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A Sarima Fit To Monthly Nigerian Naira-
British Pound Exchange Rates
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Abstract

The time plot of the series NPER exhibits an overall downward trend with a deep
depression in late 2008. No regular seasonality is evident. A 12-month
differencing yields a series SDNPER which has an overall slightly upward trend
with no clear seasonality. A nonseasonal differencing of SDNPER vyields a series
DSDNPER with an overall horizontal trend. The visual inspection of its time plot
hardly gives an impression of any regular seasonality. However its autocorrelation
function shows a significant negative spike at lag 12, indicating a 12-month
seasonality and a seasonal moving average component of order one. Moreover the
partial autocorrelation plot has significant spikes at lags 12 and 24, suggesting the
involvement of a seasonal autoregressive component of order two. Consequently,
a (0, 1, 0)x(2, 1, 1)1 SARIMA model is hereby proposed, fitted and shown to be

adequate.
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1 Introduction and Literature Review

Modelling of Nigerian Naira foreign exchange rates with other currencies
has engaged the attention of many researchers, a few of whom are Olowe[1],
Etuk([2], [3], [4]), etc. Many economic and financial time series are known to
exhibit some seasonality in their behavior. Foreign exchange rates are among such
series, their observed volatility notwithstanding. For instance, Etuk[2] has shown
that monthly Nigerian Naira-US Dollar exchange rates are seasonal with period 12
months. He fitted an (0, 1, 1)x(1, 1, 1);, seasonal autoregressive integrated moving
average (SARIMA) model to it and on its basis forecasted the 2012 values. He has
modeled daily Naira-Dollar exchange rates by a (2, 1, 0)x(0, 1, 1); SARIMA
model after having observed a 7-day seasonality (Etuk[3]). He has also fitted
another (0, 1, 1)x(1, 1, 1)1, SARIMA model to the monthly Naira-Euro exchange
rates (Etuk[4]). In this write-up, interest is in the fitting of a SARIMA model to
monthly Nigerian Naira-British Pound exchange rates. Perhaps there are no earlier
attempts to model the series by SARIMA methods.

Box and Jenkins[5] introduced a SARIMA model as an adaptation of an
autoregressive integrated moving average (ARIMA) model, which they earlier
proposed, to specifically explain the variation of seasonal time series. SARIMA
modeling has been quite successful. A few other authors who have written
extensively on the theoretical properties as well as on the practical applications of
SARIMA models, highlighting their relative benefits are Priestley[6], Madsen[7],
Gerolimetto[8], Martinez and Soares da Silva[9], Prista et al[10], Saz[11],
Surhatono[12], Oduro-Gyimah et al [13], Sami et al[14] and Bigovic[15].
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2 Materials and Methods

The data for this research work is the monthly Naira-Pound exchange rates
from 2004 to 2011 published under the Data and Statistics heading of the Central

Bank of Nigeria website www.cenbank.org.

2.1 Sarima Models

A time series {Xi} is said to follow an autoregressive moving average
(ARMA) model of order p and g denoted by ARMA(p, q) if

Xi—au X —a, X, _"'_apxt—p =&+ B+ Bré +"'+ﬂqgt—q (1)

where the o’s and the B’s are constants such that (1) is stationary and invertible
and the sequence of random variables {&} is a white noise process.
Let (1) be put as

A(L)X, = B(L)e, 2)

where A(L) =1 - oyl - apl? - ... - opLP and B(L) = 1 + BiL + oL +... +B4L%and
L is the backward shift operator defined by LX; = Xc. It is well known that for (1)
to be stationary and invertible the zeros of A(L) and B(L) must be outside the unit
circle respectively.

Many real life time series are nonstationary. For such a time series Box and
Jenkins[5] propose that differencing up to an order d could render it stationary.
Suppose the stationary d™ order difference of X; is denoted by V%X;. Clearly V =
1-L. Putting VX in lieu of X;in (1) yields an autoregressive integrated moving
average (ARIMA) model of order p, d and g, denoted by ARIMA(p, d, q) in {X}.
Suppose a time series {X} is seasonal of period s. For such a series a SARIMA
model of order (p, d, qQ)x(P, D, Q)s is defined by

A(L)D(L°)VIVEX, = B(L)O(L )¢, (3)
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where ®(L) and O(L) are respectively polynomials of order P and Q with
coefficients such that the model is stationary and invertible respectively. ®(L) and
O(L) are respectively the seasonal autoregressive and moving average operators of

the model.

2.2 Model Estimation

The software Eviews was used for model fitting. Time series analysis
invariably begins with the time plot. At this stage a lot about the nature of the
series could be evident. For instance any seasonal tendency or otherwise could
show up. Generally no regular seasonal pattern is obvious. The autocorrelation
function (ACF) better reveals a seasonal nature or otherwise. A significant spike at
the seasonal lag is an indication of seasonality; a negative spike indicates a
seasonal moving average component and a positive one an autoregressive
component. To avoid unnecessary model complexity it has been advised that d +
D be at most equal to 2. An autoregressive model of order p has a partial
autocorrelation function (PACF) that cuts off at lag p. On the other hand a moving
average model of order g has an ACF that cuts off at lag g.

After determination of the orders p, d, q, P, D, Q and s, the rest of the
parameter estimation process could be done. Eviews is based on the least error
sum of squares criterion. This involves an iterative process after an initial estimate
of the solution is made, the process converging to an optimal solution.

After model estimation, the model is subjected to goodness-of-fit tests to
ascertain its adequacy. Analysis of its residuals is done. Assuming the model is
adequate its residuals should be uncorrelated and should follow a normal

distribution.
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3 Results

The time plot of the series NPER in figure 1 reveals an overall slightly
negative trend with a deep depression in late 2008. Ne regular seasonality is
observable. Seasonal (i.e. 12-point) differencing of NPER yields a series SDNPER
with a slightly positive secular trend and no regular seasonality still (See Figure 2).
A nonseasonal differencing of SDNPER yields a series DSDNPER with an overall
horizontal trend with no observable regular seasonality (See Figure 3). The ACF
of DSDNPER of Figure 4 however shows a significant spike at lag 12, indicating
seasonality of period 12 and a seasonal moving average component of order one.
The PACF has significant spikes at lags 12 and 24 suggesting a seasonal
autoregressive component of order two. Therefore a (0, 1, 0)x(2, 1, 1);» SARIMA
model

DNDNPER, — «,,DSDNPER, ,, — ,,DSDNPER, ,, =&, + f,,&, 1, 4)
is proposed. The estimation of (4) as summarized in Table 1 yields

DSDNPER, +1.1697DSDNPER, ,, +0.7014DSDNPER, ,, = &, —0.8611¢, ,, (5)

We note that all three coefficients are statistically significant, each being
more than twice its standard error. The regression is very highly significant with a
p-value of 0.000000. As high as 61% of the variation in DSDNPER is accounted
for by the fitted model (5). Figure 5 shows a very close agreement between the
fitted model and the data. Figure 6 shows that the residuals are uncorrelated.

Therefore the fitted model is adequate.

4 Conclusion

Fitted to the monthly exchange rate series NPER is the (0, 1, 0)x(2, 1, 1)1,
SARIMA model (5). By various arguments it has been shown to be adequate.
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Table 1: Model Estimation

Dependent Variable: DSODNFPER

Method: Least Squares

Date: 02/06/13 Time: 13:59

Sample(adjusted): 2007:02 2011:12

Included observations: 59 after adjusting endpoints
Convergence achieved after 10 iterations
Backcast: 2006:02 2007:01

Variable Coefficient  Std. Error  t-Statistic  Prob.
AR(12) -1.169705  0.095910 1219581  0.0000
AR(24) -0.701397 0102847 -6.819840  0.0000
MA[12) 0.865311 0.023901 2893895  0.0000
R-squared 0614571 Mean dependent var -0.156102
Adjusted R-sguared 0600806 S.D. dependent var 11.97690
S.E. of regression 7567225  Akaike info criterion 6.935039
Sum squared resid 3206.722 Schwarz criterion 7040677
Log likelihood -201.5837  F-statistic 44 64629
Durbin-Watson stat 2.043437  Prob(F-statistic) 0.000000
Inverted AR Roots A7+15 97 -19i 93+ 32i 83-32
J4+851 74 -B5i 65 - T4 G5+ T4

32-931 32+.950 A9 -970 19+ .97

-19+.970 -19-97 -324.93i -.32 - 93
-BA+T74i - Bh-T4i -.74 - BAi - T4+ BAI
-893-321 -93+.34 =87 -19i -97+ 190
Inverted MA Foots 85+ 261 95 - 26 04700 0-700
26+ 961 26 -95i -.26 - 95 -.26+ 95|
-F0-700 -70-70i -.95 - 26i -.95+ 26i
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Figure 6: Correlogram of the Residuals
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