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1 Introduction

In this paper, we propose private symmetric key cipher based on several

constructions that have arisen using binary arrays of combinatorial designs.

We were motivated to use Hadamard matrices though they are part of a wider

class, called combinatorial designs which are often hard to find and the algo-

rithms for encryption and decryption are of reasonable length. For encryption

methods based on combinatorial designs we refer the interested reader to [23].

Applications of combinatorial designs to communications, cryptography and

networking can be found in the survey paper, [2]. The cipher has similarities

to the Hill cipher, i.e. using the incidence matrix of a combinatorial design

for encryption and decryption. For more details regarding the Hill encryption

method, see [30]. A list of typical attacks and reference of the existing proto-

cols can be found in ([5] and [1]), respectively. Our design goals include the

following:

1. Require the key be shared only once

2. Use a relatively small key size

3. Computationally fast

4. Resistance to cryptographic attacks

This paper can be regarded as a continuation of the proposed schemes given

in [15], and it is organized as follows. In Section 2, we present the concept

of our encryption schemes. In Section 3 we design the encryption schemes

using Hadamard matrices with circulant cores, while in Section 4 we study the

security of the proposed schemes. Finally in Section 5 we enhance the strength

of our cryptographic schemes using the Kronecker product.

2 Design of Cryptographic Algorithms

We assume that the message to be transmitted is a plaintext with n letters,

which is represented by a vector of length n, whereas each coordinate of the

vector is a numerical value of the corresponding letter of the plaintext (i.e.
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ASCII code). We note, that the design of cryptographic algorithms given here

are a generalization of the ones given in [15], since in this paper we explore

the use of orthogonal matrices instead of orthogonal arrays.

If the message has more than n letters then the procedure which is given

below, is being repeated as much times as needed. If it has less than n let-

ters then we pad the plaintext with the letter “space” sufficient times. For

the requirements of the proposed encryption method we will make use of a

matrix A of order n × n, of special structure, with entries {±1} where the

matrix A satisfies AAT = kIn for some constant k ∈ IN, where T stands for

transposition and In is the identity matrix of order n. Design Theory is rich of

such matrices of special structure having beautiful combinatorial properties,

i.e. Hadamard matrices. For more details on the application of combinatorial

designs in cryptography we refer the interested reader to [23, 2].

If the message we wish to transmit has been converted to a numerical

vector m̄, then the encrypted message which is going to be transmitted over a

communication channel is

c̄ = m̄A + dēn

where d is a suitable constant and ēn = (1, . . . , 1) is a 1× n vector of ones.

The receiver in order to decrypt the encrypt message has to make use of the

transformation m̄ = 1/k(c̄−dēn)AT , where AT is the transpose of the matrix A

which has been used during the encryption. The encryption method described

previously can be implemented with the following cryptographic algorithm.

Encryption Algorithm

Function EncrAlg(msg)

Require msg in ASCII code Encode a sample plaintext, msg

Select(A, d) Choose appropriate A and d

k ← (A, d) Form private key k

Transmit(k) Transmit securely the private key

m̄ ← Convert(msg) Convert original msg

c̄ ← m̄A + dēn Encrypted msg is c̄
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Return(Transmit(c̄))

End Function

In order for the encryption method to be persistent with respect to the

basic cryptographic principles, the encrypted message c̄ has to be decrypted

uniquely. This requirement is satisfied from the following theorem.

Theorem 2.1. The encrypted message c̄ which is transmitted with respect

to the encryption algorithm is decrypted uniquely as w̄ = 1/k(c̄− dēn)AT and

w̄ ≡ m̄.

Proof. c̄ = m̄A+dēn ⇒ c̄−dēn = m̄A ⇒ 1/k(c̄−dēn)AT = 1/k(m̄AAT ) ⇒
1/k(c̄− dēn)AT = m̄Iq ⇒ m̄ = 1/k(c̄− dēn)AT . ¤

Decryption Algorithm

Function DecrAlg(c̄)

Require given ciphertext c̄ Decode a given ciphertext

Receive(A, d) Receive the securely transmitted private key

k ← (A, d) Set private key k

m̄ ← 1/k(c̄− dēn)AT Decrypt ciphertext c̄

msg ← Convert(m̄) Encrypted msg is c̄

Return(msg)

End Function
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3 Encryption Schemes using Hadamard

Matrices

In this Section, we provide several constructions for encryption schemes

using one array of special structure. We give some necessary notations and

definitions that we shall use throughout this paper. We note that all arrays

that are used below can be considered as binary array bits with the aid of the

following {1,−1}-bit notation [17].

{1,−1}-bit notation Sometimes, we find it convenient to view bits as being

{1,−1}-valued instead of {0, 1}-valued. If b ∈ {0, 1} then b̄ ∈ {1,−1} is

defined to be b̄ = (−1)b. If x ∈ {0, 1}n then x̄ ∈ {1,−1}n is defined as the

string where the ith bit is x̄i.

A cipher’s strength is determined by the computational power needed to

break it. The computational complexity of an algorithm is measured by two

variables: T for time complexity which specifies how the running time depends

on the size of the input, and S for space complexity or memory requirement.

Both T and S are commonly expressed as functions of n, when n is the size of

the input.

Generally, the computational complexity of an algorithm is expressed in

what is called “ big O ” notation; the order of magnitude of the computational

complexity. We useO-notation to give an upper bound on a function, to within

a constant factor [3].

O-notation For a given function g(n) we denote by O(g(n)) the set of func-

tions O(g(n)) = {f(n) : there exist positive constants c and n0 such that

0 ≤ f(n) ≤ cg(n) for all n ≥ n0}.
We give a necessary brief definition for an encryption scheme.

Definition 3.1 ([1]). An encryption scheme consists of three sets: a key

set K, a message set M , and a ciphertext set C together with the following

three algorithms.

1. A key generation algorithm, which outputs a valid encryption key k ∈ K

and a valid decryption key k−1 ∈ K.
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2. An encryption algorithm, which takes an element m ∈ M and an en-

cryption key k ∈ K and outputs an element c ∈ C defined as c = Ek(m).

3. A decryption function, which takes an element c ∈ C and a decryption

key k−1 ∈ K and outputs an element m ∈ M defined as m = D−1
k (c).

We require that D−1
k (Ek(m)) = m.

Remark 3.2. We note that although we have used as a private key the pair

(A, d), in terms of computational complexity henceforth we can refer to the

private key using only the encryption matrix A since d is of size O(1).

Hadamard matrices are named after Jacques Hadamard, who found square

matrices of orders 12 and 20, with entries ±1, which had all their rows (and

columns) orthogonal [11].

Definition 3.3. A Hadamard matrix of order n is a square n × n matrix

H whose elements are +1’s and −1’s, with the property

HHT = nIn

where T stands for transposition and In is the identity matrix of order n.

The Hadamard property entails that the rows (and columns) of a Hadamard

matrix are pairwise orthogonal. It is well known that if n is the order of

a Hadamard matrix then n is necessarily 1, 2 or a multiple of 4. Hadamard

matrices are used in Combinatorics, Statistics, Coding Theory, Telecommuni-

cations and other areas. More details on Hadamard matrices can be found in

[4, 27].

As an encryption matrix for this scheme we will use a Hadamard matrix

of order n. In the case of Hadamard matrices it is obvious that the use of

two different Hadamard matrices of the same order will result in two different

ciphertexts, due to the presence of the H-equivalence property described below.

Two Hadamard matrices are called equivalent (or Hadamard equivalent, or

H-equivalent) if one can be obtained from the other by a sequence of row nega-

tions, row permutations, column negations and column permutations. More

specifically, two Hadamard matrices are equivalent if one can be obtained by

the other by a sequence of the following transformations:
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• Multiply rows and/or columns by -1;

• Interchange rows and/or columns.

Two Hadamard matrices are called inequivalent, if they are not equiva-

lent. Therefore, the choice of inequivalent Hadamard matrices as encryption

matrices ensures that two inequivalent Hadamard matrices will result in two

different ciphertexts. Otherwise one could transform the one encryption matrix

to another, following the transformations mentioned above.

It is vital for our application to have large databases of inequivalent ma-

trices to our disposal. As of release 2.13, Magma contains a database of in-

equivalent Hadamard matrices. There exist several thousands (even millions)

of inequivalent Hadamard matrices for some orders. As an example for order

32 which is a reasonable length for the encryption process there are more than

3, 578, 006 inequivalent Hadamard matrices [20].

The private key k used in the encryption process, will be the Hadamard

matrix of order n, A = Hn, which consists of n × n bits. In terms of compu-

tational complexity, the size of the key is O(n2).

Proposition 3.4. There exist an ecryption scheme using Hadamard matri-

ces of order n.

Proof. The encryption scheme using a Hadamard matrix A of order n,

will use a key k of size O(n2), as described previously, and can be encrypted

– decrypted using the algorithms of section 2 since AAT = nIn. ¤

There are some special constructions of Hadamard matrices which enable

us to reduce the size complexity of the private key.

3.1 Schemes based on Hadamard matrices

with one circulant core

A Hadamard matrix of order p + 1 which can be written in one of the two

equivalent forms
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1 1 · · · 1
1
... C

1

or

1
... C

1

1 −1 · · · − 1

where C = (cij) is a circulant matrix of order p i.e. cij = c1,j−i+1(mod p), is said

to have a circulant core. The following matrices are examples for order 12.

1 1 1 1 1 1 1 1 1 1 1 1

1 - 1 - 1 1 1 - - - 1 -

1 - - 1 - 1 1 1 - - - 1

1 1 - - 1 - 1 1 1 - - -

1 - 1 - - 1 - 1 1 1 - -

1 - - 1 - - 1 - 1 1 1 -

1 - - - 1 - - 1 - 1 1 1

1 1 - - - 1 - - 1 - 1 1

1 1 1 - - - 1 - - 1 - 1

1 1 1 1 - - - 1 - - 1 -

1 - 1 1 1 - - - 1 - - 1

1 1 - 1 1 1 - - - 1 - -

1 1 - 1 - - - 1 1 1 - 1

1 1 1 - 1 - - - 1 1 1 -

1 - 1 1 - 1 - - - 1 1 1

1 1 - 1 1 - 1 - - - 1 1

1 1 1 - 1 1 - 1 - - - 1

1 1 1 1 - 1 1 - 1 - - -

1 - 1 1 1 - 1 1 - 1 - -

1 - - 1 1 1 - 1 1 - 1 -

1 - - - 1 1 1 - 1 1 - 1

1 1 - - - 1 1 1 - 1 1 -

1 - 1 - - - 1 1 1 - 1 1

1 - - - - - - - - - - -

Where − stands for −1 to conform with the customary notation for Hadamard

matrices. The two forms are equivalent as described earlier.

The scheme is constructed by using the previous Hadamard matrix A = Hn

of order n = 4m = p + 1 as an encryption matrix. However, in this case the
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circulant structure of the Hadamard matrix gives us the opportunity to use a

key of a significant less size than previously as follows.

Let Ac = [a1, a2, . . . , ap] denote the first row of the circulant matrix, C used

in the one circulant core construction previously. The private key k for this

scheme is the binary vector, Ac which consists of p bits. Therefore, when a

Hadamard matrix of order n = p + 1 is used as an encryption matrix the key

is of size O(n), since it consists of p = n− 1 bits.

Proposition 3.5. There exist an ecryption scheme using Hadamard matri-

ces with one circulant core of order n = p + 1.

Proof. The encryption scheme using a Hadamard matrix A with one

circulant core of order n = p + 1, will use a key k of size O(n), as described

previously, and can be encrypted – decrypted using the algorithms of section

2 since AAT = nIn. ¤

Four families of these kinds of Hadamard matrices have been found by

Paley [21], Stanton, Sprott and Whiteman [29, 33], Singer [28] and Marshall

Hall Jr. [12], which can be used in the previous proposition and give rise to

infinite families of encryption schemes based on Hadamard matrices with one

circulant core. The following theorem was given in [13].

Theorem 3.6 (Circulant Core Hadamard Construction Theorem).

A Hadamard matrix of order p + 1 with circulant core can be constructed if

1. p ≡ 3(mod 4) is a prime [21];

2. p = q(q + 2) where q and q + 2 are both primes [29, 33];

3. p = 2t − 1 where t is a positive integer [28];

4. p = 4x2 + 27 where p is a prime and x a positive integer [12].

3.2 Schemes based on Hadamard matrices

with two circulant cores

A Hadamard matrix of order 2`+2 (for ` odd) which can be written in one
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of the two equivalent forms (− stands for −1 and + stands for +1)




− − + · · · + + · · · +

− + + · · · + − · · · −
+ +
...

... A B

+ +

+ −
...

... BT −AT

+ −




or




+ +
... A B

+ +

+ −
... BT −AT

+ −
− − + · · ·+ + · · ·+
− + + · · ·+ − · · ·−




where A = (aij), B = (bij) are two circulant matrices (with ±1 elements)

of order ` i.e. aij = a1,j−i+1(mod `), bij = b1,j−i+1(mod `), is said to have two

circulant cores.

As before the scheme is constructed by using the previous Hadamard matrix

A = Hn of order n = 2`+2 as an encryption matrix. However, in this case the

circulant structure of the Hadamard matrix gives us the opportunity to use a

key of a significant less size than previously as follows.

Let Ac = [a1, a2, . . . , a`] and Bc = [b1, b2, . . . , b`] denote the first row of

the circulant matrices, A and B used in the two circulant core construction

respectively. The private key k for this scheme is the concatenation of the two

vectors, Ac and Bc, denoted by Ac⊕Bc which consists of `+ ` bits. Therefore,

when a Hadamard matrix of order n = 2` + 2 is used as an encryption matrix

the key is of size O(n), since it consists of 2` = n− 2 bits.

Proposition 3.7. There exist an ecryption scheme using Hadamard matri-

ces with two circulant cores of order n = 2` + 2.

Proof. The encryption scheme using a Hadamard matrix A with with two

circulant cores of order n = 2` + 2, will use a key k = Ac⊕Bc of size O(n), as

described previously, and can be encrypted – decrypted using the algorithms

of section 2 since AAT = nIn. ¤

Since 2` + 2 must be equal to a multiple of 4 we have that ` must be an

odd integer for this construction to yield a Hadamard matrix.

Georgiou, Koukouvinos and Seberry [8] point out that GL-pairs, which can

be used to construct Hadamard matrices of order 2`+2 with two circulant cores,
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exist for many cases. These matrices can be used in the previous proposition

and give rise to infinite families of encryption schemes based on Hadamard

matrices with two circulant cores. The following theorem was given in [14].

Theorem 3.8. (Two Circulant Cores Hadamard Construction The-

orem)

An Hadamard matrix of order 2` + 2 with with two circulant cores can be

constructed if

1. ` is a prime (see for example [6]);

2. 2`+1 is a prime power (these arise from Szekeres difference sets, see for

example [6] or [9]);

3. ` = 2k − 1, k ≥ 2 (two Galois sequences are a GL-pair, see for example

[25]);

4. ` = p(p + 2) where p and p + 2 are both primes (two such sequences are

a GL-pair,see for example, [29, 33]);

5. ` = 49, 57 (these have been found by a non-exhaustive computer search

that uses generalized cyclotomy and master-switch techniques, see [9,

10]);

6. ` = 3, 5, . . . , 45 (these have been found and classified by exhaustive com-

puter searches, see [6]);

7. ` = 47, 49, 51, 53 and 55 (these have been found and classified by partial

computer searches, see [6]);

8. ` = 143 (also verified the results for ` = 3, 5, 7, 11, 13, 15, 17, 19, 23,

25, 31, 35, 37, 41, 43, 53, 59, 61, 63 see [7]).

4 Security of the Method: Cryptanalytic

Approaches

The main cryptographic attacks can be classified in the following three

categories:
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• brute force attack.

• plaintext attack.

• ciphertext attack.

In this section we demonstrate that our ciphers are robust against brute

force attacks and ciphertext-only attacks, whilst considering some restrictions

the corresponding encryption schemes are secure under known-plaintext at-

tacks, chosen-plaintext attacks and chosen-ciphertext attacks.

4.1 Cryptanalysis of brute force attacks

Definition 4.1 (Brute force attack). A brute force attack is a method

of defeating a cryptographic scheme by trying a large number of possibilities.

For most ciphers, a brute force attack typically means a brute-force search of

the key space; that is, testing all possible keys in order to recover the plaintext

used to produce a particular ciphertext.

One way for an adversary to break any of the proposed systems using brute

force attack, is to generate all possible matrices with elements ±1, that is 2n2

matrices, having in mind that Hadamard matrices of order n are represented

by n2 bits. However due to the structure of these matrices there exists a more

sophisticated method that would be developed next.

4.1.1 Cryptanalysis of brute force attacks for schemes based on

Hadamard matrices with one circulant core

In order for an adversary to break this system using a brute force attack,

he would have to deduce the encryption key k = Ac, which is the binary vector

Ac = [a1, a2, . . . , ap] of length p by trying a large number of possibilities.

In our case, an adversary would have to simulate a brute force search of the

key space. Assuming the adversary has knowledge of the encryption protocol

he would have to search on p binary variables. Since, the encryption key

consists of binary variables using enumerative combinatorics, the size of the
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key space, K(Hp), is | K(Hp) |= 2p therefore its computational complexity

is of exponential growth O(2n) as n = p + 1 increases. Furthermore, the

possibility a solution obtained from a brute-force search of the key space to

be an encryption key is given by the total number of Hadamard matrices with

one circulant core that exist in a specific order divisible by the size of the key

space in that order.

For example, if we consider schemes that are using the Hadamard matrices

of order 24 = 23 + 1, the key space consists of 23 binary variables while the

total number of Hadamard matrices that exist in that order are 46, therefore

we have 46 possible encryption keys. As can be seen in the following table,

the probability of breaking the system via a brute force attack for this case is

P = 46
223 ≈ 0.00002, only. It is worthwhile to note that using a key of length

only 23 bits we almost provide total security against brute force attacks for

this scheme.

We summarize in the following table the available Hadamard matrices with

one circulan core, denoted by | V (Hp) |, for orders n = p + 1 whereas ` =

3, 7, 11, 15, 19, 23 using the results obtained via exhaustive searches in [13], the

cardinality of the key space | K(Hp) |, and the probability PBA of breaking

the cipher via a brute force attack for each order.

Table 1: Probabilities of breaking the cipher for different key sizes

p matrix order | V (Hp) | | K(Hp) |= 2p PBA = |V (Hp)|
|K(Hp)|

3 4 3 23 P = 3
23 ≈ 0.375

7 8 14 27 P = 14
27 ≈ 0.1

11 12 22 211 P = 22
211 ≈ 0.01

15 16 30 215 P = 30
215 ≈ 0.0009

19 20 38 219 P = 38
219 ≈ 0.00007

23 24 46 223 P = 46
223 ≈ 0.00002

As it can be seen from the previous table the sequence of probabilities PBA

is strictly decreasing. Based on these computational results we deduce the

following remark, when the order n is large enough.

Remark 4.2. The encryption scheme based on Hadamard matrices with

one circulant core is secure against brute force attacks.
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Modern cryptographic hardware breakers have the ability to perform a

brute-force search for 2128 keys. This gives us an estimate of the security

needed against brute force attacks. Clearly, the usage of any Hadamard matrix

of order n > 128, which can easily be constructed from theorem 3.6 for large

orders, as an encryption matrix justifies our previous claim.

4.1.2 Cryptanalysis of brute force attacks for schemes based on

Hadamard matrices with two circulant cores

In order for an adversary to break this system using a brute force attack,

he would have to deduce the encryption key k = Ac ⊕ Bc, which is the con-

catenation of the binary vectors Ac = [a1, a2, . . . , a`] and Bc = [b1, b2, . . . , b`],

of total length 2` by trying a large number of possibilities.

In our case, an adversary would have to simulate a brute force search of the

key space. Assuming the adversary has knowledge of the encryption protocol

he would have to search on 2` binary variables. Since, the encryption key

consists of binary variables using enumerative combinatorics, the size of the

key space, K(H`), is | K(H`) |= 22` therefore its computational complexity

is of exponential growth O(2n) as n = 2` + 2 increases. Furthermore, the

possibility a solution obtained from a brute-force search of the key space to

be an encryption key is given by the total number of Hadamard matrices with

two circulant cores that exist in a specific order divisible by the size of the key

space in that order.

For example, if we consider schemes that are using the Hadamard matrices

of order 28 = 2 · 13 + 2, the key space consists of 26 binary variables while the

total number of Hadamard matrices that exist in that order are 7, 098, therefore

we have 7, 098 possible encryption keys. As can be seen in the following table,

the probability of breaking the system via a brute force attack for this case is

P = 42×132

226 ≈ 0.0001, only. It is worthwhile to note that using a key of length

only 26 bits we almost provide total security against brute force attacks for

this scheme.

We summarize in the following table the available Hadamard matrices with

two circulan cores, denoted by | V (H`) |, for orders n = 2` + 2 whereas

` = 3, . . . , 25 using the results obtained via exhaustive searches in [6, 14], the

cardinality of the key space | K(H`) |, and the probability PBA of breaking
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the cipher via a brute force attack for each order.

Table 2: Probabilities of breaking the cipher for different key sizes
` matrix order | V (H`) | | K(H`) |= 22` PBA =

|V (H`)|
|K(H`)|

3 8 9 = 1× 32 26 P = 1×32

26 ≈ 14 · 10−2

5 12 50 = 2× 52 210 P = 2×52

210 ≈ 4 · 10−2

7 16 196 = 4× 72 214 P = 4×72

214 ≈ 10 · 10−3

9 20 972 = 12× 92 218 P = 12×92

218 ≈ 4 · 10−3

11 24 2, 904 = 24× 112 222 P = 24×112

222 ≈ 7 · 10−4

13 28 7, 098 = 42× 132 226 P = 42×132

226 ≈ 10 · 10−5

15 32 38, 700 = 172× 152 230 P = 172×152

230 ≈ 3 · 10−5

17 36 93, 058 = 322× 172 234 P = 322×172

234 ≈ 5 · 10−6

19 40 161, 728 = 448× 192 238 P = 488×192

238 ≈ 5 · 10−7

21 44 433, 944 = 984× 212 242 P = 984×212

242 ≈ 10 · 10−8

23 48 1, 235, 744 = 2336× 232 246 P = 2336×232

246 ≈ 2 · 10−8

25 52 2, 075, 000 = 3320× 252 250 P = 3320×252

250 ≈ 2 · 10−9

As it can be seen from the previous table the sequence of probabilities PBA is

strictly decreasing and using (cf. [14, Property 1.]) is upper bounded from 1. In

addition, asserting the truth of [14, Conjecture 1.], that for every odd ` = 3, . . .

there exists a Hadamard matrix of order 2` + 2 with two circulant cores, and

that the sequence of | V (H`) | will continue to increase we can conclude that

the limit of the sequence of probabilities lim
`→∞

PBA = lim
`→∞

| V (H`) |
| K(H`) | converges

to zero. Note that Conjecture 1 of [14], would settle the general Hadamard

conjecture. In particular, we deduce the following lemma.

Lemma 4.3. Assume the following two conditions hold,

(i) There exists a Hadamard matrix of order 2` + 2 with two circulant cores

for every odd ` = 3, . . .

(ii) The sequence of | V (H`) | is increasing for every odd ` = 3, . . .

Then, the encryption scheme based on Hadamard matrices with two circu-

lant cores is secure against brute force attacks.

Proof. Since, lim
`→∞

PBA = lim
`→∞

| V (H`) |
| K(H`) | → 0 as n = 2` + 2 increases, it

is computationally infeasible a brute force attack of the key space to result on

an encryption key. ¤
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4.2 Cryptanalysis of known-plaintext attacks

Definition 4.4. A known-plaintext attack is one where the adversary has

a quantity of plaintext and corresponding ciphertext. This type of attack is

typically only marginally more difficult to mount.

Supposing a n×n matrix A is used for encryption, as described previously.

In order to recover the matrix A without knowing the private key, we will

need n mi’s, where with mi = (mi
1, mi

2, . . . , mi
n), i = 1, . . . , n we denote

the vector consisting of n letters of the message that have been converted

to its numerical values, and n ci’s, where each ci = (ci
1, ci

2, . . . , ci
n) is the

encryption of mi. The i-th column of A, A(i) = (a1,i, a2,i, . . . , an,i), by

solving the following n-linear systems, for i = 1, . . . , n:

m1
1a1,i + m1

2a2,i + · · ·+ m1
nan,i = c1

i

m2
1a1,i + m2

2a2,i + · · ·+ m2
nan,i = c2

i

...
...

mn
1a1,i + mn

2a2,i + · · ·+ mn
nan,i = cn

i

or equivalently we denote the previous system

MA(i) = C(i) ,

where C(i) = (c1
i , c2

i , . . . , cn
i ).

Proposition 4.5. All encryption schemes using Hadamard matrices with

circulant cores are secure against known-plaintext attacks under the assumption

that the adversary has knowledge of less than n messages of length n of the

plaintext and the corresponding ciphertext.

Proof. With the method described previously one can find the encryption

matrix A, if the matrix M is not singular. ¤
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4.3 Cryptanalysis of chosen-plaintext attacks

Definition 4.6. A chosen-plaintext attack is one where the adversary chooses

plaintext and is then given corresponding ciphertext. Subsequently, the adver-

sary uses any information deduced in order to recover plaintext corresponding

to previously unseen ciphertext.

In this type of attack the extra advantage of the adversary having knowl-

edge of the encryption mechanism, does not reveal any further information

with respect to a known-plaintext attack since the adversary in order to com-

promise the system still has to solve n linear systems,

MA(i) = C(i)

for i = 1, . . . , n as described in section 4.2.

Remark 4.7. The adversary should take under account that the matrix M

of the chosen plaintext must not be singular. This note restricts the choice of

the available plaintexts for an adversary since mi 6= λmj, in other words the

vectors mi must be linear independent.

Proposition 4.8. All encryption schemes using Hadamard matrices with

circulant cores are secure against chosen-plaintext attacks, since the schemes

are secure against known-plaintext attacks.

4.4 Cryptanalysis of ciphertext-only attacks

Definition 4.9. A ciphertext-only attack is one where the adversary (or

cryptanalyst) tries to deduce the decryption key or plaintext by only observing

ciphertext. Any encryption scheme vulnerable to this type of attack is consid-

ered to be completely insecure.

Two letters of the original message, m corresponds to different values of the

ciphertext, c. Analysing the worst-case scenario for this type of attack, we sup-

pose that all letters of the plaintext are the same. Then in the corresponding
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ciphertext all their numerical values are all different. Therefore an adversary

cannot observe any further information regarding the encryption key or the

plaintext, since any value of the encrypted message is a function of n values of

the plaintext and one column of the encryption matrix A. Hence, two or more

same values of the encrypted message does not represent the same letter in the

plaintext. We note that, as n increases it is more difficult for an adversary to

retrieve the encryption key or the plaintext by simple observation.

Proposition 4.10. All encryption schemes using Hadamard matrices with

circulant cores are secure against ciphertext-only attacks.

4.5 Cryptanalysis of chosen-ciphertext attacks

Definition 4.11. A chosen-ciphertext attack is one where the adversary

selects the ciphertext and is then given the corresponding plaintext. One way to

mount such an attack is for the adversary to gain access to the equipment used

for decryption (but not the decryption key, which may be securely embedded

in the equipment). The objective is then to be able, without access to such

equipment, to deduce the plaintext from (different) ciphertext.

Similar, in this type of attack the extra advantage of the adversary having

knowledge of the encryption mechanism, does not reveal any further informa-

tion with respect to a known-plaintext attack since the adversary in order to

compromise the system still has to solve n linear systems,

MA(i) = C(i)

for i = 1, . . . , n as described in section 4.2.

Proposition 4.12. All encryption schemes using Hadamard matrices with

circulant cores are secure against chosen – ciphertext attacks, since the schemes

are secure against known – plaintext attacks.

We note that any attack on an encryption scheme is only valid if it violates

some property that the scheme was intended to achieve. In other words all
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attacks must be considered relative to the design goals that the encryption

scheme is meant to achieve.

5 A “Blow-up” Construction of Encryption

Schemes using Kronecker Product

In this section we apply the “blow-up” construction of encryption schemes

given in [15], which relies on the previous encryption schemes and the Kro-

necker product as its main characteristics. We first define the Kronecker prod-

uct A⊗B between two matrices A and B, a crucial definition for the construc-

tion of this scheme.

Definition 5.1 ([16]). Let A =




a11 a12 . . . a1n

...
. . .

am1 am2 . . . amn




Then A⊗B :=




a11B a12B . . . a1nB
...

. . .

am1B am2B . . . amnB




If A is an m × n and B is an p × q matrix, then A ⊗ B is an mp × nq

matrix. We note that if A and B are orthogonal matrices, then A⊗B is also

an orthogonal matrix. We specialise in the case of Hadamard matrices.

Proposition 5.2 ([32]). Let H1 and H2 be Hadamard matrices of orders

m and n, respectively. Then the Kronecker product H1 ⊗ H2 is a Hadamard

matrix of order mn.

Remark 5.3. We can repeat the previous construction using p Hadamard

matrices H1, H2, . . . , Hp of orders n1, n2, . . . , np. Thus the Kronecker product
p⊗

i=1

Hi := H1 ⊗H2 ⊗ . . .⊗Hp is a Hadamard matrix of order

p∏
i=1

ni.

Our aim is to improve the schemes presented in the previous section in or-

der to be completely secure against known-plaintext attacks, chosen-plaintext
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attacks and chosen-ciphertext attacks by enhancing the use of Kronecker prod-

uct. We illustrate our method by giving detailed examples in the case of en-

cryption schemes based on Hadamard matrices with one and two circulant

cores below.

Example 5.4. Let Hi, for i = 1, . . . , k be Hadamard matrices with one

circulant core of orders ni = pi+1, for i = 1, . . . , k respectively. These matrices

associated with their corresponding encryption keys Aci
= [a1i

, a2i
, . . . , api

] for

i = 1, . . . , k where each private key Aci
consists of pi bits, form a k-family

of encryption schemes. If we consider the Kronecker product
k⊗

i=1

Hi of these

matrices, the generated matrix is a Hadamard matrix of order
k∏

i=1

ni. Since

a recipient can construct each individual Hadamard matrix Hi by assuming

knowledge of the corresponding private key Aci
, the matrix generated by the

Kronecker product can be used as an encryption matrix where its private key
k⊕

i=1

Aci
is the concatenation of the private keys Aci

, which consists of
k∑

i=1

pi

bits. Let n denote the largest order of the Hadamard matrices we have used,

i.e. n = maxi{ni}. In terms of computational complexity, since
k∏

i=1

ni ≤
k∏

i=1

n = nk, the size of the encryption matrix is of exponential growth O(nk).

However, the size of the private key grows linearly since
k∑

i=1

pi =
k∑

i=1

(ni−1) =

k∑
i=1

(ni) − k ≤
k∑

i=1

(n) − k = kn − k = k(n − 1), therefore its growth is of size

O(n).

Example 5.5. Let Hi, for i = 1, . . . , k be Hadamard matrices with two cir-

culant cores of orders ni = 2`i+2, for i = 1, . . . , k respectively. These matrices

associated with their corresponding encryption keys Aci
⊕Bci

= [a1i
, a2i

, . . . , a`i
]

⊕[b1i
, b2i

, . . . , b`i
] = [a1i

, a2i
, . . . , a`i

, b1i
, b2i

, . . . , b`i
] for i = 1, . . . , k where each

private key Aci
⊕B`i

consists of 2`i bits, form a k-family of encryption schemes.
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If we consider the Kronecker product
k⊗

i=1

Hi of these matrices, the generated

matrix is a Hadamard matrix of order
k∏

i=1

ni. Since a recipient can construct

each individual Hadamard matrix Hi by assuming knowledge of the correspond-

ing private key Aci
⊕Bci

, the matrix generated by the Kronecker product can be

used as an encryption matrix where its private key
k⊕

i=1

(Aci
⊕ Bci

) is the con-

catenation of the private keys Aci
⊕ Bci

, which consists of
k∑

i=1

2`i = 2k
k∑

i=1

`i

bits. Let n denote the largest order of the Hadamard matrices we have used, i.e.

n = maxi{ni}. In terms of computational complexity, since
k∏

i=1

ni ≤
k∏

i=1

n =

nk, the size of the encryption matrix is of exponential growth O(nk). How-

ever, the size of the private key grows linearly since
k∑

i=1

2`i =
k∑

i=1

(ni − 2) =

k∑
i=1

(ni) − 2k ≤
k∑

i=1

(n) − 2k = nk − 2k = k(n − 2), therefore its growth is of

size O(n).

In each case, with this “blow-up” construction we have achieved an “ex-

plosion” to the size of the encryption matrix while maintaining the key size in

reasonable lengths. One of our goals was to make a linear analysis of the en-

cryption schemes computationally infeasible. Since this is achieved by solving

a linear system, thus making use of Gaussian elimination, in order for an adver-

sary to perform successfully known-plaintext attacks, chosen-plaintext attacks

and chosen-ciphertext attacks, based on the cryptanalysis we presented in the

previous section.

Proposition 5.6. The encryption schemes constructed via the “blow-up”

construction using Kronecker product is completely secure known-plaintext at-

tacks, chosen-plaintext attacks and chosen-ciphertext attacks, since a linear

cryptanalysis is computationally infeasible.

We can now discuss, a weakness in the design of the encryption scheme

proposed in Section 2 which in some cases can be eliminated using the previous
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“blow-up” construction. As already noted, in cases the plaintext has more

than n letters, we repeat the encryption process. This method, is also known

as the electronic codebook mode, or ECB in the literature ([5, 18, 19, 31]). A

disadvantage of this method is that if two plaintext blocks are the same, then

the corresponding ciphertext blocks will be identical, and that is visible to the

attacker.

The “blow-up” construction can reduce the amount of information that can

be retrieved from a potential attacker when using ECB mode by restricting

the available choices for orthogonal arrays Ai, i = 1, . . . , k to be Af 6= Ag for

i ≤ f, g ≤ k with f 6= g. In general, if we choose the Ai encryption matrices to

have
k∑

i=1

ni = n, where n is the size of the plaintext this weakness is eliminated

since the encryption process does not have any repetition blocks.
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