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Abstract 

The time plot of the series NPER exhibits an overall downward trend with a deep 

depression in late 2008. No regular seasonality is evident. A 12-month 

differencing yields a series SDNPER which has an overall slightly upward trend 

with no clear seasonality. A nonseasonal differencing of SDNPER yields a series 

DSDNPER with an overall horizontal trend. The visual inspection of its time plot 

hardly gives an impression of any regular seasonality. However its autocorrelation 

function shows a significant negative spike at lag 12, indicating a 12-month 

seasonality and a seasonal moving average component of order one. Moreover the 

partial autocorrelation plot has significant spikes at lags 12 and 24, suggesting the 

involvement of a seasonal autoregressive component of order two. Consequently, 

a (0, 1, 0)x(2, 1, 1)12 SARIMA model is hereby proposed, fitted and shown to be 

adequate. 
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1  Introduction and Literature Review  

Modelling of Nigerian Naira foreign exchange rates with other currencies 

has engaged the attention of many researchers, a few of whom are Olowe[1], 

Etuk([2], [3], [4]), etc. Many economic and financial time series are known to 

exhibit some seasonality in their behavior. Foreign exchange rates are among such 

series, their observed volatility notwithstanding. For instance, Etuk[2] has shown 

that monthly Nigerian Naira-US Dollar exchange rates are seasonal with period 12 

months. He fitted an (0, 1, 1)x(1, 1, 1)12 seasonal autoregressive integrated moving 

average (SARIMA) model to it and on its basis forecasted the 2012 values. He has 

modeled daily Naira-Dollar exchange rates by a (2, 1, 0)x(0, 1, 1)7 SARIMA 

model after having observed a 7-day seasonality (Etuk[3]). He has also fitted 

another (0, 1, 1)x(1, 1, 1)12 SARIMA model to the monthly Naira-Euro exchange 

rates (Etuk[4]). In this write-up, interest is in the fitting of a SARIMA model to 

monthly Nigerian Naira-British Pound exchange rates. Perhaps there are no earlier 

attempts to model the series by SARIMA methods. 

Box and Jenkins[5] introduced a SARIMA model as an adaptation of an 

autoregressive integrated moving average (ARIMA) model, which they earlier 

proposed, to specifically explain the variation of seasonal time series. SARIMA 

modeling has been quite successful. A few other authors who have written 

extensively on the theoretical properties as well as on the practical applications of 

SARIMA models, highlighting their relative benefits are Priestley[6], Madsen[7], 

Gerolimetto[8], Martinez and Soares da Silva[9], Prista et al[10], Saz[11], 

Surhatono[12], Oduro-Gyimah et al [13], Sami et al[14] and Bigovic[15].      
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2  Materials and Methods 

The data for this research work is the monthly Naira-Pound exchange rates 

from 2004 to 2011 published under the Data and Statistics heading of the Central 

Bank of Nigeria website www.cenbank.org.  

 

 

2.1 Sarima Models 

A time series {Xt} is said to follow an autoregressive moving average 

(ARMA) model of order p and q denoted by ARMA(p, q) if 

qtqtttptpttt XXXX −−−−−− ++++=−−−− εβεβεβεααα ...... 22112211     (1) 

where the α’s and the β’s are constants such that (1) is stationary and invertible 

and the sequence of random variables {εt} is a white noise process. 

Let (1) be put as 

tt LBXLA ε)()( =                (2) 

where A(L) = 1 - α1L - α2L2 - … - αpLp and B(L) = 1 + β1L + β2L2 +… +βqLq and 

L is the backward shift operator defined by LkXt = Xt-k. It is well known that for (1) 

to be stationary and invertible the zeros of A(L) and B(L) must be outside the unit 

circle respectively. 

Many real life time series are nonstationary. For such a time series Box and 

Jenkins[5] propose that differencing up to an order d could render it stationary. 

Suppose the stationary dth order difference of Xt is denoted by ∇dXt. Clearly ∇ = 

1-L. Putting ∇dXt in lieu of Xt in (1) yields an autoregressive integrated moving 

average (ARIMA) model of order p, d and q, denoted by ARIMA(p, d, q) in {Xt}. 

Suppose a time series {Xt} is seasonal of period s. For such a series a SARIMA 

model of order (p, d, q)x(P, D, Q)s is defined by  

t
s

t
D
s

ds LLBXLLA ε)()()()( Θ=∇∇Φ            (3) 

http://www.cenbank.org/
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where Φ(L) and Θ(L) are respectively polynomials of order P and Q with 

coefficients such that the model is stationary and invertible respectively. Φ(L) and 

Θ(L) are respectively the seasonal autoregressive and moving average operators of 

the model. 

 

 

2.2 Model Estimation 

The software Eviews was used for model fitting. Time series analysis 

invariably begins with the time plot. At this stage a lot about the nature of the 

series could be evident. For instance any seasonal tendency or otherwise could 

show up. Generally no regular seasonal pattern is obvious. The autocorrelation 

function (ACF) better reveals a seasonal nature or otherwise. A significant spike at 

the seasonal lag is an indication of seasonality; a negative spike indicates a 

seasonal moving average component and a positive one an autoregressive 

component. To avoid unnecessary model complexity it has been advised that d + 

D be at most equal to 2. An autoregressive model of order p has a partial 

autocorrelation function (PACF) that cuts off at lag p. On the other hand a moving 

average model of order q has an ACF that cuts off at lag q. 

After determination of the orders p, d, q, P, D, Q and s, the rest of the 

parameter estimation process could be done. Eviews is based on the least error 

sum of squares criterion. This involves an iterative process after an initial estimate 

of the solution is made, the process converging to an optimal solution. 

After model estimation, the model is subjected to goodness-of-fit tests to 

ascertain its adequacy. Analysis of its residuals is done. Assuming the model is 

adequate its residuals should be uncorrelated and should follow a normal 

distribution. 
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3  Results 

The time plot of the series NPER in figure 1 reveals an overall slightly 

negative trend with a deep depression in late 2008. Ne regular seasonality is 

observable. Seasonal (i.e. 12-point) differencing of NPER yields a series SDNPER 

with a slightly positive secular trend and no regular seasonality still (See Figure 2). 

A nonseasonal differencing of SDNPER yields a series DSDNPER with an overall 

horizontal trend with no observable regular seasonality (See Figure 3). The ACF 

of DSDNPER of Figure 4 however shows a significant spike at lag 12, indicating 

seasonality of period 12 and a seasonal moving average component of order one. 

The PACF has significant spikes at lags 12 and 24 suggesting a seasonal 

autoregressive component of order two. Therefore a (0, 1, 0)x(2, 1, 1)12 SARIMA 

model   

121224241212 −−− +=−− ttttt DSDNPERDSDNPERDNDNPER εβεαα      (4) 

is proposed. The estimation of (4) as summarized in Table 1 yields 

122412 8611.07014.01697.1 −−− −=++ ttttt DSDNPERDSDNPERDSDNPER εε  (5) 

We note that all three coefficients are statistically significant, each being 

more than twice its standard error. The regression is very highly significant with a 

p-value of 0.000000. As high as 61% of the variation in DSDNPER is accounted 

for by the fitted model (5). Figure 5 shows a very close agreement between the 

fitted model and the data. Figure 6 shows that the residuals are uncorrelated. 

Therefore the fitted model is adequate. 

 

 

4  Conclusion  

Fitted to the monthly exchange rate series NPER is the (0, 1, 0)x(2, 1, 1)12 

SARIMA model (5). By various arguments it has been shown to be adequate.  
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Figure 4: Correlogram of DSDNPER 
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Table 1: Model Estimation 
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Figure 6: Correlogram of the Residuals  
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