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Abstract 

 In some situations, researchers are faced with high dimensional data, 

where the number of variables in the dataset is large, and the sample size is 

relatively small.  In such cases standard statistical methods do not perform well, 

making model parameter estimation potentially problematic. In order to deal with 

such high dimensional data, statisticians have developed estimators, such as the 

lasso, that are specially designed to provide model parameter estimates for such 

scenarios.  Recently, this work has been extended to the context of high 

dimensional multilevel, or mixed effects data in which individuals at level-1 are 

nested within clusters at level-2. Such data structures are extremely common in 

the social sciences, particularly education and sociology.  The goal of this 

simulation study was to assess a multilevel extension of the lasso estimator in high 

dimensional multilevel data case, and to compare this approach with the standard 

restricted maximum likelihood estimator typically used to fit multilevel models.  
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Results of the study demonstrated that the multilevel lasso yielded better control 

of the Type I error rate and better parameter coverage than did REML, when 

level-1 and level-2 sample sizes were small, and there were many predictor 

variables. Implications of these results are discussed. 
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1 Introduction   

In some research and evaluation contexts, the number of variables that can be 

measured (p) approaches, or even exceeds the number of individuals on whom 

such measurements can be made (N).  For example, researchers working with 

individuals identified with a rare psychological diagnosis may have difficulty 

obtaining individuals for their research samples.  Once such people are found the 

researcher may wish to make a relatively large number of cognitive and affective 

measurements for each participant. The result of small samples coupled with a 

large number of measurements is commonly referred to as high dimensional data. 

With such a limited sample size in conjunction with a large number of variables, 

standard statistical models such as regression, which could normally be used to 

address the research questions may not work well.  Specifically, in the high 

dimensional context such models tend to yield biased standard errors for the 

model coefficient estimates (Bühlmann & Van de Geer, 2011). A direct 

consequence of these biased standard errors are inaccurate Type I error and power 

rates for the tests of the null hypothesis that the coefficient is not 0 in the 

population.  These problems may in turn lead the researcher to erroneous 

inferences regarding relationships among the independent and dependent 
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variables. In addition, as noted above high dimensionality can also result in 

parameter estimation bias due to the presence of collinearity, or very strong 

relationships among the independent variables (Fox, 2016). This model parameter 

estimation bias can result in potential misrepresentations of the relationships 

among the variables in the model.  Finally, when p in fact exceeds N, it is simply 

not possible to obtain LS estimates for the model parameters, and the researcher is 

not able to address the research questions of interest.  

 The goal of this study is to describe a statistical methodology designed 

specifically for dealing with high dimensional data in the context of multilevel and 

mixed effects models.  Please note that throughout this manuscript I will use these 

terms interchangeably to refer to a set of models involving data structures at 

multiple levels, as is described in more detail below. These models are becoming 

increasingly popular in the fields of psychology and education, and as such are 

being used in a wide variety of applications, some of which involve multilevel 

data structures.  Recently, Schelldorfer, Bühlmann & Van de Geer (2011) 

described an extension of the well known least absolute shrinkage and selection 

operator (lasso) for use with multilevel data. The purpose of the current study is to 

investigate the performance of the multilevel lasso through the use of a Monte 

Carlo simulation. This work extends earlier simulation work by Schelldorfer, et al. 

(2011), which was fairly limited in scope, and which focused primarily on data 

scenarios more commonly seen in genetics research than in the social sciences 

(i.e., 300 to 1000 independent variables, and samples of 150 and 180). The 

simulation study used here was based upon a review of the multilevel data 

literature in the social sciences and includes a wider array of conditions with 

respect to the number of independent variables and the sample sizes. The 

remainder of the manuscript is organized as follows:  First, multilevel models are 

briefly described in order to provide context for the subsequent discussion of 

methods. Next, the lasso and multilevel lasso are described, followed by a 

discussion of the study goals. The methodology used to assess these goals is then 
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described in detail, followed by a presentation of the results. Finally, the 

implications of these results are discussed, and recommendations for practice are 

described for researchers. 

 

 

2 Literature Review 

2.1 Multilevel models 

Multilevel models (MLMs) are used in the analysis of data in which 

individuals (level-1) are nested within clusters (level-2), and the clusters could 

themselves be nested within higher order clusters (level-3). MLMs can also be 

used in the case of longitudinal data, where measurements taken at different points 

in time are nested within the individuals on whom they were made. As mentioned 

previously, with multilevel data the correct modeling of the relationship between a 

dependent variable and one or more independent variables must account for the 

nested structure in order to ensure that estimation bias for parameters and their 

standard errors is eliminated (Snijders & Bosker, 2012). One of the most common 

MLMs is the random intercept model, which takes the form: 

𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑥𝑖𝑗 + 𝜀𝑖𝑗                          (1) 

Where 

𝑦𝑖𝑗 =Dependent variable value for individual i in cluster j 

𝛽0𝑗 =Intercept for cluster j 

𝛽1 =Slope relating independent variable x to dependent variable y 

𝑥𝑖𝑗 =Value of x for individual i in cluster j 

𝜀𝑖𝑗 =Random error for individual i in cluster j 

In turn, 𝛽0𝑗 can be expressed as 

𝛽0𝑗 = 𝛾00 + 𝑈0𝑗                           (2) 

Where 

𝛾00 =Mean intercept across clusters 
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𝑈0𝑗 =Unique effect of cluster j on the intercept  

The parameter 𝛾00 is referred to as a fixed effect, meaning that it takes the same 

value for all clusters, and 𝑈0𝑗 is a random effect that varies across clusters.  As an 

example, for students nested within schools this would mean that 𝛽0𝑗 would differ 

across schools, including a common component across schools (𝛾00), as well as a 

component unique to the individual school (𝑈0𝑗). Essentially, allowing for these 

varying intercepts in the model is allowing for schools to have unique means on 

the dependent variable, even while there is a common mean across all schools.  In 

model (1), 𝛽1 is treated as a fixed effect indicating that it is constant across 

clusters.  In the school research context this would mean that the relationship 

between the independent and dependent variables is the same for all schools.   It is 

also possible to fit a random coefficients model in which 𝛽1 has both fixed and 

random components, just as we have here for 𝛽0𝑗, thereby allowing for different 

relationships between the independent and dependent variables across schools.  

The error term, 𝜀𝑖𝑗, is a random effect and assumed to be normally and 

independently distributed across individuals within the same cluster, with 

𝜀𝑖𝑗~𝑁(𝟎,Λ𝑗).  Likewise, 𝑈0𝑗~𝑁(𝟎,Ψ), and is assumed to be independent across 

clusters.   

The model parameters in (1) and (2) are typically estimated by maximum 

likelihood (ML) or restricted ML (REML) estimation.  With regard to estimating 

the model parameters themselves ( 𝛽1, 𝛾00), ML and REML provide essentially 

identical results.  However, they differ in terms of how the standard errors of these 

parameters are calculated.  Specifically, the degrees of freedom used in ML do not 

account for the fact that the parameters themselves are being estimated, leading to 

a negative bias in the standard error estimates (Kreft & de Leeuw, 1998).  In 

contrast, REML standard error estimates do use degrees of freedom that account 

for the estimation of the model parameters, thereby producing unbiased estimates 

(Snijders & Bosker, 2012; Lindstrom & Bates, 1988).  REML was used in the 

current study. 
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2.2 The lasso 

As noted earlier in the manuscript, high dimensional data can lead to 

problematic estimation using standard methods, including REML (Schelldorfer, 

Bühlmann, and Van de Geer, 2011).  As a result of these issues in the context of 

standard single level data structures, statisticians have worked to develop 

estimation methods that can better handle high dimensional data.  One such 

approach is known collectively as regularization or shrinkage methods.  These 

regularization methods have in common the application of a penalty to the 

standard least squares estimator that is commonly used to fit a variety of linear and 

nonlinear regression models.  The penalty is devised in such a way that the 

coefficients linking the independent variables to the dependent variables are made 

smaller, or shrunken, so that only those that are most strongly related to the 

dependent variable are retained in the model, whereas the others are eliminated by 

having their coefficients reduced to 0.  The goal of this methodology is to 

eliminate from the high dimensional model many of the independent variables that 

exhibit weak relationships to the dependent variable, and thus render the resulting 

model non-high dimensional; i.e., with only a few salient variables rather than the 

very large number included in the original model.  One of the first such 

regularization approaches developed for this purpose was the least absolute 

shrinkage and selection operator (lasso; Tibshirani, 1996).  The fitting criterion for 

the lasso is written as 

𝑒2 = ∑ (𝑦𝑖 − 𝑦�𝑖)2𝑁
𝑖=1 + 𝜆∑ ��̂�𝑗�

𝑝
𝑗=1                          (3) 

Where 

𝑦𝑖 =The observed value of the dependent variable for individual i 

𝑦�𝑖 =The model predicted value of the dependent variable for individual i 

�̂�𝑗 =Sample estimate of the coefficient for independent variable j 

𝜆 =Shrinkage penalty tuning parameter 
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The tuning parameter, 𝜆, is used to control the amount of shrinkage (i.e. the 

degree to which the relationship of the independent variables to the dependent 

variable are down weighted or removed from the model). Larger 𝜆 values 

correspond to greater shrinkage of the model; i.e. a greater reduction in the 

number of independent variables that are likely to be included in the final model.  

On the other hand, a 𝜆 of 0 leads to the least squares estimator. Given the goal of 

minimizing 𝑒2 , the parameter estimates (�̂�) will be reduced in size, and some will 

even be set to 0, while at the same time the predictions (𝑦�) based upon the 

parameter estimates should be as accurate as possible, meaning that the parameter 

estimates cannot all be minimized or set to 0.  In other words, the goal of the lasso 

estimator is to eliminate from the model those independent variables that 

contribute very little to the explanation of the dependent variable, by setting their 

�̂� values to 0, while at the same time retaining independent variables that are 

important in explaining y. 

 A key aspect of successfully using the lasso is determining of the optimal 𝜆 

value. A number of approaches for this purpose have been recommended in the 

literature, including using cross-validation to minimize the mean squared error 

(Tibshirani, 1996), and selecting the value of 𝜆 that minimizes the Bayesian 

information criterion (BIC). This latter approach was recommended by 

Schelldorfer, et al. (2011), and was found by them to work well for selecting the 

optimal tuning parameter value.  In addition, work by Zou and Yu (2006) also 

supported the use of the BIC for this purpose.  Therefore, in the current study the 

BIC was used to select the optimal value of 𝜆. Essentially, a large number of 

potential 𝜆 are tried, the model using each is fit to the data and the BIC values for 

the models are compared, with the one yielding the smallest BIC being selected. 
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2.3 Multilevel lasso 

Schelldorfer, Bühlmann, and Van de Geer (2011) described an extension of 

the lasso estimator that can be applied to multilevel models. This multilevel lasso 

(MLL) involves the same basic penalty function as described in equation (3), but 

with additional terms to account for the variance components that are an integral 

part of the multilevel model in equations (1) and (2). Specifically, the MLL 

estimators minimizes the following function: 

𝑄𝜆(𝛽, 𝜏2,𝜎2) ≔ 1
2
𝑙𝑛|𝑉| + 1

2
(𝑦𝑖 − 𝑦�𝑖)′𝑉

−1(𝑦𝑖−𝑦�𝑖) + 𝜆∑ ��̂�𝑗�
𝑝
𝑗=1           (4) 

Where 

𝜏2 =Between cluster variance at level-2 

𝜎2 =Within cluster variance at level-1 

𝑉 =Covariance matrix 

Thus, the estimates of the model parameters are obtained with respect to the 

penalization of the level-1 coefficients.  In all other respects, this estimator works 

similarly to the standard lasso of equation (3), including through the use of BIC to 

select the optimal value of 𝜆. 

 

 

2.4 Standard error estimation for MLL 

In order to conduct inference for the MLL model parameters, standard errors 

must be estimated.  Currently, the algorithm does not include standard error 

estimation.  Therefore, in order to allow for the calculation of confidence intervals 

for each model parameter, an alternative approach must be used.  It is proposed 

here that the block bootstrap methodology might serve as an effective means to 

calculate standard error estimates for each model parameter, and thereby allowing 

for the calculating confidence intervals allowing for inference.  Traditionally, 

application of the bootstrap has involved the sampling with replacement of 

individual members of the sample. However, in the context of multilevel data the 
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block bootstrap approach has been proposed such that, rather than resampling 

individuals themselves, clusters or blocks of individuals corresponding to their 

organizing unit (e.g. classrooms or schools) are resampled instead. Block 

bootstrapping has been used with multilevel data to estimate standard errors from 

survey data (Kovacevic, Rong, & You, 2006), to correct standard errors in linear 

regression (Cameron, Gelbach, & Miller, 2008), to calculate standard errors for 

multilevel DIF assessment (French, Finch, & Valdivia Vazquez, 2016), and to 

estimate standard errors for dynamic factor analysis (Zhang & Browne, 2010).   

The block bootstrap involves the following steps: 

1. Calculate the test statistic of interest (e.g., 𝛽𝑗) for the original sample. 

2. Resample m blocks of individuals with replacement, where m is equal to 

the number of distinct level-2 (e.g. schools) in the sample, where m is the 

number of level-2 units. 

3. For each bootstrap sample calculate the parameter estimate; i.e., 

coefficient. 

4. Repeat this procedure B (e.g. 1000) times. 

5. Calculate the bootstrap standard error as: 

𝑆𝛽 = �∑ �𝛽0−𝛽��
2𝐵

𝑏=1
𝐵−1

                          (5) 

Where 

�̅�=Mean coefficient estimate across the B bootstrap samples 

The standard error from equation (5) can then be used to construct a confidence 

interval for 𝛽0 as: 

𝛽0 ± 1.96𝑆𝛽                                 (6) 

This is the methodology used in the current study. 
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2.5 Study goals and hypotheses 

The primary goal of this study was to investigate the performance of the lasso 

estimator in the context of high dimensional multilevel data.  Previous authors 

(Bühlmann & Van der Geer, 2011; Hastie, Tibshirani, & Friedman, 2009; Zou & 

Hastie, 2005; Tibshirani, 1996) have described how in the single level regression 

context the lasso is able to control the Type I error rate for tests of the 

relationships between independent and dependent variables in cases where 

standard estimators are not.  Though this prior work has found that the lasso 

estimates do exhibit some bias, the level of bias is relatively small (e.g., 

Tibshirani).  Therefore, based on this earlier work with the lasso in the single level 

data context it is hypothesized that the lasso will control the Type I error rate 

better than the standard REML estimator for situations involving high dimensional 

data.  In addition, it is also hypothesized that the lasso estimates will exhibit more 

negative parameter estimation bias than their REML counterparts, and that power 

for the lasso will be lower than that of REML, particularly for small sample sizes 

and with more independent variables.  Finally, it is hypothesized that given the 

more accurate standard error estimates expected for the lasso, coverage rates for 

this estimator will be closer to the nominal 0.95 level than will be those of the 

REML estimator. 

 

 

3 Simulation Methodology  

The aforementioned goals of this study were addressed using a Monte Carlo 

simulation study with 1000 replications per combination of conditions, which are 

described below.  Data were generated from a 2-level random intercept linear 

model, as in equation (1), using Mplus, version 7.11 (Muthén & Muthén, 2015).  

REML estimation was carried out using the R package lme4 (Bates, Maechler, 

Bolker, & Walker, 2015), whereas MLL estimates were obtained using the 
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lmmlasso function in the lmmlasso library (Schelldorfer, 2015).  For each 

replication dataset, the shrinkage parameter was determined based upon the value 

of the BIC, as described above. Standard errors for the MLL estimates were 

obtained using the block bootstrap, as was described above.  The focus of the 

simulation was on the level-1 predictors. The data generating conditions that were 

manipulated in this study are described below.   

 

 

3.1 Level-1 and level-2 sample sizes 

The simulated sample sizes per cluster were 5, 10, and 20, and the number of 

clusters that were simulated were 5, 10, 20, 30, 50, and 100.  These values were 

selected so as to reflect a variety of total sample size conditions, from very small 

(25 total) to large (2000 total).  In addition, these values were selected based upon 

the results of prior research examining the relationship of sample size and 

parameter estimation in the context of multilevel modeling.  For example, based 

on the work of Kreft (1996), Snijders and Bosker (2012), and Hox (2010), it has 

been suggested that somewhere between 20 and 50 level-2 units should be present 

when data analysts use the REML estimator.  Thus, it was of interest to ascertain 

the performance of MLL and REML in cases where the number of level-2 units 

fell below these guidelines, and in cases where the number of level-2 units was 

well in excess of these values.  In addition, the impact of high dimensionality was 

a primary focus here, and therefore the total sample size on the performance of 

both estimators was also of interest, and thus a wide array of values were 

simulated in this study. 
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3.2 Number of level-1 and level-2 independent variables 

In addition to the sample size, the number of independent variables at both 

level-1 and level-2 were also manipulated in this study.  In the low dimensionality 

case, 2 predictors were included at level-1 and 1 predictor level-2 was included at 

level-2, and in the high dimensionality condition there were 10 level-1 predictors 

and 5 level-2 predictors.  These values were selected in order to reflect a range of 

conditions that might be expected in the social and behavioral sciences.  An 

examination of 40 studies published in psychology journals in 2017 that used 

multilevel modeling revealed that the average number of level-1 predictors was 

4.4, with a maximum of 8.  The average number of level-2 predictors used in these 

studies was 1.6.  Although it is recognized that this is merely a snapshot of the 

research in the literature, it is believed that these are representative numbers of the 

level-1 and level-2 predictors, respectively.  Thus, the current study was designed 

to include values at the low and high ends of what is seen in the published 

psychology literature. The correlations among the independent variables was set 

equal to 0.3 across conditions, in order to reflect a moderate relationship among 

them. 

 

 

3.3 Number of coefficients with non-0 population values 

The number of independent variables that were simulated to have a 

relationship with the dependent variable was also manipulated in this study. The 

purpose for including this condition was to assess the Type I error and power rates 

for the two estimators under a variety of conditions. For both the low and high 

dimensional cases, the number of non-0 coefficients was manipulated.  In the low 

dimensional case, one set of simulations was conducted in which all of the 

independent variables at both levels were simulated to have coefficients of 1 in the 

population. In the other set of conditions for the low dimensional case, one of the 
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level-1 predictors had a coefficient of 1 in the population, and the other had a 

coefficient of 0, as did the level-2 predictor.  In the high dimensional condition, 

one set of simulations was such that all of the level-1 and level-2 predictors had 

coefficients of 1 in the population, whereas for the other set of simulations 5 of the 

10 level-1 predictors were simulated to have coefficients of 1, and 5 to have 

coefficients of 0. In this latter set of conditions, two of the 5 level-2 coefficients 

were simulated to have coefficients of 1, and the other three to have coefficients of 

0. 

 

 

3.4  Intraclass correlation (ICC) 

Two values of the ICC were simulated in this study, 0.05 and 0.33.  These 

values were selected because they represent a very small impact of the level-2 

units on the outcome (0.05), and a relatively large such impact (0.33). 

 

 

3.5 Outcome variables 

There were several outcomes of interest in this study, including parameter 

estimation bias, the standard error of the estimates, coverage rates for the 

estimates, Type I error rate, and power, all for the level-1 predictor.  Specifically, 

one of the level-1 predictors was selected as the target, and results are presented 

below for that target variable. Results for the other level-1 predictors were 

examined and compared to those for the target, and were found to be extremely 

similar to those of the target.  Thus, results for the target were the only ones 

included in the results in order to keep the results at a manageable length. The 

parameter estimation bias was calculated as: 

𝑏𝑖𝑎𝑠 = 𝜃� − 𝜃                            (7) 

Where 
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𝜃� =Parameter estimate 

𝜃 =Data generating value. 

The standard error of the estimates was calculated empirically using the following 

equation: 

�∑ �𝜃�−𝜃�
2𝑅

𝑟=1
𝑅−1

                            (8) 

Where 

𝑅 =Total number of replications; e.g., 1000. 

The coverage rate was the proportion of replications for which the 95% 

confidence interval constructed using the sample data included the data generating 

value of the parameter.  Therefore, if an estimator is working appropriately, the 

coverage value should be 0.95.  The Type I error rate is simply the proportion of 

replications for which the null hypothesis 𝐻0:𝜃 = 0 was rejected when it should 

not have been.  Likewise, power was the proportion of replications for which this 

null hypothesis was rejected when it should have been rejected.   

In order to identify the main effects and interactions of the manipulated study 

factors that were related to each outcome, analysis of variance (ANOVA) was 

used, along with the partial 𝜂2 effect size.  For an effect to be considered 

meaningful in the context of this study, it needed to be both statistically 

significant, and to have 𝜂𝑃𝑎𝑟𝑡𝑖𝑎𝑙2  value of 0.1 or greater. This latter condition was 

used because it would mean that the main effect or interaction accounted for at 

least 10% of the variation in the study outcome. 

 

 

4 Main Results 

4.1 Parameter estimation bias 

With respect to the amount of parameter estimation bias, ANOVA results 

identified the interaction of estimation method by number of groups by sample 
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size per group as the highest order statistically significant effect �𝐹10,13 =

4.453,𝑝 = 0.007, 𝜂𝑃𝑎𝑟𝑡𝑖𝑎𝑙2 = 0.774�.  All other significant effects were subsumed 

within this interaction. Estimation bias by number of groups, sample size per 

group, and estimation method appears in Table 1.   

 

Table 1:  Parameter Estimation Bias by Estimation Method, Number of Level-2 

Groups, and Sample Size per Group 

Groups Sample Size per Group REML MLL 
5 5 .1020 .0185 

10 .0608 .0190 
20 .0457 .0145 

10 5 -.0277 -.0181 
10 -.0090 -.0092 
20 .0007 .0009 

20 5 .0034 .0034 
10 .0014 .0014 
20 .0028 .0027 

30 5 -.0031 -.0029 
10 .0063 .0061 
20 .0003 .0004 

50 5 -.0009 -.0009 
10 -.0075 -.0074 
20 -.0008 -.0009 

100 5 -.0062 -.0062 
10 .0005 .0006 
20 -.0004 -.0004 

Based upon these results, it can be concluded that the degree bias was greater for 

REML than for the MLL when the number of groups was 5, or there were 10 

groups and the sample size per group was 5.  For example, at the 5 groups 5 

individuals per group condition for REML bias was more than 10 times larger 

than was the case for MLL.  For all other conditions, however, the two methods 

yielded very comparable, and very low levels of estimation bias.  In addition, this 
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pattern of results was present regardless of the population value for the coefficient 

(0 or 1).   

 

 

4.2 Standard error 

ANOVA results showed that the interaction of estimation method by number 

of groups by sample size per group was the highest order statistically significant 

such term �𝐹10,13 = 2.916,𝑝 = 0.037, 𝜂𝑃𝑎𝑟𝑡𝑖𝑎𝑙2 = 0.692�, with all other 

significant model terms being subsumed in this interaction, or not statistically 

significant.  

 

Table 2: Parameter Estimate Standard Error by Estimation Method, Number of 

Level-2 Groups, and Sample Size per Group 

Groups 
Sample Size 
per Group REML MLL 

5 5 .3775 .2813 
10 .2135 .2135 
20 .1318 .1325 

10 5 .2181 .2187 
10 .1352 .1355 
20 .0841 .0840 

20 5 .1418 .1418 
10 .0909 .0909 
20 .0588 .0588 

30 5 .1162 .1163 
10 .0736 .0734 
20 .0540 .0538 

50 5 .0812 .0809 
10 .0560 .0561 
20 .0423 .0425 

100 5 .0599 .0600 
10 .0420 .0421 
20 .0298 .0339 
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The standard errors by method, number of groups, and sample size per group 

appear in Table 2, and reveal that the standard errors for the two approaches are 

very comparable across most of the simulated conditions.  The lone exception to 

this pattern occurred when data were simulated for 5 groups, with a sample size of 

5 individuals per group, in which case REML had a larger standard error than did 

that produced by MLL. Otherwise, standard errors for the two methods were 

within 0.001 of one another across conditions. 

 
 
4.3 Coverage 

As with the bias and standard error outcomes, ANOVA was used to ascertain 

which of the manipulated factors in the simulation study were associated with the 

coverage rates for the model parameters. It was found that the interaction of 

number of groups, sample size per group, and estimation method were associated 

with coverage �𝐹10,13 = 2.708,𝑝 = 0.050, 𝜂𝑃𝑎𝑟𝑡𝑖𝑎𝑙2 = 0.673�. Coverage rates by 

method,number of groups, and number of items appear in the bar chart in Figure 1 

 
  Figure 1:  Coverage Rates by Estimation Method, Number of Level-2 Groups, 

and Sample Size per Group 
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 A reference line has been placed at the 0.95 value on the graphs, denoting the 

nominal coverage level.  Thus, when a method is working appropriately with 

respect to coverage, the bar should meet this line.  In fact, for REML the coverage 

rates were consistently below the nominal level when there were 5 or 10 groups, 

regardless of the sample size per group.  In addition, for 20 and 30 groups, the 

REML coverage rates were below 0.95 for samples of 5 individuals per group.  In 

contrast, the coverage rates for the MLL approach were always at or slightly 

above the nominal 0.95 level. 

 

 

4.4 Type I error rate 

When the level-1 coefficients for variables were simulated to be 0 (i.e., there 

was no relationship between the independent variable and the response), a 

statistically significant result would represent a Type I error.  In order to determine 

which of the manipulated factors were associated with the Type I error rate, 

ANOVA was used, as mentioned in the methods section.  The interaction of the 

number of groups by the estimation method was found to be statistically 

significantly related to the Type I error rate �𝐹5,8 = 10.562,𝑝 = 0.002, 𝜂𝑃𝑎𝑟𝑡𝑖𝑎𝑙2 =

0.868�.  Figure 2 displays the Type I error rate for each estimation method by the 

number of groups.  

Note that there is a reference line at the nominal 0.05 Type I error level.  In 

addition, per recommendations from Bradley (1978) error rates between 0.025 and 

0.075 were considered to be in control.  Perhaps the most obvious result made 

apparent in Figure 2 is that the REML Type I error rate was out of control when 

the number of groups was 20 or fewer, whereas for 30 or more groups the error 

rate was in control. In contrast, the Type I error rate for MLL was always in 

control, and indeed well below 0.05, for all number of groups conditions. 
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Figure 2:  Type I Error Rate for Parameter Estimate by Estimation Method and 

Number of Level-2 Groups 

 

 

4.5 Power 

ANOVA results for the power for detecting model parameters that are not 0 in 

the population identified the interaction of number of level-2 groups by the sample 

size per group by estimation method �𝐹10,13 = 15.853,𝑝 < 0.001, 𝜂𝑃𝑎𝑟𝑡𝑖𝑎𝑙2 =

0.924� as being statistically significantly related to the power rate.  The power by 

number of level-2 groups, sample size per group, and estimation method appear in 

Figure 3.   

From these results, it can be seen that power for REML was lower than that 

for MLL with 20 or fewer groups, regardless of the number of individuals in each 

group.  In addition, this effect of the number of groups was magnified by the 

sample size per group, so that when groups were smaller, the power differential 

between the two methods was greater. Under this combination of conditions, 
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power for MLL was always between 0.98 and 1.  For 30 or more level-2 groups, 

power for the two methods was very comparable and always between 0.98 and 1.   

 

 
Figure 3:  Power for Parameter Estimate by Estimation Method and Number of 

Level-2 Groups 

 

 

5  Conclusion 

Researchers in some areas of the social sciences will sometimes face the 

situation in which they have relatively small samples and a relatively large number 

of variables of interest.  In such cases, standard parameter estimation algorithms, 

such as ordinary least squares and maximum likelihood will not provide stable or 

reliable estimates. In an attempt to address this problem, Tibshirani (1996) 

introduced the lasso estimator, which was designed to reduce the effective set of 

predictors in a model to include only those which are most strongly associated 

with the dependent variable of interest.  In the context of least squares estimation 

the lasso has been shown to produce shrunken estimates, which tend to be 
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somewhat negatively biased, though the degree of bias is typically small.  In 

addition, the lasso, and other shrinkage estimators, have been found to control the 

Type I error rate better than do standard estimators such as least squares and 

maximum likelihood (Zou & Hastie, 2005).  In short, for single level data 

shrinkage methods such as the lasso have been found to work well in terms of 

yielding reasonably accurate parameter estimates while also controlling the Type I 

error rate. 

High dimensionality is not a problem limited to single level models, and for 

that reason the current study was designed to explore the performance of the MLL 

for use with multilevel data structures.  Results of the study generally showed that 

in the context of a 2-level random intercept model, the MLL estimator is a very 

viable alternative to the standard REML approach most commonly used in 

practice, even when the data were not high dimensional.  Specifically, when the 

sample sizes were small at both levels 1 and 2, MLL yielded less biased parameter 

estimates than did REML, and for larger samples both methods had very similar 

(and extremely small) levels of estimation bias.  Similarly, for the smallest sample 

size conditions, MLL yielded more controlled Type I error rates, and higher power 

than did REML. The results of this study also demonstrated that use of the block 

bootstrap for estimating the standard errors of the level-1 parameter estimates is 

also viable, as these standard errors were generally very similar to those of REML 

for larger sample sizes, and somewhat smaller when the sample sizes were small. 

This use of the block bootstrap represents an extension to the work of Scheldorfer, 

et al. (2011). Finally, the coverage rates for the MLL estimator using the block 

bootstrap to estimate the standard error were always at or slightly above the 

nominal 0.95 level, whereas REML had coverage rates below the nominal level 

whenever the number of level-2 clusters was less than 20, and these were lowest 

for the combination of five level-1 and five level-2 units. 

With regard to the research hypotheses described above, several conclusions 

can be reached. First, as was hypothesized based on earlier work, MLL was better 
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able to control the Type I error rate than was REML.  In addition, the hypothesis 

that the MLL coverage rates would be better than those of REML was also 

supported by this study. However, the hypotheses that power would be lower for 

MLL was not supported, nor was the hypothesis that its parameter estimates 

would be more negative than those of REML. These latter results are likely at 

least partially a result of the fact that the MLL loss function in equation (4) 

involves not only the fixed effects (i.e., 𝛽1) but also the two variance component 

terms. Thus, when determining the penalty for the coefficients, MLL accounts not 

only for the level-1 predictors but also for the variation both within and between 

level-2 clusters.  For the standard single level lasso, the loss function is only 

influenced by the degree of disparity between the observed and model predicted 

dependent variable values.  However, for MLL not only are these terms important, 

but so are the variance components estimates. This fact would appear to largely 

mitigate the impact of the shrinkage process on the estimates. Interestingly, the 

numbers of level-1 and level-2 predictor variables were not found to be related to 

the performance of the estimators. Thus, in the context of multilevel data, it would 

appear that the sample sizes at levels 1 and 2 may be more salient in terms of 

estimation performance than are the number of independent variables.   

 

 

5.1 Directions for future research 

The results of this study appear to support the performance of the MLL 

estimator with small samples and high dimensional data.  In addition, they buttress 

earlier work by Scheldorfer, et al. (2011) suggesting that this estimator may be 

particularly useful with relatively small samples.  Despite these results, however, 

there does remain room for further research.  This study was intended to represent 

the first fairly large scale simulation examination of the performance of MLL.  

However, more work needs to be done in this regard.  First, a wider array of 

number of level-1 and level-2 predictors needs to be examined.  The values 
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selected for this study were taken from published literature in the social sciences.  

However, more extreme numbers of predictors should be examined in future 

work, perhaps with as many as 20 to 30 such variables.  Work by Scheldorfer, et 

al., examined very extreme dimensionality with 300 to 1000 independent 

variables, and found that MLL worked well in terms of parameter recovery.  

When coupled with the results presented in the current study, these earlier results 

are certainly suggestive that MLL should work well with 20 or 30 predictors.  

However, by themselves these very large numbers are not particularly informative 

for most social science research, as the number of predictors will typically not be 

in the several hundreds.  In addition to including more independent variables, 

future work should also examine a wider range of ICC values, and a wider range 

of sample size conditions.  In particular ICC values in between the small (0.05) 

and large (0.33) values included here could be informative for applied researchers.  

Finally, future research should examine the performance of MLL and REML in 

terms of estimating variance components estimation in the high dimensional case.  

In order to keep the current study well focused, only the level-1 predictor 

estimates were examined. This decision was made because these estimates are 

typically of primary interest to researchers using MLLs. It is hoped that this focus 

allowed for a clear picture to be developed regarding the performance of the two 

estimators in the high dimensional case.  Now that such work has been completed, 

a next step would be to investigate the estimation of the variance components 

themselves. 

As noted earlier, the current study was designed to build on the work by 

Scheldorfer, et al. (2011) with regard to the performance of the MLL estimator in 

the context of high dimensional data.  The results of this study have found that 

MLL is indeed a viable alternative to REML, not only in the context of high 

dimensional data but indeed for general use.  MLL always performed as well as 

REML in the simulated conditions, and was preferable for small sample sizes.  

Thus, researchers are encouraged to consider using it whenever the level-2 sample 
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size is less than 30.  MLL is particularly useful in terms of controlling the Type I 

error rate of the level-1 predictors.  In addition, MLL appears to perform as well 

as REML for larger sample sizes, so that it would be appropriate to use even in 

cases where the sample sizes at levels 1 and 2 are relatively large.  Finally, the 

results of this study show that the block bootstrap is an appropriate method for 

estimating the standard error of the level-1 estimates.  This was not an issue 

described by Scheldorfer, et al., and one which adds to the current use of this 

estimator. 
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