
Journal of Applied Mathematics & Bioinformatics, vol.3, no.1, 2013, 163-179

ISSN: 1792-6602 (print), 1792-6939 (online)

Scienpress Ltd, 2013

An Efficient Impelementation of the

Bundle Security Protocol

for DTN-enabled Embedded Devices

Christos Tselikis1, Athanasios Poulakidas2,

Aggelis Aggelis3 and E.G. Ladis4

Abstract

As the implementations of the Bundle Protocol (RFC 5050) reach
remarkable maturity, an increased interest is now appearing to fully
implement the DTN security features as specified in the Bundle Se-
curity Protcol (RFC 6257). In this regard, in this paper we present
our BSP implementation suitable for embedded devices with scarce re-
sources (limited prcocessing, memory, energy and transmission capabil-
ities). Our BSP implementation enhances the existing security features
in DTN2(v2.8). We analyze the functionality and the performance of
our secure DTN2 stack via experimental means. Namely, we conducted
a series of test cases in our heterogeneous TCP/IP-based test-bed. The

1 Hellenic Aerospace Industry S.A., e-mail: tselikis.christos@haicorp.com
2 Hellenic Aerospace Industry S.A., e-mail: poulakidas.athanasios@haicorp.com
3 Hellenic Aerospace Industry S.A., e-mail: aggelis.aggelis@haicorp.com
4 Hellenic Aerospace Industry S.A., e-mail: egladis@haicorp.com

Article Info: Received : November 1, 2012. Revised : January 30, 2013
Published online : March 30, 2013



164 An Efficient Impelementation of the Bundle Security Protocol for DTN

latter allowed for experimentation regarding bundle transmission via dif-
ferent network interfaces (high bit-rate wire-line and low bit-rate wire-
less links) and with different types of interconnected DTN-enabled de-
vices. The results prove that the security developments impose tolerable
communication overhead and reveal the DTN performance factors.

Mathematics Subject Classification: 68M12

Keywords: Bundle Security Protocol; embedded devices; test-bed; perfor-

mance

1 Introduction

The Bundle Protocol (BP) defined in DTNRG RFC 5050 supports inter-

operability across different networks, creating an overlay network where two

or more endpoints can seamlessly exchange information overcoming different

transport and network layers. The Bundle Security Protocol (BSP) is defined

in IETF RFC 6257 [1] and specifies security features for the Bundle Protocol

in order to provide DTN security services. The BSP describes four mandatory

cipher-suites but does not impose any restriction on the cipher-suites that can

be used; however there is a clear need for efficient security implementations

that can be ported to embedded environments successfully meeting the funda-

mental requirement to authorize the access to the DTN infrastructure. In this

paper we present an enhancement of the DTN2 Reference Implementation v2.8

with implantation of the security features specified in BSP: end-to-end bun-

dle encryption with Payload Confidentiality Block (PCB), end-to-end bundle

signature with Payload Integrity Block (PIB), hop-by-hop Bundle Authenti-

cation Block (BAB) signatures and RSA public key encryption, excluding the

Extension Security Block (ESB). The functionality and the performance of the

secure DTN stack was validated with a series of test cases conducted in our

heterogeneous test-bed.



C. Tselikis et al 165

2 Related Work

1) DTN2 [2], the widely used Reference Implementation (RI) in C++,

tested on Linux (x64 and 64-bit x86) and Mac OS X (PPC and x386).

DTN2 supports TCP, UDP, NORM, AX.25, LTP and Bluetooth con-

vergence layers. Also, DTN2 supports table-based routing, Bonjour,

ProPHET, DTLSR, epidemic routing and elementary secure DTN fea-

tures.

2) ION [3], the second RI is an implementation of BP, LTP, CFDP, and

AMS in C, tested on Linux, OS X, FreeBSD, Solaris, RTEMS, and Vx-

Works. ION is interoperable with DTN2 and supports TCP, UDP, and

LTP convergence layers. ION is the only software to implement the

Contact Graph Routing (CGR) algorithm, which is considered the most

suitable for space contacts. ION is suitable for embedded environments

due to reduced footprint. With regard to security, from open-source ver-

sion 3.0.0 onwards, implementations for the BAB, PCB and PIB security

blocks are included in ION, tested over UDP/IP.

3) IBR-DTN [4], a very portable, slim and extensible implementation in

C++, tested on Linux (x386 and MIPS) and runs on every system with

OpenWRT. It claims full support for BSP and includes TCP, UDP, and

HTTP convergence layers along with experimental support for various

Internet Drafts. IBR-DTN was also ported to run on an iMote2 sensor

running a modified version of Linux. This port supported only IEEE

802.15.4 (LowPAN) as a convergence layer. IBR-DTN supports table-

based routing, UDP and TCP discovery, IP neighbor and epidemic rout-

ing with an efficient bloom filter.

4) ByteWalla [5], an implementation in Java (over TCP) for Android de-

vices; it was later ported in pure Java for Microsoft Windows and Linux

systems. Supports static and dynamic routing (Prophet). With regard

to security, implements the BSP PCB security block with AES in Galois

Counter Mode (GCM).

5) CONDROID [6], a design of a DTN/WSN Gateway and Java applica-

tions running on Android devices.



166 An Efficient Impelementation of the Bundle Security Protocol for DTN

6) POSTELLATION [7], a DTN implementation, running on Windows,

MacOSX, Linux and RTEMS. Included applications are dtnping/dtnpong,

dtnsend/dtnrecv, HTTP/HTTPS Proxy, RSS news service delivery such

as NASA news over DTN.

3 Requirements

The identified security requirements span three basic levels, namely the

bundle, the storage and the system level as described in more detail in the

sequence.

3.1 Security Requirements at the Bundle Level (SBR)

SBR-01: Data confidentiality. Except from encrypting the bundle payload

with the PCB security block it is also recommended to transmit the Bundle

Encryption Key (BEK) encrypted inside the PCB block. The encryption of

the BEK can be symmetric or asymmetric.

SBR-02: Data integrity. The modification of messages is an attack against

data integrity and the protection is achieved with message hashing (MD-5,

SHA1, and SHA-2), integrity check values and digital signatures.

SBR-03: Data origin and data integrity: the hop-by-hop BAB security

block ensures the authenticity of the bundle origin and the integrity of the

bundle payload.

SBR-04: Authorization. Access Control Lists can be used as a mechanism

to grand permissions to applications and users to access the DTN infrastruc-

ture. Address screening is another low-cost mechanism which prevents the

unauthorized usage of DTN resources and which mitigates attacks such as

flooding and even Denial of Service attacks.

SBR-05: Accountability. In the Bundle Protocol definition the account-

ability and traceability are actually provided with the bundle status reports.

However, in security terms accountability demands for permanently stored

audit logs.



C. Tselikis et al 167

SBR-06: Non-repudiation. It is achieved when time-stamped digital sig-

natures (and PKI certificates) are used. When signing with the BAB, the

header which contains the timing information (bundle creation time and bun-

dle expiration) is also signed. Hence, this timing information inside the BAB

signature can be used for non-repudiation purposes.

SBR-07: Data confidentiality and DTN entity authentication. Confiden-

tiality by itself can not countermeasure complicated attacks, such as a Denial

of Service attack and therefore only when assisted with authentication mecha-

nisms can it be proved more efficient. One algorithm that satisfies this security

requirement is the AES in Galois Counter mode (GCM). AES-GCM takes as

input the plain-text and the Initialization Vector (IV) and gives as output the

cipher-text with an ICV tag that proves the integrity of data. Moreover, the

receiver authenticity can be proved by encrypting the bundle encryption key

with the public-key of the receiver.

3.2 Security Requirements at the Storage Level (SSR)

SSR-01: The node must provide a persistent dedicated space (e.g., a

database) that is only accessible by the DTN software (BP agent) for stor-

ing its bundles and optionally for storing some administrative data. No other

service or process may be able to access this dedicated space. From a security

standpoint, the disk space will be divided in a few partitions. The partitions

will be dedicated for bundle storage either directly in the file system or through

a database system.

SSR-02: The node must provide a secure storage area for long-term storage

of keys and critical configuration parameters. Presumably, this storage area

will be in the order of some KB.

SSR-03: Policy Enforcement Point (PEP) is the entity that checks the

security destination of the received bundles and interrogates the Security Policy

Database (SPD) to obtain the corresponding key and other security-related

parameters (e.g., the cipher-suite used) for a given DTN source-destination

pair.

SSR-04: The node should provide a security policy database for storing en-

tries with the policies/security relationships per each DTN source/destination

pair (in DTN version 2.8 the security policies are defined per bundle which is



168 An Efficient Impelementation of the Bundle Security Protocol for DTN

quite elementary).

SSR-05: The node must be reliable in terms of (single) disk failures.

3.3 Security Requirements at the System Level (SSYSR)

SSYSR-01: The node must contain as much DTN software as to support

its mission. No additional or unused software modules will be available in

the node as to avoid possible exploitation through unused or non-configured

modules and software libraries.

SSYSR-02: The node must run the DTN software as a separate user

account, preferably a non-privileged one, in order to minimize the surface for

elevation attacks and exploits of the system through the DTN.

SSYSR-03: The node must collect detailed logs of its DTN operation,

for both debug and auditing purposes. The logs may be rotated and may be

configured to be send as bundles to a central logging facility for long-term

storage.

SSYSR-04: All system accesses (local or remote) are logged to the syslog

facility. The access logs may be transmitted to a configurable central facility

for long-term storage and may be rotated, for example, every 3 months.

4 Design and Implementation

DTN2 version 2.8 software distribution for a Linux environment covers

a large portion of our identified requirements. Thus, it is a wise option for

realizing the secure DTN node. However, there is some functionality that is

not offered or supported by the DTN2 RI. This functionality, as summarized

below, was contemplated necessary and was implemented in the secure DTN2

stack:

1) Minimization of the DTN2 size. The default installation of DTN2

v2.8 occupies 23MBytes. We reduced this significantly achieving 2.6MB

with the baseline development and we achieved 3.1MB when including

the BSP implementations and the OpenSSL libraries. This is roughly

an eight-fold decrease of the DTN2 executable size. Adding the LTPlib,



C. Tselikis et al 169

4MB are reached. External dependency remains only for the tcl and the

Berkeley DB library.

2) Implementation of missing BSP functionality in DTN2 RI, in-

cluding:

a) Support for pe-link BAB keys. Each link of the DTN infrastruc-

ture is authorized with different BAB keys.

b) Support for PIB functionality with RSA digital signatures.

c) Support for enhanced PCB functionality. Encryption of the

payload with the Bundle Encryption Key (BEK) plus symmetric en-

cryption of the BEK plus protection of the encrypted BEK inside an

RSA envelope (with public key encryption).

d) Integration of OpenSSL (1.0.1c, May 2012) [8].

3) Implementation of a per-destination bundle storage quota mech-

anism as a countermeasure to bundle flooding attacks. According to this

mechanism, the DTN2 command: storage set payload-quota <bytes>

is enhanced to the command: storage hostquota <host> <bytes> so

that If there is enough storage space for a specific destination host the

bundle is accepted, otherwise it is not and a BundleProtocol REASON-

DEPLETED-STORAGE reject reason is provided to the sender.

4) Separate storage of the DTN daemon logs in a different file system

than that used for storing the bundles and periodic rotation of the log

files for improved performance (the corresponding definitons are added

in the DTN configuration file).

5) Use of RAID-1 configuration for bundle payload data redundancy.

5 Verification Test-Bed

Our TCP/UDP/IP test-bed is a collection of heterogeneous devices with

different network connections, namely FE, GE, 802.11/b/g/a/n and ADSL

(offers Internet access).



170 An Efficient Impelementation of the Bundle Security Protocol for DTN

Figure 1: The TCP/IP based verification test-bed

The most essential part to describe in detail here is the different types

of the devices that we used to install, configure and verify the secure DTN

functionality:

Type A1. Linux-based PC machines (Ubuntu 10.04) each one with moth-

erboard Intel D945GCLF2, Atom 330 dual core, 1.2 GHz, 1024 MB RAM, 80

GB HDD SATA II, Sound Card on Board 7.1 HD Audio, 4, 2 USB, Parallel,

Serial, LAN 10/100 FE cards.

Type A2. Robust Linux-based PC machines (Ubuntu 10.10) with GE net-

work card, Intel Pentium D 3.4GHz, 80GB storage and 1GB DDR2 physical

memory.

Type B. VM with virtualization software the VMware Player 4.0.1. In this

case the hosts are Windows 7 Professional 64-bit with SP1 machines and with

Intel Core i7 950 3.06 GHz with 1066 MHz system bus, 12 GB DDR3-1600 (3x4

GB), OCZ Vertex2 120 GB SSD (system), one WD RE4 1 TB SATA 3 Gbps

and Realtek Gigabit Ethernet onboard adapter (Gigabyte GA-X58A-U3R).

This type of host is used for the measurements of the maximum achievable

TCP/IP throughput via virtual connections and without DTN.

Type C. Linux-based embedded devices, namely Alix 2D2 boards with

CPU: 500 MHz AMD Geode LX800, DRAM: 256 MB DDR DRAM, 4 GByte

Storage CompactFlash, 44 pin IDE, DC 7V-20V, 2 miniPCI, 2 Ethernet chan-

nels, serial port, dual USB port, board size 6x6, firmware tinyBIOS. We in-

stalled the Voyage Linux embedded distribution is on this type of device.

Type D. Ground router with embedded characteristics, namely Arinfotek



C. Tselikis et al 171

Teak 5020L-280 device, Industrial-Grade 1U Chassis 8 Gigabit LAN, 2 Pairs of

LAN By-Pass CPU in Intel Long-Term Support Roadmap DDR-3 Memory for

High System Performance Intel LAN Chips for Best Reliability and Through-

put Flexible Expansion PCI-32 slot Up to 2x 2’5” HDD for Large Storage

need Optional 2 X 20 LCM for HMI. We used a read-only CF disk to load

the operating system and the DTN stack and one faster and of larger capacity

SSD disk (read-write) to permanently store the bundles. The Voyage Linux

embedded distribution was also installed on this type of device. Further, we

proceed on the equipment of Teak with two small-size SSD disks with RAID-1

configuration in software for data redundancy.

5.1 Security Tests

We tested the security developments with most of the standard DTN2

applications, namely dtnperf2, dtnsend-dtnrecv, dtncp and dtnchat so that it

is proved that the developments are independent of the end-user application. In

addition, we configured and partitioned the TCP/IP test-bed shown in Figure

1 in many different ways in order to accomplish the various validation tasks. In

the configuration shown in Figure 2 we used two Linux-based machines (Type

A1) which were inter-connected via the DTN router-relay device. All three

nodes in Figure 2 were loaded with the DTN2 stack. We supported static

routing at the DTN level over TCP ON DEMAND links.

Figure 2: The test-bed configuration for the security tests

With the configuration of Figure 2 we conducted a series of validation tests



172 An Efficient Impelementation of the Bundle Security Protocol for DTN

that prove that our security implementations are functionally correct. We

present here the most important test cases covered.

1. Multi-hop security with BAB. The two end-nodes shown in Figure

2 have the implemented security features installed and the DTN daemons

are up and running. The same holds for the intermediate router node. All

three nodes have activated the BAB policy. The intermediate node verifies the

received SHA1-based HMAC BAB block (the necessary 20 bytes long HMAC

key is pre-loaded or searched in the key database per source node) and if

it is valid substitutes it with a newly created BAB signature (hashed with

a different HMAC key, according to our support of per-link BAB keys) and

forwards the bundle, otherwise it discards it. In contrast, the DTN2 reference

implementation (at least up to version 2.8) the same symmetric BAB key has to

be used by all nodes in the path from the source to the final destination. This

particular test case verified the correct implemenation of the BAB-HMAC1

mandatory BSP cipher-suite with the per link BAB key implementation.

2. End-to-end security with PCB. The two remote nodes in Figure 2

(source and destination) have the implemented security features installed with

the PCB security policy activated and the DTN daemons are up and running.

However, the intermediate DTN node has no security policy defined at the

DTN level (i.e., is security unaware node which forwards without processing

the secured bundle). According to the implemented PCB policy, the source

secures the bundle payload by applying the AES in GCM mode with 128-bit

key and adds the PCB block after the bundle primary header. A 16 bytes long

randomly generated symmetric key is used as for the Bundle Encryption Key.

The AES in GCM mode gives as output the payload ciphertext and the ICV

tag. In contrast to DTN2, our PCB implementation uses a second symmetric

key (randomly created), the Key Encryption Key (KEK), which is used for

the encryption of the BEK using the AES-128 in CBC mode. The encrypted

BEK is further protected with RSA public key encryption and the resulting

RSA envelope is included in the PCB block. In total, for a 4096-bit RSA key

the PCB length is 564 bytes and for a 1024-bit RSA key the PCB length is

180 bytes. On the contrary, 16 bytes are needed for the AES-128 PCB in

DTN2 RI and the 372 bytes in the Bytewalla AES-GCM PCB implemenation

[5]. The encrypted bundle along with the PCB is sent to the final destination

address via routes that we configured statically at the DTN level. At the



C. Tselikis et al 173

destination end, first the authenticity of the receiver has to be proved (this

is achieved if the final destination holds the correct RSA key). Then the

final destination verifies the integrity of the received bundle by checking the

validity of the ICV tag. In sequence, the BEK sent by the remote source

is recovered and with the BEK the destination node decrypts the payload

ciphertext and acquires the originally transmitted message. The destination

private RSA key, namely the decrypt.pem certificate in .PEM format, is pre-

installed at the local path /home/user/dtn/var/certs. This particular test

case verified the correct implemenation of the PCB-RSA-AES128-PAYLOAD-

PIB-PCB mandatory BSP cipher-suite.

3. End-to-end security with PIB. Two remote nodes connected via

the network (in more than one-hop distance) have installed the secure DTN

stack with the PIB security policy on. The DTN daemons are up and running.

The same holds for all the intermediate DTN nodes however the latter have

no security policy activated (security unaware nodes which forward without

processing the secured bundle). The source node secures the bundle payload

by applying the RSA digital signature operation with its own RSA private key.

In our implementation when the size of the RSA digital signature is 128 bytes,

the PIB occupies a block of 132 bytes, namely 128 bytes for the signature

plus four bytes for describing its size. On the contrary, 32 bytes are used

for the SHA2 digest in DTN2 RI (no signing with RSA key is performed).

The private RSA key of the source (namely sign.pem) is stored at the local

path /home/user/dtn/var/certs/. The final destination uses the public RSA

key of the source to verify the received signature, namely dtn − hostname −
verify.pem, which is stored at the local path /home/user/dtn/var/certs/.

All the tests in this particular test case verified the correct implementation of

the mandatory PIB-RSA-SHA256 BSP cipher-suite.

5.2 Performance Tests

In this section we present the results of DTN performance tests conducted

with the dtn-perf(v2) tool and the Type D device (Teak ground router). Our

aim was to evaluate the BSP security overhead on DTN performance (goodput

and delay). Since the security blocks (e.g., PCB) and the bundle header are

constant in their size, the security overhead decreases with the bundle payload



174 An Efficient Impelementation of the Bundle Security Protocol for DTN

size p according to 1/p [5]. However, we are interested in scenarios where the

bundle are injected into the network and we want to compare the DTN good-

put that can be achieved by DTN-enabled nodes when processing bundles of

variable sizes with and without the BSP policy implementations. To this end,

we cross connected the Teak router device (dtn-perf server) via a GE connec-

tion with a bundle generator machine. At this point we present experimental

results regarding the AES speed in CBC mode when changing the key and file

sizes. For the AES measurements we used one standalone Type A1 device and

OpenSSL 1.0.1c.

Figure 3: The AES-CBC speed with variable key sizes

The results shown in Figure 3 justify our choice of AES-128 in CBC mode

in our PCB implementation.

In the sequence, we describe results for the two basic scenarios that we

examined regarding the DTN goodput performance:

1. DTN goodput with no link disruptions. In this case the dtn-

perf client was a Type A2 robust PC cross-connected with the ground router

(dtn-perf server) via two GE network cards. We sent bundles and received per

bundle delivery reports with and without the security policies and we compared

the reported goodputs. Specifically, the client machine generated two types of

bundle flows:



C. Tselikis et al 175

a) A workload with a total data volume equal to 1 Gigabyte which was

segmented according to the bundle payload size chosen (100MB, 200MB and

300MB). This feature is offered by dtn-perf(v2). The resulting continuous

stream of bundles was sent to the server (no setting for congestion control and

no custody transfer request was used at the bundle generator side) and one per

bundle delivery status report was returned back to the client. The permanent

bundle storage in these experiments was the file system at the server machine.

The experiments with 1GByte workload were conducted with security (PIB +

1GB Workload) and without security (Plain DTN2 + 1GB Workload). The

corresponding goodput figures were reported and logged at the client machine

(in kbps) and these are illustrated in Figure 4 (the RSA key was 1024 bits

long).

b) Single bundles with bundle payload size 100MB, 200MB and 300MB.

Each single bundle was sent from the client to the server and a delivered status

report was returned. The experiments were conducted with the security poli-

cies on (DTN2+BAB, DTN2+PIB and DTN2+PCB) and off (plain DTN2).

The goodputs achieved for those two types of interactions are shown in

Figure 4 in which each point is the average of five measurements.

Figure 4: DTN goodput with and without security policies

In Figure 4 we observe that in the case of transferring a single bundle with



176 An Efficient Impelementation of the Bundle Security Protocol for DTN

200MB payload the goodput achieved by the Teak device was maximized. In

particular, for the plain DTN2 case (no security policy activated) that was

142 Mbps approximately. However, when the client sent a workload of 1GB,

segmented in five unsecured bundles of 200MB each, the goodput was increased

to 155 Mbps, thus achieving even better utilization of the network resources.

The same was true when sending the 1GB workload with the PIB policy on.

For bundle payload sizes larger than 200MB the DTN goodput (with and

without security) started to degrade (compression can be used in order to

decrease the security overhead). When the BAB policy was activated, the

plain DTN2 performance was sustained - rather it was slightly increased for

all payload sizes, as it is evident in Figure 4.

Table 1: The % DTN2 goodput degradation due to BSP policies implementa-

tion

Bundle size 100MB 200MB 300MB

BAB policy +3.82 +4.03 +3.44

PIB poliy -32.74 -41.43 -31.15

PCB policy -68.56 -73.02 -64.46

Table 1 shows the goodput overhead imposed on DTN2 per security policy

and per bundle payload size.

2. DTN goodput with link disruptions. In this case we introduced

channel disruptions with a ratio of the link up-time/down-time to be no more

than 4/3 and no less than 2/9. In more detail, we disrupted the link between

the bundle generator and the Teak device with a random fashion, i.e., the

link up time was randomly chosen between 1 and 2 minutes, while the link

down time was randomly chosen between 1.5 and 4.5 minutes. As expected,

depending on the random result, the bundle transfer delay can be normal (for

example when a single bundle passes through at the first communication op-

portunity) or can be arbitrarily long (exactly due to the randomness of the

time intervals). For example, in one test it took 560.7 seconds for a single

200MB bundle protected with the PCB block to be delivered with acknowl-

edge and the respective goodput dropped to 2.853Mbits/second. In another

test, a 100MB bundle was delivered normally within 22.3 seconds and the re-



C. Tselikis et al 177

spective goodput was 35.9Mbps. Another way to introduce link disruptions

(propagation delay, BER, packet corruption, packet loss and link assymetry)

is by using the NETEM Linux kernel tool. The Voyage OS which was installed

on the Teak device has the NETEM readily available and DTN performance

tests are being conducted under low, medium and high BER conditions.

In the sequence, we describe results for the bundle transfer end-to-end

delay:

Table 2: Average DTN delay (milliseconds) in a point-to-point connection

Bundle size 10KB 100KB 2MB

DTN Net delay with 2MB workload 10071.91 735.82 231.477

DTN Net delay with one bundle 65.67 61.77 280.8

DTN API delay (loopback test) 37.12 17.34 80.09

Figure 5: Average delay: plain DTN2 vs. DTN2 with BSP security policies

Table 2 shows the average delay experienced when transferring bundles

with variable size between two Type A machines running plain DTN2. The

two machines were connected via FE interfaces. Each delay figure in Table II

is the average of ten measurements. It is worth noting that the one-bundle

delay is minimized when the bundle payload equals the TCP socket buffer size

(set to 100KB in our tests). The DTN API delay corresponds to the delay to



178 An Efficient Impelementation of the Bundle Security Protocol for DTN

send and receive the bundles through the DTN stack measured in the loopback

test case.

Figure 5 shows the average delay experienced when transferring bundles

of sizes 100MB, 200MB and 300MB from the client to the Teak device with

acknowledgement returned. The RSA key was 1024 bits long. We observe in

Figure 5 that the security overhead with respect to the point-to-point bundle

transfer delay was negligible when the BAB security policy was applied to the

bundles. The PIB policy incured tolerable delay increase. The delay overhead

was more evident when the PCB policy was activated.

6 Conclusion

A small-footprint version of DTN2 was developed with OpenSSL-based se-

curity enhancements suitable for embedded devices. Link authorization with

per link BAB keys, protection of the Bundle Encryption Key with RSA public

key encryption and protection from bundle flooding attacks with modifica-

tion of the DTN2 storage quota mechanism were introduced to DTN2. The

validation tests showed that when the asymmetric cryptosystem is used ju-

diciously (i.e., small RSA key size and usage of RSA encryption during the

authentication phase only) the DTN2 network perfrormance exhibits tolerable

degradation.

Acknowledgements. The work presented in this paper was managed, sup-

ported and funded by the European Space Agency (ESA) project DISCOS

(Distributed Information Storage and Communication in Outer Space) with

members the Hellenic Aerospace Industry, the Democritus University of Thrace

and the Industrial Systems Institute.

References

[1] S. Symington, S. Farrell, H. Weiss and P. Lovell, Bundle Security Protocol

Specification, RFC6257, Internet Society, (May, 2011).



C. Tselikis et al 179

[2] M. Demmer, DTN Reference Implementation, Version 2, DTN Research

Group, http://www.dtnrg.org/wiki/Code.

[3] http://sourceforge.net/projects/ion-dtn/.

[4] S. Schildt, J. Morgenroth, W.-B. Pottner and L. Wolf, IBR-DTN: A

lightweight, modular and highly portable Bundle Protocol implementa-

tion, Electronic Communications of the EASST, 37, (Jan., 2011), 1-11.

[5] http://sourceforge.net/projects/bytewalla3.

[6] http://csd.xen.ssvl.kth.se/csdlive/content/condroid-project-overview.

[7] http://postellation.viagenie.ca/.

[8] http://www.openssl.org/source/.


