^{2} g^{\prime \prime}(w)+(\lambda-\mu) w g^{\prime}(w)+(1-\lambda+\mu) g(w)}\right]>\beta \\
(0 \leq \beta \leq 1,0 \leq \mu \leq \lambda \leq 1, w \in U) \tag{21}
\end{array}
$$

where the function $g(w)$ is defined by (4).
Definition 3.2. We note that for $\mu=0$, the class $N_{\Sigma}(\beta, \lambda, \mu)$ reduces to $N_{\Sigma}(\beta, \lambda)$ which satisfies the following conditions

$$
\begin{equation*}
f \in \Sigma, \operatorname{Re}\left[\frac{\lambda z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}\right]>\beta, \quad(0 \leq \beta \leq 1,0 \leq \lambda \leq 1, z \in U) \tag{3.1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left[\frac{\lambda w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}{\lambda w g^{\prime}(w)+(1-\lambda) g(w)}\right]>\beta, \quad(0 \leq \beta \leq 1,0 \leq \lambda \leq 1, w \in U) \tag{3.1.2}
\end{equation*}
$$

Theorem 3.3. Let $f(z)$ given by (1) be in the class $N_{\Sigma}(\beta, \lambda, \mu), 0 \leq \beta \leq 1$ and $0 \leq \mu \leq \lambda \leq 1$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{(2+4 \lambda-4 \mu+12 \lambda \mu)-(1+\lambda-\mu+2 \lambda \mu)^{2}}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4(1-\beta)^{2}}{(1+\lambda-\mu+2 \lambda \mu)^{2}}+\frac{(1-\beta)}{(1+2 \lambda-2 \mu+6 \lambda \mu)} \tag{3}
\end{equation*}
$$

Proof. It follows from (20) and (21) that there exists $p(z)$ and $q(w)$ such that

$$
\begin{equation*}
\frac{\lambda \mu z^{3} f^{\prime \prime \prime}(z)+(2 \lambda \mu+\lambda-\mu) z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{\lambda \mu z^{2} f^{\prime \prime}(z)+(\lambda-\mu) z f^{\prime}(z)+(1-\lambda+\mu) f(z)}=\beta+(1-\beta) p(z) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\lambda \mu w^{3} g^{\prime \prime \prime}(w)+(2 \lambda \mu+\lambda-\mu) w^{2} g^{\prime \prime}(w)+w g^{\prime}(w)}{\lambda \mu w^{2} g^{\prime \prime}(w)+(\lambda-\mu) w g^{\prime}(w)+(1-\lambda+\mu) g(w)}=\beta+(1-\beta) q(w) \tag{5}
\end{equation*}
$$

where $p(z)$ and $q(w)$ have the forms (9), (10) respectively.
Equating the coefficients in (4) and (5) yields

$$
\begin{align*}
(1+\lambda-\mu+2 \lambda \mu) a_{2} & =(1-\beta) p_{1} \tag{6}\\
(2+4 \lambda-4 \mu+12 \lambda \mu) a_{3} & =(1-\beta) p_{2}+(1-\beta)^{2} p_{1}^{2} \tag{7}
\end{align*}
$$

and

$$
\begin{align*}
-(1+\lambda-\mu+2 \lambda \mu) a_{2} & =(1-\beta) q_{1} \tag{8}\\
(2+4 \lambda-4 \mu+12 \lambda \mu)\left(2 a_{2}^{2}-a_{3}\right) & =(1-\beta) q_{2}+(1-\beta)^{2} q_{1}^{2} \tag{9}
\end{align*}
$$

from (6) and (8) we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
2 a_{2}^{2}(1+\lambda-\mu+2 \lambda \mu)^{2}=(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{11}
\end{equation*}
$$

Now from (7), (9) and (11) we obtain,

$$
\begin{aligned}
4(1+2 \lambda-2 \mu+6 \lambda \mu) a_{2}^{2} & =(1-\beta)\left(p_{2}+q_{2}\right)+(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \\
& =(1-\beta)\left(p_{2}+q_{2}\right)+2 a_{2}^{2}(1+\lambda-\mu+2 \lambda \mu)^{2}
\end{aligned}
$$

Therefore we have,

$$
a_{2}^{2}=\frac{(1-\beta)\left(p_{2}+q_{2}\right)}{2\left[(2+4 \lambda-4 \mu+12 \lambda \mu)-(1+\lambda-\mu+2 \lambda \mu)^{2}\right]}
$$

Applying Lemma 1.1 for the coefficients p_{2} and q_{2} we have,

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{(2+4 \lambda-4 \mu+12 \lambda \mu)-(1+\lambda-\mu+2 \lambda \mu)^{2}}}
$$

Next, in order to find the bound on $\left|a_{3}\right|$, by (7) from (9) we get, and from (11),

$$
(2+4 \lambda-4 \mu+12 \lambda \mu)\left(2 a_{3}-2 a_{2}^{2}\right)=(1-\beta)\left(p_{2}-q_{2}\right)+(1-\beta)^{2}\left(p_{1}^{2}-q_{1}^{2}\right)
$$

Since $p_{1}^{2}=q_{1}^{2}$ it follows that,

$$
\begin{aligned}
(2+4 \lambda-4 \mu+12 \lambda \mu)\left(2 a_{3}-2 a_{2}^{2}\right)= & (1-\beta)\left(p_{2}-q_{2}\right) \\
2 a_{3}(2+4 \lambda-4 \mu+12 \lambda \mu)= & 2 a_{2}^{2}(2+4 \lambda-4 \mu+12 \lambda \mu) \\
& \quad+(1-\beta)\left(p_{2}-q_{2}\right) \\
2 a_{3}(2+4 \lambda-4 \mu+12 \lambda \mu)= & \frac{(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{(1+\lambda-\mu+2 \lambda \mu)^{2}} . \\
\cdot & (2+4 \lambda-4 \mu+12 \lambda \mu)+(1-\beta)\left(p_{2}-q_{2}\right) .
\end{aligned}
$$

Once again for the coefficients p_{1}, q_{1}, p_{2} and q_{2} applying Lemma 1.1, we get,

$$
\left|a_{3}\right| \leq \frac{4(1-\beta)^{2}}{(1+\lambda-\mu+2 \lambda \mu)^{2}}+\frac{(1-\beta)}{(1+2 \lambda-2 \mu+6 \lambda \mu)}
$$

This completes the proof of Theorem 3.3.

Now, putting $\mu=0$ in Theorem 3.3, we have the following corollary.

Corollary 3.4. Let $f(z)$ given by (1) be in the class $N_{\Sigma}(\beta, \lambda),(0 \leq \beta \leq 1)$ and $(0 \leq \lambda \leq 1)$ then,

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{2(1+2 \lambda)-(1+\lambda)^{2}}} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4(1-\beta)^{2}}{(1+\lambda)^{2}}+\frac{(1-\beta)}{1+2 \lambda} . \tag{13}
\end{equation*}
$$

ACKNOWLEDGEMENTS. The first author thanks the support provided by Science and Engineering Research Board (DST), New Delhi Project No: SR/S4/MS:716/10.

References

[1] M. Fekete, G. Szegö, Eine Bermerkung uber ungeraade schlichte funktionen, J. London Math. Soc., 8, (1933), 85-89.
[2] P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[3] D. Breaz, N. Breaz, H.M. Srivastava, An extension of the univalent condition for a family of integral operators, Appl. Math. Lett., 22, (2009), 41-44.
[4] H.M. Srivastava and S.S. Eker, Some applications of a subordination theorem for a class of analytic functions, Appl. Math. Lett., 21, (2008), 394399.
[5] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, ppl. Math. Lett., 23, (2010), 11881192.
[6] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18, (1967), 63-68.
[7] D.A. Brannan and J.G. Clunie (Eds.), Aspects of Contemporary Complex Analysis, Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, (1979), Academic Press, New York and London, 1980.
[8] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal., 32, (1969), 100-112.
[9] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and its Applications, Kuwait; February 18-21, 1985; in: KFAS Proceedings Series, Vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60. see also Studia Univ. Babes-Bolyai Math., 31(2), (1986), 70-77.
[10] T.S. Taha, Topics in univalent function theory, Ph.D. Thesis, University of London, 1981.
[11] D.A. Brannan, J.G. Clunie and W.E. Kirwan, Coefficient estimates for a class of starlike functions, Canad. J. Math., 22, (1970), 476-485.
[12] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Götingen, 1975.
[13] Xiao-Fei Li and An-Ping-Wang, Two new subclasses of bi-univalent functions, China.

[^0]: ${ }^{1}$ Department of Applied Mathematics, Sri Venkateswara College of Engineering, Sriperumbudur, Chennai - 602105, India, e-mail: sruthilaya06@yahoo.co.in
 ${ }^{2}$ Department of Mathematics, Aalim Muhammed Salegh College of Engineering, "Nizara Educational Campus", Muthapudupet, Avadi IAF, Chennai - 600 055, e-mail: shri_bhuva@yahoo.co.in

