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Abstract 

This research presents a lightweight algorithm for calculating the area enclosed by 

a contour in a two-dimensional space, the shape of which is determined by an 

elevation function. The area is calculated using Green’s theorem, for which a 

one-dimensional line integration along the contour is required. To trace the 

contour efficiently, we introduce the notion of a shortcut vector determined by a 

certain rotation. In view of the feature in tracing and circulating the contour, we 

call this an ‘inner skin algorithm’. Though our primary aim is to apply the 

algorithm to terrain topography, the method would also be useful in various 

engineering fields, such as civil engineering, mechanical design, and 

electromagnetics. 
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1  Introduction 

We discover a lightweight algorithm for calculating the area of a region 

bounded by a closed contour, the shape of which is determined by an elevation 

function. The salient features of the method are: 

• No broken line approximation is used in contour generation. 

• No convergence iterations are carried out in contour tracing. 

• No double integration is performed in calculating the area. 

• No buffering technique is used to detect termination of circulation. 

Though our primary interest is in calculating areas of lakes, swamplands, and 

ponds using digital elevation data, the algorithm itself would also be useful in 

many other engineering fields. 

The problem of tracing and drawing a contour is also referred to as ‘contour 

tracing’ and ‘contouring’, and much attention has been drawn to the problem in 

various fields. The pioneering research on this topic is Cottafava and Moli [1] 

which treated cases for which elevations are given over a regular grid. McLain [2] 

extended the analysis to elevations given only on scattered points. Further 

extensions have been given by Lopes and Brodlie [3], and Osorio and Brodlie [4]. 

The former uses a bilinear model as elevation function, and approximates two 

broken contour lines in a grid by a hyperbola. The latter handles cases for which 

there is a degree in uncertainty in the elevation function. Interested readers can 

obtain an overview of the traditional methodologies and recent advances in Li et 

al. [5], and Floriani and Spagnuolo [6]. 

In terrain modelling and analysis, applications using digital elevation data such 
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as Geographic Information System (GIS) have been given emphasis in recent 

years. In using Digital Elevation Model (DEM) data, triangular-based reference 

points are frequently used to model terrain surfaces. The seminal work using this 

approach is Gold et al. [7], with many improvements and generalisations carried 

out. Dobkin et al. [8] proposes a triangulation method by which a contour can be 

traced efficiently. One of the most widely used methods in recent years is the 

Triangular Irregular Network (TIN), a vector-based model that consists of a set of 

discrete data points ),,( zyx , called mass points. An advantage of this method is 

the capability of describing the surface at different levels of resolution, and its 

efficiency in storing data. An application to extract spatial characteristics using 

TIN is presented in Li and Ai [9]. 

Our current interest is in calculating areas of closed contours. If we require 

high-precision results, making a fine grid is a straightforward solution. However, 

the volume of required reference data expands quadratically in proportion to 

resolution. This situation is the same whether we use regular grids or TINs, 

because both of these are based on piecewise linear approximations. 

However, if we can approximate the contour by a nonlinear elevation function, 

resolution may not be that important, allowing precision to be targeted 

independently. From the above-mentioned papers, we find use of a continuous 

nonlinear elevation function, for example, McLain [2], Lopes and Brodlie [3], and 

Iri et al. [10], although use of elevation function values only on regular grids 

essentially reduces the problem to piecewise linear approximations. Thus, the 

benefit in using a nonlinear function representing the curve has not been exploited 

to the full. 

With this perspective, we develop an algorithm that efficiently calculates the 

area of a closed contour by using several properties of the elevation function not 

utilised thus far. The primary essences of the proposed algorithm are: 

• The method can be understood as a vector-based method and not a raster-based 

one. 
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• The concepts of shortcut vector and angle are introduced for tracing the contour. 

• One-dimensional line integration is carried out along the contour. 

• The set of traced points are not recorded and only the initial and latest points are 

used to determine termination. 

In view of the behaviour in tracing and circulating the target contour, we refer to 

the proposed approach as inner skin algorithm. 

 

 

2  Proposed Method 

After introducing some prerequisites on elevation functions, we focus on 

calculating the area of a closed curve. We propose an algorithm for efficiently 

tracing a contour and a method for adjusting the step size for line integration. 

 

 

2.1 Prerequisites 

In three-dimensional space, the elevation function is determined by z = 

)(),( xfyxf ≡ . We suppose that f  is continuous in x  and y , and Tf )00(≠∇  

follows on the target contour. 

In general, a contour at height h  can be understood as a collection of points 

for which hf =)(x  holds. However, without loss of generality, we can set 

hf −)(x  as the new elevation function of )(xf , and assume 

0)( =xf . (1) 
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2.2 Area of the region by a closed curve 

We derive a formula for calculating the area of a closed region surrounded 

by a simply-connected curve. 

In two-dimensional space, let D  be a region formed by a simply-connected 

curve, and let D∂  be the oriented boundary as defined by moving counter 

clockwise along the boundary of D . Here, we consider Green’s theorem [11]: 

∫∫∫ ∂
=×∇

D

T

D
ddxdy xuu .  

where u  is an arbitrary class 1C  vector. By putting Txy )(−=u , this is 

rewritten 

)(2 ∫∫∫ ∂
−=

DD
ydxxdydxdy . (2) 

We note here that the half of the left hand-side is equal to the area of region D , 

which we shall denote by S . 

Let the current x  be a solution of Eq. (1) and consider an infinitesimal 

displacement Tdydxd )(≡x . The Taylor expansion of )( xx df +  to first order is 

)()()( xxxxx fdfdf T∇+=+ .  

If we displace along the contour D∂ , 0)()( ==+ xxx fdf  is followed and xd  

is perpendicular to )(xf∇ , a normal vector of the contour at x . Letting the unit 

normal vector be denoted by ne  |))(|/)(( xx ff ∇∇= , we create the directional 

vector by rotating ne  for 2/π  in a counter clockwise direction. We then obtain 

the unit directional vector de  as follows: 

||/)()2/( fffJ T
xydd ∇−=⋅= ee π ,  

where )(θJ  represents the two-dimensional rotation matrix given below: 








 −
=

θθ
θθ

θ
cossin
sincos

)(J .  
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Denoting the length of xd  by dl , it follows =⋅== d
T dldydxd ex )(  

|)|/()( fdlff T
xy ∇− . By substituting this into the right hand-side of Eq. (2), the 

area S  is calculated by 

∫∫ ∂∂
=

+

+
=

DD
yx

yx dlgdl
ff

yfxf
S )(

2
1

22
x , (3) 

where 

2/)()( n
Tg exx = . (4) 

The feature of this formula is that the area is calculated by a one-dimensional line 

integration, and not double integration. 

 

 

2.3 Contour tracing 

To perform the line integration in Eq. (3), we consider a method for tracing 

the contour D∂ . If dl  were infinitesimal, xd  would be exactly perpendicular to 

)(xf∇ . However, in numerical computations, dl  is obtained by partitioning the 

contour into small finite increments. We replace dl  and xd  by lδ  and xδ , 

respectively, to denote this discretisation. The specific form of xδ  is 

dl ex ⋅= δδ . (5) 

After discretisation, point xx δ+  may deviate from D∂ , and 

ff δδ ≡+ )( xx , (6) 

is not equal to zero. Thus, we consider a shortcut vector sδ  that satisfies 

0)( =+ sx δf , (7) 

by rotating the directional vector xδ : 

xs δθδ ⋅= )(J , (8) 
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where θ  is the counter-clockwise rotation angle. 

We depict the relationships between the relevant vectors, contour, and angle in 

Figure 1. The figure shows the case for 0>fδ  and the circulation direction is 

counter clockwise. In geometrical terminology, this corresponds to a circulation 

for a lake; in contrast, the direction is clockwise if 0<fδ , corresponding to a 

circulation for a hill. 

Here, we consider the Taylor expansion of )( sx δ+f  for θ  around 0=θ  to 

first-order: 

θ
θ

δδθδ
θ

⋅++≅⋅+=+
=0

)())(()(
d
dffJff xxxxsx . (9) 

Then, we determine θ  from Eq. (7) which is understood as being the steepest 

descent method [12] for just one iteration. 

For later, we consider the derivative of )(θJ  for θ : 







 +=








−
−−

=
2sincos

cossin)( π
θ

θθ
θθ

θ
θ J

d
dJ .  

With respect to sx δ+ , its derivative with respect to θ  is 

nn JlJlJ
d

dJ
d
d eexx

⋅⋅−=⋅





⋅⋅






 +== )(

22
)(

θδ
π

δ
π

θδ
θ
θ

θ
.  

Moreover, 

lflJf
d
df

d
df

n
TT δθδθ

θθ
⋅∇−=⋅∇−=∇= cos||)()()( ex .  

Then, at 0=θ , we obtain 

lf
d
df

δ
θ θ

||
0

∇−=
=

. (10) 

Recalling Eqs. (6), (7), (9), and (10), the approximation of θ  can be expressed as 

follows: 
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lf
f
δ

δ
θ

||∇
≅ . (11) 

Substituting Eq. (5) in Eq. (8), sδ  is reduced to 

)sin(cos
cossin
sincos

)( nddd llJl eeees ⋅−⋅⋅=






 −
=⋅⋅= θθδ

θθ
θθ

δθδδ . (12) 

If we consider small increments lδ , 0≅θ  holds and Eq. (12) can be 

simplified. Noting that 

θθ ≅sin  and 1cos ≅θ  (13) 

holds for 0≅θ , Eq. (12) can be approximated by 

mxees δδθδδ +=⋅−⋅≅ )( ndl ,  

where 

nl em ⋅⋅−= θδδ . (14) 

If we shift the current point x  based on 

sxx δ+⇐new ,  

newx  is close to or exactly on D∂ . By repeating this incremental displacement we 

ultimately return to the initial point, completing a circuit along the contour. 

sδ xδ

mδ )0()( >=+ ff δδ xx

0)(: =∂ xfD

x

θ

lδ

 

Figure 1: Relationship between directional and shortcut vectors 
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2.4 Numerical integration 

We now examine numerical integration of Eq. (2). Here we consider the line 

segment ydxxdy −  on the right-hand side. With the help of the shortcut vector, 

we replace xd  with sδ . Then using Eqs. (5) and (8), we obtain 

l
J

lJJJydxxdy n
T

d

T
T δ

θ
δθπδπ

⋅=⋅





−=






−=−

2
)(

)(
2222

1)(
2
1 ex

exsx .  

This implies that )(xg  in the line integration Eq. (3) is replaced by 

2/])([)( n
T Jg exx θ= ,  

rather than Eq. (4). Using Eq. (13), this is further simplified to 

2/)(2/)sin(cos)( dn
T

dn
Tg eexeexx ⋅+≅⋅+⋅= θθθ . (15) 

 

 

2.5 Curvature properties 

We consider the Taylor expansion of )( xx δ+f  to second-order: 

2/)()()( xxxxxxx δδδδ Hfff TT +∇+≅+ ,  

where )()( xx fH T∇∇=  represents the value of the Hessian matrix at point x . 

Noting that ff δδ =+ )( xx , 0)( =xf , and 0≅∇fTxδ , we obtain 

2/)( xxx δδδ Hf T≅ .  

Subsequently, recalling Eqs. (5) and (11), θ  can be approximated as 

llkH
f

l
lf

H
d

T
d

T

δδ
δ

δ
δδ

θ ∝⋅=
∇

=
∇

≅ )(
2
1)(

||2||2
)(

xexe
xxx

, (16) 

where )(xk  is known as signed curvature at x . Denoting the radius of curvature 

on x  by )(xρ , this is also expressed by 
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|2|)( θρδ ⋅≅ xl . (17) 

We note here that the right-hand side represents the length of an arc with central 

point x , radius )(xρ , and central angle |2| θ . 

 

 

2.6 Adjustment of the step size 

A sudden change in the curve along the contour would be indicated by the 

shortcut angle θ  increasing at the point. Accordingly, declines in precision 

accrue for θ , θsin , and θcos  in Eqs. (11) and (12). For such cases, the step 

size lδ  should be shortened to avoid deviation from the contour. 

Recalling the proportionality of θ  to lδ  in Eq. (16), we adjust lδ  in a 

manner so that Eq. (13) still holds. Let )0(>Mθ  and Mlδ )0(> be the maximum 

limit of ||θ  and the step size lδ , respectively. 

If Mθθ >||  occurs at a point, then we decrease the step size in accordance 

with: 

ll M δ
πθ

θ
δ ⋅⇐

)2/|,min(|
. (18) 

The minimum operation in the denominator is to avoid stall if ||θ obtained by Eq. 

(11) is very large. After this adjustment, we have to recalculate the relevant values 

that depend on lδ : i.e., xδ , fδ , and θ . 

In contrast, if Mθθ ≤|| , we do not magnify lδ  at this step to avoid 

recalculation, and magnify it in the next step. Even if this condition holds, we set 

lδ  to Mlδ  at the maximum even if 0|| ≅θ . This is because there may be a 

sudden change in the curve on the small segment. In view of these, the adjustment 

process for lδ  in Mθθ ≤||  can be expressed as 
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







⋅⇐ M

M lll δδ
εθ

θ
δ ,

)|,max(|
min , (19) 

where ε  is a very small positive value, which plays a role if ||θ  is zero or very 

small. 

 

 

2.7 Small variance curvature 

A desirable maximum step size Mlδ  is considered for a contour with small 

variance curvature. Let us recall Eq. (17), and let ρ  be the typical radius of 

curvature during the circulation of D∂ . If we set MMl θρδ 2>> , the condition 

Mθθ >||  would often hold during a circulation. This would result in frequent 

adjustments of lδ  and recalculation of xδ , fδ , and θ , from which computation 

times increase. In contrast, if we set MMl θρδ 2<< , the step size lδ  is always 

small compared with the target precision. This would also raise inefficiencies in 

computation. Accordingly, if the curvature of D∂  does not vary significantly and 

we can estimate ρ  in advance, even roughly, the computation time can be 

reduced if we set 

MMl θρδ ⋅⋅= 2 .  

Alternatively, if there is no a priori information about the shape, we have to set 

Mθ  and Mlδ  independently. 

 

 

2.8 Overall algorithm 

We outline the overall algorithm for calculating the area S  based on Eq. (3). 

First, we set the maximum shortcut angle Mθ  and the step sizes mlδ  and Mlδ . 
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Then, we find a solution 0x  that satisfies Eq. (1) using an efficient method such 

as Newton’s method. Moreover, let 0⇐L  and 0⇐S  be the cumulative length 

and square elements. 

Next, we calculate the shortcut angle θ  using Eq. (11), where xδ  and fδ  

are calculated by Eqs. (5) and (6), respectively. If Mθθ >|| , we shorten lδ  using 

Eq. (18) and recalculate xδ , fδ , and θ . Subsequently, we calculate the line and 

square elements on x  and add them to L  and S , respectively: 

lLL δ+⇐ , (20) 

lgSS δ⋅+⇐ )(x , (21) 

where we use )(xg  in Eq. (15). 

Then, we proceed to the next point using the assignment 

mxxx δδ ++⇐new . (22) 

If Mθθ <||  holds, we magnify lδ  using Eq. (19). Subsequently, we calculate 

xδ , fδ , and θ  again, add the new segment element, and proceed to the next 

point. 

We repeat this addition and shift until the current point x  lies within the 

vicinity of the initial point 0x . Termination is determined by the condition 

lδ≤− || 0xx  and pre0 || d<− xx , (23) 

where pred  is the value of || 0xx −  in the previous step. If Eq. (23) holds, we set 

the next point to 0x  forcibly. With this final shift, we have completed the 

circulation. 

To aid the readers’ comprehension, we present in Figure2 a pseudo code of the 

overall algorithm. The generic calls ‘Find’, ‘Set’, ‘Cal’, and ‘Update’ are 

procedural calls that find a solution for the given argument, perform parameter 

settings, calculate the quantity given as argument, and update the value of the 
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given argument, respectively. 

We note that the algorithm presented in Figure 2 returns the signed area, which 

may be negative for a certain type of the elevation functions. Let us recall Eq. (3) 

here. In the line integration, the sign is positive if the circulation is counter 

clockwise, referred to earlier as a lakeside circulation. A hillside circulation is 

determined by clockwise circulation and the resulting integration is negative. Thus 

taking the absolute value is required for obtaining the area; the sign refers to how 

the area is oriented. 

01 Find subject to 
02 Set , 
03 , , , , 

04 Begin loop
05  Cal , , 

06  Cal , 
07  Cal , , 
08  If 
09  Update 
10   Cal , 
11  End if
12  Cal 
13  If and 

14   
15   
16   0
17   Cal 
18  End if
19  

20  Cal 
21  
22  
23  
24  If Exit Loop
25  If 
26   Update 
27  End if
28 End loop

(Eq. 1)

(Eqs. 5, 6, 11)

(Eq. 18)
(Eqs. 5, 6, 11)

(Eq. 14)
(Eq. 23)

(Eqs. 6, 11)

(Eq. 15)
(Eq. 20)
(Eq. 21)
(Eq. 22)

(Eq. 19)

 

Figure 2: Pseudo code for calculating the area 
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3  Remarks 

We give several complementary remarks and precautions when performing 

practical applications. 

 

 

3.1 Elevation function 

For the elevation function )(xfz = , we can use either an 

analytically-defined or an experimentally-determined function. A typical approach 

for the latter case is to use digital elevation data. In particular, if elevations are 

given on a regular grid, a straightforward method to model terrain surface would 

be using a bilinear or bicubic spline functions below: 

))(()()()( 001100101000 yyxxayyaxxaaf −−+−+−+=x ,  

∑ ∑= =
−−=

3

0

3

0 00 )()()(
i j

ji
ij yyxxaf x ,  

where ),( 00 yx  is the base coordinate of the target cell. If we use either of the 

above functions, the first derivative f∇  can be calculated analytically. In contrast, 

if the exact f∇  cannot be obtained, we use an approximation from numerical 

differentiation. 

 

 

3.2 Non-simply-connected curves 

Suppose our goal is to calculate the area of a lake dotted with islands. Thus 

far, we have assumed that the target region is simply-connected; the proposed 

algorithm then cannot be used in the present form. However, recalling that the line 

integration in Eq. (3) is negative for hillside circulation, the area of a hill can be 

subtracted conveniently by simply adding the results of the line integration. Thus, 
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if we can identify all islands within the lake and determine their initial points 0x , 

the area of the lake can be obtained by simply adding the results of the line 

integration before taking the absolute value. 

A simple example of a lake with two islands is shown in Figure 3. The area 

filled with grey represents the lake. Curve 1D∂  represents the lake shoreline and 

curves 2D∂  and 3D∂  the island shorelines. Setting 1S , 2S , and 3S  as the line 

integrations based on Eq. (3), 01 >S , 02 <S , and 03 <S  follow and the area of 

the lake S  is obtained by 

321 SSSS ++= . 

 
 

1D∂ 0)( >xf
01 >S

2D∂

3D∂02 <S
03 <S

 

Figure 3: Area of a two-island lake 

 

 

4  Numerical Computation 

We perform numerical computations for several elevation functions 

)(xfz = , for which the shapes of the contours formed by 0)( =xf  are well 

known and their areas can be analytically obtained. We implement the program 

codes for GNU Octave version 3.6.2 running on Windows 7, and derive the partial 

derivatives of )(xf  by hand. We compute the areas for various maximum 
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shortcut angles =Mθ 0.25, 0.1, 0.025, 0.01, 0.0025, and 0.001, setting the 

maximum step size using MMl θδ 2= . The initial point is determined using the 

‘fsolve’ function initialised by starting with search point (1, 1). 

 

 

4.1 Circles and ellipses 

We consider four functions =)(xf : (1) 122 −+ yx , (2) 1)/(1 22 −+ yx , (3) 

144/ 22 −+ yx , and (4) 830)(17 22 −−+ xyyx . The contour shape of the first pair 

is circular, and for the second pair ellipsoidal. Function (4) is obtained by rotating 

function (3) by 4/π . The area enclosed by these figures is π ; note that a singular 

point occurs at )0,0(),( =yx  in function (2), and the circulation direction is 

clockwise. 

 
Table 1: Calculation results for the area of four elevation functions bounding  

          equal area 

 )(xf  =Mθ  
0.25 

0.1 0.025 0.01 0.0025 0.001 

(1) 122 −+ yx  
3.0630 3.1223 3.1403 3.1414 3.1416 3.1416 

(13) (32) (126) (315) (1257) (3142) 
2.50e-2 6.13e-3 4.13e-4 6.66e-5 4.16e-6 6.67e-7 

(2) 11
22
−

+ yx
 

-3.1790 -3.1269 -3.1403 -3.1414 -3.1416 -3.1416 
(13) (32) (126) (315) (1257) (3142) 

1.19e-2 4.69e-3 4.07e-4 6.64e-5 4.16e-6 6.67e-7 

(3) 14
4

2
2

−+ yx

 

3.0370 3.1356 3.1411 3.1415 3.1416 3.1416 
(25) (63) (239) (591) (2348) (5864) 

6.96e-3 1.91e-3 1.46e-4 2.53e-5 1.44e-6 2.61e-7 

(4) 830
)(17 22

−−
+

xy
yx

 

3.0370 3.1356 3.1411 3.1415 3.1416 3.1416 
(24) (63) (239) (591) (2348) (5864) 

3.32e-2 1.89e-3 1.52e-4 2.53e-5 1.60e-5 2.57e-7 
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Table 1 lists the calculation results. The values in the first, second, and third 

rows for each cell represent the area, number of segments that complete the circuit, 

and computation error, respectively. The error is calculated by 

Error = |Computed value – analytical value| / |analytical value|.  

As we can confirm, the computed values approach to π  as Mθ  is decreased. 

Regarding the number of segments, the values increase as Mθ  decreases and they 

are almost inversely proportional to Mθ . In view of the third rows, the 

computation errors decrease sharply as Mθ  decreases. In particular, for smaller 

025.0≤Mθ , the errors reduce to approximately 1/100 fold as Mθ  is shortened to 

1/10 fold. 

 

 
4.2 Cassini ovals 

The Cassini oval is described as the locus for which the multiplication of 

distances from two foci is constant. The specific function in implicit form is: 

0)()(2)()( 44222222 =−+−−+= bayxayxf x ,  

where a  and b  are positive constants. If ba = , the shape is referred to as a 

lemniscate of Bernoulli. Moreover, for ba ≤ , it is known that the area surrounded 

by this figure is represented as 

))/((2 22 baEbS = , (24) 

where )(kE  is the incomplete elliptic integral of the second kind defined below: 

∫ −=
2/

0

22 sin1)(
π

ϕϕdkkE .  

We now compute for b =1/0.9 and 1/0.999 with a =1, and summarise the 

results in Table 2. The values S  in the second column represent the areas 

computed using Eq. (24) directly. The rough trend regarding the accuracy of the 

areas and number of segments are the same as that of Table 1. The resulting values 

approach S  as Mθ  decreases, and the number of segments increases 
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approximately inversely proportional to Mθ . For smaller 025.0≤Mθ , the errors 

decreases in approximate quadratic order as Mθ  decreases. 

Figures 4 and 5 depict the trajectories for calculating the area of the Cassini 

ovals for ),( ba =(1, 1/0.9) and (1, 1/0.999), respectively. Each figure has two 

trajectories for =Mθ 0.25 and 0.01. Starting from the initial point located at the 

upper right corner, the control point circulates in counter clockwise along the 

contour. 

In Figure 4, even if we set =Mθ 0.25, the trajectory does not deviate markedly 

from the contour, and the computation result has high accuracy in spite of the 

large step size. In contrast, Figure 5 has a narrow neck and sudden curve changes 

in the vicinity of origin; the trajectory deviates from the contour where the 

curvature significantly changes. This would yield a lower precision result 

compared with the case in Figure 4. 

With these results in mind, in treating general shapes, we need to set Mθ , mlδ , 

and Mlδ  properly by making an appropriate compromise between precision and 

computation load. 
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Figure 4: Trajectories for calculating Cassini oval ),( ba =(1, 1/0.9) 
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Figure 5: Trajectories for calculating Cassini oval ),( ba =(1, 1/ 0.999) 

 

 

 
Table 2: Calculation results for the areas of Cassini ovals with 1=a  

b  S  =Mθ  
0.25 

0.1 0.025 0.01 0.0025 0.001 

9.0
1  3.1290 

3.1340 3.1211 2.1288 3.1289 3.1290 3.1290 
(21) (50) (193) (481) (1917) (4789) 

1.59e-3 2.51e-3 7.35e-5 3.07e-5 1.91e-6 3.09e-7 

999.0
1  2.0186 

2.0986 2.0136 2.0180 2.0185 2.0186 2.0186 
(26) (68) (269) (663) (2627) (6556) 

3.96e-2 2.48e-3 3.23e-4 6.17e-5 2.37e-6 3.75e-7 

 

 

5  Conclusion 

We have developed a lightweight calculation algorithm for the area 

surrounded by a closed contour. We introduced the notion of a shortcut vector 

determined by a specified rotation by which an efficient tracing of the contour was 

accomplished. This approach was referred to as inner skin algorithm. 

Through numerical simulations, we confirmed that a compromise between 
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precision and computation load is necessary. In this article, we have set the 

parameters for the maximum shortcut angle step size intuitively, and the detailed 

relationship between computation precision and parameter settings has not been 

explored. Further study on this issue and precision assurance remains work for the 

near future. 
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