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Abstract 
 

This paper employs an event study, the Global Financial Crisis.  Episodes of inefficient 

pricing, the externality, are exploited as a measure of systemic risk.  The theoretical asset 

pricing model, the martingale representation, is shown to be a valid algorithm to identify 

episodes of efficient and inefficient pricing in time series.  Systemic risk metrics are derived 

from episodes of inefficient pricing, utilizing a shadow volatility metric.  The algorithm is 

forward looking, deriving macro-foundation metrics from actual agent market behavior. The 

algorithm provides precise risk metrics for magnitude and diffusion using US and Canadian 

treasury markets.  Given the US dollar’s role as the de-facto world reserve currency, scaled 

metrics derived from the US treasury market provide a globalized systemic benchmark. The 

risk metrics signal the crisis buildup and calibrate around the crisis epicenter date of 

September 2008.  The risk metrics are heuristically consistent with the stylized facts of 

financial crises and support the extraordinary US policy response to the crisis. The algorithm 

output is validated by time-series analysis.  
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The Global Financial Crisis of 2008 is described similarly to the 100-year flood.  The 

financial crisis was a systemic global event, leading to a global recession. The financial crisis 

provides a rich data environment for the assessment of systemic risk.  The use of US and 

Canadian treasury yield curve data allows for a cross-county comparison of systemic risk 

profiles, along with support for the validation of the martingale representation as an empirical 

time-series algorithm.  Since the US and Canada are similarly large, geographically 

contiguous trading partners, the two countries provide a natural comparison for the evaluation 

of crisis impact. The divergence in financial crisis impact was quite apparent as large US 

financial institutions required bailouts, while large Canadian financial institutions did not.   

The empirical results indicate cross-country systemic risk profiles that are not completely 

uniform.  The systemic risk magnitudes differ, whereby the diffusion processes are more 

similar.      
 

The theoretical martingale representation, the standard core analytical model used in modern 

asset pricing, is utilized as an empirical time-series algorithmic platform. The algorithm is 

forward looking, and exploits episodes of inefficient pricing, the externality, as a measure of 

systemic risk.  A scaled risk metric is derived from actual agent market behavior found in 

the special status, US Treasury market.  The scaled metric provides a macro-foundation, 

complete systems approach to identifying and measuring systemic risk.  The scaled metric 

stands in contrast to the conventional micro-foundation, default correlation partial or 

incomplete systems network approach. The use of the algorithm does not require complex 

mathematical abstractions, complex network construction, simplifying assumptions of agent 

micro-behavior or convenient well-behaving functional forms to guarantee tractability.  The 

algorithm is market behavior based, and is very robust in that it captures episodes of 

inefficient pricing under both normal and crisis conditions.  The algorithm’s risk metric 

output captures both distinct phases of systemic risk in signaling the elevation of risk buildup 

prior to the crisis and the emergent risk systemics calibrating around the crisis event date. [1] 

 

Operationally, the algorithm is a dynamic one-period, re-setting empirical platform used to 

identify episodes of efficient and inefficient pricing in time series.  Episodes of inefficient 

pricing, the externality, are then exploited as a measure of systemic risk using a shadow 

volatility metric.  The shadow volatility metric, imputing attributes associated with a dual 

variable, counterfactually re-establishes efficient pricing in the inefficient pricing segment of 

the time series. More formally, satisfying the primal problem of optimal (efficient) pricing 

requires the use of the shadow volatility metric to re-establish positive state prices in the 

martingale representation through the restoration of efficient pricing.   

 

The algorithm output provides valid and precise risk metrics that include signaling state 

prices, systemic risk magnitudes, and risk diffusion patterns. As market agent opinion shifts, 

volatility moves to extremes, as financial markets display cycles alternating between an 

appetite for more risk assets and a flight to quality assets, particularly for the treasury bonds 

of the industrialized world. [2] In effect, the algorithm captures actual market sentiment 

reversal from a risk-on to a risk-off paradigm. The state prices signal a pre-crisis elevation of 

risk. The scaled metric derived from the shadow volatility metric measures the crisis impact 
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intensity resulting from a reversal in market energy, and is interpretively similar with the 

tremor event moment magnitude scaled metric measuring tectonic plate energy. The diffusion 

metrics provide insight into the risk dynamics along the treasury yield curve. The scaled 

metric allows for consistent comparison of systemic risk impact and contagion. For the US 

crisis impact epicenter, the scaled metric is 32.25. The corresponding scaled metric for 

Canada is 13.75.  

 

As applied, the state prices associated with short-term US maturities display signaling 

properties relative to pre-crisis risk elevations. For both the US and Canada, the emergent risk 

metrics calibrate around the epicenter crisis event date of September 2008.  The metrics are 

heuristically consistent with the extraordinary US monetary policy response to the crisis and 

the historical stylized facts of major financial crisis events.  The validity of both the shadow 

volatility metric and the algorithm-derived scaled metric is confirmed by time-series analysis.       

 

 

2  Brief Literature Review 
  

Arbitrage-free asset pricing is the accepted norm in finance.  Examples of anomalies do not 

suggest that an efficient market and exploitable arbitrage opportunities are compatible. [3] 
  

 

Large persistent violations must be considered an externality. A risk tolerance paradigm shift 

creating market inefficiencies is an expression of an externality.   

 

Risk appetites may also display path dependency characteristics.  Agent choices are 

impacted by the way the game is evolving for the player.  Research from behavioral 

economics indicates that in certain situations, agents may be less risk averse and actively seek 

more risk. Players using house money that are ahead or players behind but anticipating a 

break-even outcome shift their risk profiles to less risk averse positions. [4]   Fragility may 

also be associated with path dependency.  Agents focus on success, say profitability, without 

first emphasizing risk control to ensure survival. To a rational agent, the logical sequence of 

events should emphasize survival strategies before success strategies.  In other words, the 

order of events taken is of primary importance over the destination or outcome. [5] Overall, 

the history of the path may play a crucial role in agent risk assessment and agent allocations.  

Path dependency imputes the analysis of risk by using time series analysis.   

 

Financial crises are systemic events resulting from sudden regime shifts, characterized most 

basically by market agents exiting from bank debt and creating insolvency within the banking 

system. [6]  Systemic events reflect systemic risk, aggregate or macro behavior in a system.  

Systemic risk may involve breakdowns such as adverse network effects from an internal 

shock, insolvency of key institutional factors, and liquidity bottlenecks. [7]  

 

Network structure plays a key role. The identical factors that contribute to network resilience 

may also contribute to network fragility, as a financial contagion displays a phase transition 

characteristic. Below a certain threshold, shocks enhance stability in densely connected 
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networks. Above a certain shock threshold, densely connected networks propagate shocks 

leading to increased fragility. [8] Clustered networks, networks of financial institutions 

holding identical portfolios, tend to default together, whereby un-clustered networks display 

more default dispersion.  The impact of long-term financing and network structure is neutral. 

In contrast, network structure matters relative to short-term financing. [9]      

 

The cost of a public policy intervention to correct a negative spillover, an externality, might 

be correctly considered a measure of systemic risk. Public policy intervention is a societal 

cost related to the correction of a negative externality. The associated cost of the externality 

response is a measure of full systemic risk. [10] Rather than solely a public policy action, the 

externality could reflect a market response or some combination of public policy and market 

response. Exploiting episodes of inefficient pricing, an externality, is argued to be a viable 

measure for systemic risk. 

 

There are two distinct phases to systemic risk.  The run-up phase in the backdrop before the 

crisis and the materialization as the crisis event occurs. To measure systemic risk, one must 

be able to overcome the significant empirical challenge of boiling down large sources and 

amounts of data to a singular, meaningful risk statistic or metric. When considering systemic 

analysis, there has been a priority given to propagation and amplification in the financial 

sector, and particularly for interactions and types of financial institutions.  Following this 

line of research, measuring systemic risk begins with quantifying firm risk.  The natural 

sequence is to start at the micro-firm level, and develop risk allocation rules to accurately 

allocate total or marginal contributions to systemic risk across various types of financial 

institutions or other relevant market agents. Risk allocation rules abound, such as 

proportional allocation, Euler or gradient allocation, with-and-without allocation, and, from 

game theory, Shapley value. Systemic risk measures include systemic expected shortfall 

(SES), distressed insurance premium (DIP), CoVaR analysis, contingent claims analysis, and 

a copula approach.  These risk allocation rules and systemic risk measures all build from the 

micro-level to the systemic level.  A good measure of systemic risk must insure that the sum 

of all risk contributions equals the total, and the appropriate amount of marginal risk taken on 

by any agent or institution is guided by incentives. [1] The important question remains 

whether building from the micro-foundation level out provides a valid risk-based measure as 

one must identify all relevant micro-units and correctly allocate risk contributions 

system-wide. This micro-based conventional approach is a partial or incomplete systems 

approach in that it does not provide a complete system, macro-economy measure of systemic 

risk. The martingale representation algorithm, in using the special status of the US treasury 

market, abandons the daunting abstracting micro-detail, and provides a complete system, 

macro-economy systemic metric. The algorithm, through pre-crisis state price signaling and 

the episodes of inefficient pricing calibrating around the epicenter event date, satisfies the 

two distinct phases to systemic risk.        

The seminal work on surveying systemic risk analytics was prepared for the US Department 

of the Treasury. The survey identified 31 quantitative measures of systemic risk from the 

economics and finance literature. Ten different definitions of systemic risk were identified 

from published research. The 31 analytical measures were organized into broad categories: 
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Macroeconomic Measures, Granular Foundations and Network Measures, Forward-Looking 

Risk Measures, Stress-Test Measures, Cross Sectional Measures, and Measures of Illiquidity 

and Insolvency.  The analytical measures were sub-categorized in terms of ex ante early 

warning, ex ante counterfactual simulation and stress tests, contemporaneous fragility, 

contemporaneous crisis monitoring, ex post forensic analysis, and ex post orderly resolution.  

Most relevant to this paper, the identification of seven forward-looking risk measures – 

contingent claims analysis, Mahalanobis distance, the option iPoD, multivariate density 

estimators, simulating the housing sector, consumer credit, principle component analysis – 

does not include the theoretical martingale representation model. In addition, the ex post 

forensic approach does not include the theoretical representation model. [11]
 

More 

specifically, none of the 31 analytical measures identified include the theoretical martingale 

representation model as applied to yield curve time-series or other data sources.   

 

In finance, the presumption of efficient pricing imputes a theoretical Walrasian equilibrium, 

consistent with the notion of the “invisible hand.” The notion of an idealized Walrasian 

system is violated by the reality of imperfectly competitive market conditions, and the 

presumption of a guiding invisible hand typically fails to materialize at a non-cooperative 

equilibrium. Under multi-equilibria conditions, the lack of cooperation can result in a 

non-cooperative equilibrium that is inefficient, and yet there are no incentives to agents to 

unilaterally move to a better equilibrium. The resulting inefficient equilibrium is due to lack 

of coordination.  Invoking coordination allows a movement to the optimal position. [12] A 

crisis driven paradigm shift in market sentiment from risk-on to risk-off reflects a 

multi-equilibria condition, whereby effective policy coordination intervention is needed to 

provide signals to agents to move back to an efficient equilibrium position. These two 

equilibria extremes reflect systemic risk, the measurable magnitude of a market agent move 

from an optimal to a sub-optimal equilibrium.  The martingale representation algorithm 

follows this line of reasoning to quantify systemic risk through a scaled metric.    

 

 

3  The Stylized Facts of Financial Crises   
 

The paper incorporates an event study involving a major financial crisis.  The common 

characteristics of financial crises or panics involve acute liquidity shortages and contagion.  

Walter Bagehot, in 1873, indicted that central banks should act as a lender of last resort and 

lend freely. Beyond a liquidity event, you have contagion and possibly the impairment of the 

credit granting function.  Contagion may be a rational response as bank failures increase 

counterparty risk, impacting a very large number of institutions. [13] Financial panics happen 

under both fiat currency and gold standard regimes. Under the International gold standard 

from 1879 to 1913, a major rule of the game was to address short-run liquidity crises 

resulting from a gold drain with a central bank lending freely to the domestic banking sector. 

[14] The contagion effect reflects systemic risk, and volatility is exacerbated by contagion as 

countries or assets are grouped into categories of risk that are perceived as being very 

correlated. [2] It is difficult to have a sense for the event or events causing a specific panic.  

In some cases, there may not be a logical reason. An event occurs leading to a failure in 
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confidence in the financial system. The loss of confidents, possibly driven by instinct, results 

in runs on banks, squeezing reserve positions.  Solvent banks become insolvent.  Banks 

face liquidity squeezes and call loans which tighten credit, raising short-term interest rates, 

spawning credit disruptions and business failures. The ensuing disruption leads to an 

economic recession. [15]     

 

 

4  The Martingale Representation Algorithm  
 

The theoretical representation model is commonly known as a martingale. The representation 

model is theoretically correct in that it is forward looking. The model provides for efficient 

market pricing under the assumption of arbitrage-free valuations. Empirically, the 

combination of the martingale model and rational expectations is generally viewed as 

satisfying market efficiency criteria. [16] The martingale model implies risk-neutral agents. 

 

Arbitrage-free is formally defined as not allowing for a zero time-t cash investment with the 

potential for receiving a non-zero investment return at time T. Alternatively, it does not allow 

for receiving time-t cash to make an investment with zero liabilities at time T.  Such 

portfolios cannot be feasible at given current prices when arbitrage-free conditions apply.  In 

the martingale representation model, given actual asset prices at time-t, arbitrage-free 

requires that all elements in the state price vector exist and be greater than zero. [17] The 

violation of positive state prices plays a key role in deriving the systemic risk scaled metric.  

 

While the representation expressed by the theoretical model is not observable in the real 

world (only one state-of-the world will be observed), the theoretical representation model 

used as algorithm is a powerful empirical platform. The martingale representation is formally 

expressed in matrix notation. The actual martingale equations are hidden within the 

representation’s matrix notation.    
 

to    t1 

 B1       =       1   1      Q1    (1)  

Bn      Bn-1+σ Bn-1-σ Q2 



Variables Q1 and Q2 are the state prices.  The elements of the vector at time-to record the 

respective bond prices. Elements of the payoff matrix record the two-state values for the 

bonds at time-t1. Solving the matrix multiplication and adjusting for the forward measure 

yields two equations.   
 

B1 = B1 [(Q1/ B1) + (Q2/ B1)]        (2) 
Bn = B1 [(Bn-1+σ) (Q1/ B1) + (Bn-1-σ) (Q2/ B1)]    (3) 

 

The forward measure, Qi/ B1, is the synthetic probability of each state occurring. An equation 

restated in the following generalized ratio form is a martingale. 
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Bt/B1=Ep [BT]         (4)   
 

The existence of positive state prices, Q1 and Q2, are required to provide efficient pricing in 

equations (2) and (3).  

 

Operationally, the martingale representation is used as a one-period, re-setting algorithm to 

empirically determine episodes of efficient and inefficient pricing in time-series data.  The 

one-period, re-setting format is justified both empirically and theoretically. In each new 

time-period of one month, it is reasonable to expect a new information set, It, based on new 

news arriving. Theoretically, given rational expectations, since all available information in 

the information set should be reflected in the bond price, and since new information arrives  

randomly, a new information set should result in new bond pricing.  Empirically, the data 

clearly and uniformly displays new bond prices every month.   

Solving the representation’s matrix algebra requires the time-to bond prices, Bt, and the 

forward time-t1 volatility, σ.  Equation (1) is sufficient (equations 2 and 3 may remain 

hidden) to derive the values of state prices given market bond prices at time-to and the 

forward volatility at time-t1.  The up state-one movement equals Bn-1+σ and the down 

state-two movement equals Bn-1-σ.  The use of volatility (σ) multiplied by the square root 

of the time interval is the common practice in modern finance. [18] The time frame from 

time-to to time-t1 is always one year, so the  term is dropped.  The assignment of future 

up-down values using Bn-1 rather than Bn reflects the fact that the two-year bond will be a 

one-year bond at time-t1, and so on.  The volatility (σ) is for the Bn-1 bond, and represents 

the sample standard deviation over the 12-month forward (t1) period.  Positive state prices 

impute efficient pricing.  For each month, the algorithm’s matrix algebra is solved for the 

state prices Q1 and Q2.  Each forward volatility value in the volatility time series is 

associated with its own set of state prices, elements found in the state price vector.  

Volatility is an ex post measure.  In terms of the representation matrix, the bond values are 

ex ante prices.  The algorithm confirms efficient pricing, arbitrage-free outcomes when ex 

ante bond prices and the ex post volatility yield state prices that exist and are all greater than 

zero.    

 

The algorithm is linear but it is obviously not a linear programming methodology. Still, some 

conceptual attributes of the primal and dual problems are reflective of playing a similar role 

in the martingale representation through state prices and the shadow volatility metric. The 

primal objective of optimal (efficient) pricing is satisfied through the provision of a positive 

state price vector.  The dual variable is the shadow (price) volatility metric, counterfactually 

re-establishing efficient pricing and positive state prices in the time series. The algorithm is 

applied to time-series data displaying episodes of both efficient and inefficient pricing. The 

shadow volatility metric is similarly the imputed value of the input volatility resource that 

provides for optimal time-series pricing, just as the linear programming shadow prices are the 

imputed values of the scarce resource contributions that are owed to the resulting primal 

optimal (profit) value. [19]  

 

 



42                                                          Richard W. Booser 

The study uses monthly US and Canadian government bond interest rate data taken from the 

Federal Reserve Board and Bank of Canada historical time-series data bases. The bond prices 

represent the standard conventional zero-coupon bond values as derived from the interest rate 

data. Yield curve interest rates are available for the one-year, two-year, three-year, five-year 

and seven-year government issues. The four-year and six-year rates are interpolated.  

Because of data availability limitations, Canadian dollar LIBOR rates were substituted for 

one-year rates from September of 2005 to April of 2006. Pre- and post-crisis data 

(approximately 36 months before and 36 months after the crisis event) is purposely used, 

consistent with an event study.  The yield curve data sets run from September 2005 to 

September 2011, plus a 12-month forward-looking data requirement running through 

September 2012.  Model and data constraints limit the use of the algorithm to the one-year 

to six-year length of the yield curve.     

 

 

5  Risk Metric Output from the Algorithm  
 

The algorithm generates a time series of state prices. The state price values calibrate around 

the financial crisis event date of September 2008. State prices shift from positive to negative 

values, and signal pre-crisis elevated risk levels as US shorter-maturity Q2 state prices (state 

prices may be viewed as elementary insurance contracts) gradually approach 0.95.  Negative 

state prices represent sub-optimal, inefficient pricing of assets.  For both the United States 

and Canada, truncated Q1 and Q2 state price time-series sequences are provided in Table 1 

and Table 2, respectively. The date of the first shift to negative state prices is recorded in 

italics. 

 

For US state prices, some state prices turn negative before September 2008 and other state 

prices react one month later in October 2008.  One-year, three-year, and four-year maturity 

state prices begin to turn negative in August 2008. The two-year maturity state price begins to 

turn negative in July 2008.  The five-year and six-year maturity state prices begin to turn 

negative in October 2008.     
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Table 1: US state prices 

US 
 Dates 1Y Q1 Q2  2Y Q1 Q2  3Y Q1 Q2 

 2008-03 0.3884319 0.5964017  0.2887435 0.6960901   0.126215 0.8586185 
   
 2008-04 0.1095763 0.8733213  0.2252818 0.7576158  0.1231311 0.8597665 

 2008-05 0.0140361 0.9657797  0.1379016 0.8419142  
  
0.150766 0.8290498 

   
 2008-06 0.0197917 0.9565801  0.0194763 0.9568955  0.1100725 0.8662993 
                     
 2008-07  0.0354408 0.9422675  -0.0480126 1.0257209  0.0240093  0.953699 
   
 2008-08 -0.000693 0.9793581  -0.2024626 1.1811277  -0.1422123 1.1208774 
   
 2008-09 -0.0461556 1.0274136  -0.4754465 1.4567045  -0.5269104 1.5081684 
   
 2008-10 -0.5107997 1.4967985  -1.2927187 2.2787175  -1.2641839 2.2501827 
   
 2008-11 -0.9318846 1.9212979  -1.6953625 2.6847758  -1.1521137 2.141527 
   
 2008-12 -2.7418746 3.7369985  -1.9092983 2.9044222  -0.9740281 1.969152 

 

Dates 4Y Q1 Q2  5Y Q1 Q2  6Y Q1 Q2 

2008-03 0.0962382 0.8885954  0.1743814 0.8104522  0.1627704 0.8220632 
 
2008-04 0.1112059 0.8716917  0.2070713 0.7758263  0.2024648 0.7804328 
 
2008-05 0.1541844 0.8256314  0.217476 0.7623398  0.2150901 0.7647257 
 
2008-06 0.1282859 0.8480859  0.2221941 0.7541777  0.2313158 0.745056 
 
2008-07 0.0556983 0.9220099  0.1592307 0.8184776  0.1734629 0.8042453 
 
2008-08 -0.042894 1.0215591  0.1124148 0.8662503  0.1401079 0.8385572 
 
2008-09 -0.2559814 1.2372394  0.0315554 0.9497025  0.0773013 0.9039567 
 
2008-10 -0.7467139 1.7327128  -0.1596659 1.1456648  -0.0723588 1.0583576 
 
2008-11 -0.6743195 1.6637328  -0.2098768   1.19929  -0.1217794 1.1111926 
 
2008-12 -0.4856719 1.4807958  -0.1488598 1.1439837  -0.0743936 1.0695175 

                                                                               

 

For Canadian state prices, one-year to four-year maturity state prices turn negative two to 

three months later than comparable US state prices.  Five-year and six-year maturity state 

prices respond identically to US state prices. The one-year maturity state price begins to turn 

negative in November 2008. The two-year maturity state price begins to turn negative in 

September 2008. The three-year, four-year, five-year and six-year maturity state prices begin 

to turn negative in October 2008. 
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                            Table 2: Canadian state prices                                        

Canada 

Dates 1Y Q1  Q2 

 
2Y Q1 Q2 

 
3Y Q1     Q2            

2008-03 0.4382511   0.536883 

 
0.413495 0.5616391 

 
0.3525197 0.6226144 

 
2008-04 0.4502395 0.5235652 

 
0.3240099 0.6497947 

 
0.3933753 0.5804294 

 
2008-05 0.2962115 0.6757948 

 
0.3451289 0.6268773 

 
0.3593717 0.6126345 

 
2008-06 0.4941671 0.4744497 

 
0.3763343 0.5922825 

 
0.4257824 0.5428345 

 
2008-07 0.3729582 0.5983871 

 
0.2491112 0.7222341 

 
0.3277185 0.6436269 

 
2008-08 0.3932877 0.5806118 

 
0.2651585 

         
0.708741 

 

          
0.321471 0.6524285   

 
2008-09 0.0889974 0.8852817 

 
-0.1038397 1.0781187 

 
0.1736073 0.8006717 

 
2008-10 0.4304623 0.5494495 

 
-0.6780309 1.6579427 

 
-0.3289343 1.3088461 

 
2008-11 -0.2085498 1.1927049 

 
-1.11398 2.0981351 

 
-0.5364787 1.5206338 

 
2008-12 -1.0761796 2.0677513 

 
-1.1502229 2.1417946 

 
-0.6367172 1.6282889 

         

 
4Y Q1 Q2 

 
5Y Q1 Q2 

 
6Y Q1 Q2 

2008-03 0.3312824 0.6438517 

 
0.3370496 0.6380845 

 
0.3291938 0.6459403 

 
2008-04 0.389291 0.5845136 

 
0.3552816 0.618523 

 
0.3499458 0.6238588 

 
2008-05 0.354108 0.6178982 

 
0.3447175 0.6272887 

 
0.3447977 0.6272085 

 
2008-06 0.4218188 0.546798 

 
0.3858944 0.5827225 

 
0.3820655 0.5865513 

 
2008-07 0.3225584 0.6487869 

 
0.2814651 0.6898802 

 
0.2817298 0.6896155 

2008-08 0.3160214 0.657878 

 

  
0.263947 0.7099525 

 
0.2595774 0.7143221 

 
2008-09 0.2353532 0.7389259 

 
0.1464777 0.8278013 

 
0.1420753 0.8322038 

 
2008-10 -0.176684 1.1565958 

 
-0.0915929 1.0715047 

 
-0.1234079 1.1033197 

 
2008-11 -0.312856 1.2970111 

 
-0.0741372 1.0582923 

 
-0.1000361 1.0841912 

 
2008-12 -0.3610214 1.3525931 

 
-0.2365464 1.228118 

 
-0.2391585 1.2307301 

                                                                                                                                                 

 

 

The shift to negative state prices is uniformly characterized by compressions in ex post 

volatilities.  Ex ante bond prices are incongruent with ex post volatilities. Market sentiment 

rushes to hold cash or risk-free, cash-equivalent short-term US Treasuries.  The Panic of 

1907, arguably the most similar financial panic to this crisis, shows similar behavior. The 

banking system collapsed almost overnight. Reserves were depleted as people rushed to 

hoard cash or its equivalent, gold. The circulation of available cash disappeared, and liquidity 

vanished. [20] When liquidity vanishes, there is no trading and volatilities compress. In the 



An Algorithm Exploiting Episodes of Inefficient Asset Pricing to Derive a Macro-Foundation… 45  

subsequent volatility time-series analysis, the failure to reject the unit root is consistent with 

the argument that financial panics are ultimately liquidity crises.      

To restore optimal or efficient pricing in time series displaying episodes of inefficient pricing, 

an imputed or shadow volatility metric is used. Each realized volatility value found in the 

inefficient pricing segment of the volatility time series is multiplied by a common multiple (X) 

to counterfactually restore all negative state prices found in the state price time series to 

positive state prices. The common multiple adjustment to the volatility time series 

re-establishes efficient pricing by removing the inefficient pricing externality and 

counterfactually restoring positive state price vectors. The common multiple magnitude is 

referred to as the X-factor.  The X-factor adjusted portion of the realized volatility time 

series is the shadow volatility metric, the time-series volatility adjustment that re-establishes 

the optimization of the primal objective of efficient pricing. This follows from the fact that a 

shadow value or price is the imputed economic measure of value relative to the optimal 

objective value. [21] 

 

The X-factor is a dimensionless, scaled metric measure of systemic risk.  In terms of a 

generalized interpretation of the X-factor magnitude, although mathematically quite different 

in construct, it is interpretively analogous to the moment magnitude scaled metric used to 

measure tremor events. The X-factor value is the metric measuring the magnitude of systemic 

risk.  Equivalently, it is also the measure for the magnitude of the economic externality. The 

X-factor is an extreme value measure in that it is the common volatility adjustment multiple 

required to counterfactually remove all the inefficient pricing found in the time series and 

counterfactually fully restore efficient pricing and positive state prices.  Given the use of US 

treasury data and the US dollar’s status as the de-facto world reserve currency, the X-factor 

provides a benchmark macro-foundation systemic metric for the 2008 “global” financial 

crisis.  

 

For the US data, the X-factor values for the one-year to six-year maturities are 32.25, 14.75, 

14.5, 9, 5.25 and 5, respectively.  For the Canadian data, the X-factor values for the 

one-year to six-year maturities are 13.75, 6.75, 4.25, 4.5, 3.25, and 3.25, respectively. The 

corresponding X-factors are of larger magnitudes for the US, indicating larger externalities 

resulting from the financial crisis.  Based on the X-factor values found along the yield curve, 

the risk diffusion process displays a tendency to diminish.  Equivalently, the absolute size of 

the externality tends to diminish moving out along the yield curve.  Since the crisis 

originated in the US, and the Canadian X-factors display lower values, the metrics suggest a 

cross-country diminishing contagion diffusion process. Table 3 records the X-factor values 

for each volatility maturity for both countries. 
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                Table 3: Scaled X-factor metrics for US and Canada                                            

  1Y   2Y   3Y   4Y   5Y   6Y               

US 32.25X  14.75X  14.50X  9.00X  5.25X     5.00X 

Can 13.75X   6.75X   4.25X  4.50X  3.25X     3.25X 

                                                                                                                                                          
 

The nature of the calculation for the X-factor metric suggests complete independence 

between individual X-factor values by maturity. The very small sample size (N=6) limits any 

meaningful inferential statistical analysis. The standard principle for diffusion in finance 

imputes a Brownian Motion diffusion process.   

 

The X-factor sequences recording year-to-year percentage changes are provided for both 

countries. The one-year maturities, sometimes referred to as epicenters given their largest 

magnitudes, are sequenced as Xo.    

US 
%∆X1+%∆X2+%∆X3+%∆X4+%∆X5 = (-0.543)+(-0.017)+(-0.379)+(-0.417)+(-0.048)  (5) 

Canada 
%∆X1+%∆X2+%∆X3+%∆X4+%∆X5 = (-0.509)+(-0.370)+(0.059)+(-0.278)+(0.00)  (6) 

 

Based on visual inspection of the two sequences, a normalized first-order diffusion process 

looks to follow a random process, where most magnitudes are associated with negative 

values. 

 

Arguably, the epicenter magnitude (Xo) may conceivably be the actual driver of the diffusion 

process as agent market behavior reflects a (quasi) complete-markets approach through a pro 

rata allocation of additional risk moving out along the yield curve. The summation of the 

ratios of the epicenter X-factor value, Xo, to each of the five subsequent X-factor values, Xi, 

is provided for both countries: 

    

US:  Σ Xi/Xo = .457+.450+.279+.163+.155 =1.504    (7)  

Canada: Σ Xi/Xo = .491+.309+.327+.236+.236 =1.600    (8) 

 

The two epicenter-based pro rata allocation sequences comprising the summations look to 

follow a diffusion process that generally diminishes moving out along the yield curve.  

Interestingly, in total, the two pro rata risk allocations converge to similar values of 1.504 and 

1.6. One interpretation is that market agents allocated, on a complete-markets pro rata basis, 

an additional 150 to 160 percent of systemic risk.  Despite different epicenter magnitudes of 

32.25 and 13.75, market agents allocated the same additional risk. The pro rata allocations 

differ between maturity values and between market agents of different countries, but in total, 

the pro rata risk allocations are seemingly epicenter uniform.    

 

The X-factor metrics, for the most part, reveal diffusion processes displaying diminished 

allocations of systemic risk: (1) when moving away from the epicenter magnitudes, (2) for 

cross-country contagion from the originating country to the contagion county, and (3) from a 
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complete-markets, pro rata risk allocation perspective.    

 

 

6  Time-Series Analysis of the Algorithm Output 
 

The representation algorithm empirics are organized around time-series data as opposed to a 

single data point. Evaluating for covariance-stationary time-series properties is therefore a 

natural extension of the representation algorithm empirics.   

 

Two types of time-series volatility data sets are tested for unit root - the original, realized 

volatility time series and a constructed shadow volatility time series. The shadow volatility 

time series is built by splicing the positive state price volatilities with the shadow volatility 

metric (X-factor) adjusted volatilities that counterfactually restore realized negative state 

prices to positive state prices.    

 

The model specification used is the standard re-parameterized model (non-zero unconditional 

mean) to test for unit root.    

 

      ∆σ = α + (Φ-1) σ-1 + ϵ        (9) 

 

To correct for autocorrelation, the equation is augmented by adding first differences lagged 

variables (∆σ-1, ∆σ-2) until the autocorrelation is reduced to white noise. [22]
   

Some 

equations do not need to be augmented, while other equations require one or two 

augmentations.  The test for autocorrelation is the standard Durbin h statistic. [23] For all 

the volatility time series recorded in Table 4, the Durbin h statistic fails to reject the absence 

of autocorrelation at the five percent (5%) level of significance.   

 
                  Table 4: US realized volatility time-series analysis                  

Year   Φ-1  Stnd Error  S-NS  ADF Statistic Durbin h   Rho      ACA 
1Y -0.0241  0.0119  NS  -2.0204  -0.2466  -0.0293    2 

2Y -0.0343  0.0149  NS  -2.3024  -0.5149  -0.0610    2 

3Y -0.0644  0.0163  S  -3.9393   1.4626   0.1719    1 

4Y -0.0800  0.0190  S  -4.2127   1.0425   0.1221    1 

5Y -0.0977  0.0225  S  -4.3290   0.6890   0.0802    1 

6Y -0.1054  0.0245  S  -4.3015   0.5420   0.0629    1 

                                                                                 

                US shadow volatility time-series analysis                          
Year   Φ-1  Stnd Error  S-NS  ADF Statistic Durbin h   Rho       ACA 

1Y -0.4001  0.0953  S  -4.1985   0.2852   0.0197    0   

2Y -0.2450  0.0781  S  -3.1358   0.2803   0.0247    0 

3Y -0.0699  0.0428  NS  -1.6345   0.4231   0.0464    0 

4Y -0.0620  0.0396  NS  -1.5646   1.3785   0.1529    0 

5Y -0.0664  0.0330  NS  -2.0074  -0.2720  -0.0310    1 

6Y -0.0689  0.0339  NS  -2.0290  -0.2189  -0.0249    1 
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                Canadian realized volatility time-series analysis                    
Year   Φ-1  Stnd Error  S-NS  ADF Statistic Durbin h  Rho    ACA 

1Y -0.0526  0.0176  S  -2.9892   0.6073   0.0712    1   

2Y -0.0657  0.0205  S  -3.2054   0.1901   0.0222    1 

3Y -0.0786  0.0244  S  -3.2223  -0.0929  -0.0107    1 

4Y -0.0867  0.0257  S  -3.3721   0.1106   0.0128    1 

5Y -0.1008  0.0285  S  -3.5376   0.2208   0.0254    1 

6Y -0.1107  0.0293  S  -3.7711   0.2447   0.0281    1 

                                                                                 
                Canadian shadow volatility time-series analysis                     
Year   Φ-1  Stnd Error  S-NS  ADF Statistic Durbin h  Rho   ACA 

1Y -0.0708  0.0411  NS  -1.7220   0.4267   0.0474    1  

2Y -0.0775  0.0429  NS  -1.8073  -0.0927  -0.0101    0 

3Y -0.0637  0.0329  NS  -1.9373  -0.3921  -0.0447    1 

4Y -0.0662  0.0336  NS  -1.9703  -0.2695  -0.0306    1 

5Y -0.1600  0.0623  NS  -2.5661   0.1172   0.0117    0 

6Y -0.1541  0.0614  NS  -2.5063   0.1545   0.0155    0 

                                                                                 
 

For the US and Canadian data, Table 4 contains both the original realized and shadow 

volatility time-series analysis information, including the maturity dates, estimated parameters, 

standard errors, covariance-stationary property (S-NS), augmented Dickey-Fuller tau (ADF), 

number of autocorrelation adjustments (ACA), Durbin h statistic, and rho for the error term. 

 

Given the Dickey-Fuller tau (ADF) statistics for the original realized volatilities (time series 

that include both efficient and inefficient pricing episodes), only the US one-year and 

two-year realized volatility time series are found to be non-stationary processes with ADF 

statistics of -2.0204 and -2.3024, respectively. All other US and all Canadian realized 

volatility time series are found to be stationary processes at the five percent (5%) level of 

significance.  For the US data, ADF statistics range from a value of -3.9393 to a value of 

-4.3290. For the Canadian data, ADF statistics range from a value of -2.9892 to a value of 

-3.7711. In most of the original realized volatility time series tested, post crisis episodes of 

inefficient pricing are not associated with volatility compressions significant enough to 

indicate a non-stationary stochastic process.       

 

For the X-factor constructed shadow volatility time series, the US one-year and two-year 

maturities are found to be stationary processes at the five percent (5%) level of significance 

with ADF statistics of -4.1985 and -3.1358, respectively. 
 
For all other US and all Canadian 

shadow volatility time series, there is a failure to reject the unit root, indicating non-stationary 

volatility time series processes. For the US data, the ADF statistics range from a value of 

-1.5646 to a value of -2.029. For the Canadian data, the ADF statistics range from a value of 

-1.7220 to a value of -2.5661.   

 

For all the time series, original realized volatility time series switch from stationary 

(non-stationary) to non-stationary (stationary) when moving to their respective shadow 
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volatility time series.  The uniform time series covariance-stationary process reversals found 

when moving from original realized time series to shadow volatility time series validate the 

shadow volatility metric as having attributes of a dual variable. Inefficient pricing under a 

stationary process must revert to a non-stationary process to restore efficient pricing, and vice 

versa. Given ex ante bond prices, the shadow volatility metric consistently adjusts the time 

series back to optimal (efficient) pricing conditions. As found from the unit root test, the 

provision of efficient pricing in the representation algorithm can co-exist with either 

stationary or non-stationary time-series volatility processes.     

 

For both the US and Canadian data, one anomaly does appear in the one-year volatility time 

series. Specifically, both US and Canadian one-year time series display episodes of negative 

state prices prior to the September 2008 crisis epicenter. Based on the representation 

algorithm, the US had a brief inefficient pricing episode from July 2006 to November 2006, 

where an X-factor adjustment of 3.5 is required to re-instate efficient pricing.  Canada had a 

longer episode of inefficient pricing from December 2005 to December 2006, where an 

X-factor adjustment of 3.75 is required to re-instate efficient pricing. These pre-crisis, 

inefficient pricing episodes are not unusual as the representation algorithm is quite robust in 

that mispricing is also identified outside of a major financial event. When X-factor adjusting 

US realized (July to November 2006) and shadow volatility time series for these pre-crisis, 

inefficient pricing episodes, the time-series statistics remain generally consistent with the US 

one-year statistics recorded in Table 4. When X-factor adjusting the Canadian original 

realized time-series data (December 2005 to December 2006), the realized time series is a 

non-stationary process, resulting in a deviation from the statistical data recorded in Table 4.  

The X-factor adjustment to the Canadian shadow volatility time series is a non-stationary 

process, and remains consistent with the statistics recorded in Table 4. The full statistics are 

recorded in Table 5. 

 
     Table 5: Pre-crisis adjusted US realized and shadow volatility time series           

Year   Φ-1  Stnd Error  S-NS  ADF Statistic Durbin h  Rho   ACA  
1Y -0.0832  0.0490  NS  -1.6968  -0.0144   -0.0015     0  

1Y -0.4096  0.0961  S  -4.2618  0.3312   0.0225    0   

             Pre-crisis adjusted Canadian realized and shadow volatility time series       

Year   Φ-1  Stnd Error  S-NS  ADF Statistic Durbin h  Rho      ACA  

1Y -0.0612  0.0432  NS  -1.4163  1.6108   0.1765    0  

1Y -0.0841  0.0451  NS  -1.8625  0.3861   0.0423    1 

                                                                                  

 

Aside from the one violation described above, as recorded, the Dickey-Fuller statistics for 

unit root are consistent across the time-series tested. The covariance-stationary properties 

recorded are reliable in the context of the martingale representation algorithm. 

        

From the time-series analysis, the US one-year and two-year original realized volatilities 

record large magnitude volatility compressions resulting in non-stationary time-series 

processes. All other original realized volatility time series are found to be stationary 
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processes, not displaying large volatility compressions.   

 

Based on the time-series analysis, in a financial crisis, systemic risk is not uniform. This 

finding is more than likely counter to the seemingly rational perception that large crises or 

panics have large uniform across-the-board impacts. In fact, there is more market resilience 

than probably acknowledged, and less market allocated systemic risk moving further out the 

yield curve.        

 

 

7  Risk Metric Output Policy Implications 
 

The martingale representation algorithm is a valid empirical platform for identifying episodes 

of efficient and inefficient pricing, and for measuring and evaluating systemic risk dynamics.  

Extrapolating from the systemic risk empirics derived from the two-country event study, 

several key findings have policy implications.  

 

Systemic risk metrics should not be expected to be uniform for (1) all asset maturities and (2) 

on a cross-country basis, indicating elements of resilience. Contrary to differing 

cross-country systemic risk magnitudes, individual country diffusion patterns might be 

expected to more uniform, but not necessarily independent of their respective epi-center 

magnitudes.    

 

Based on asset maturity, episodes of inefficient pricing should not be expected to be uniform.   

Longer dated maturities will most likely lag the epicenter event date. For the crisis 

originating location, shorter maturities will most likely lead the epicenter event date.  For 

contagion locations, the shorter maturities will most likely lag the epicenter event date.  

Inefficient pricing dynamics found along the yield curve seem to be complicated.   

 

The extreme market response by economic agents to risk-aversion, as measured by large US 

systemic risk metric magnitudes of 32.25 and 14.75, are shown to confirm the use of 

extraordinary monetary policy by US authorities during the aftermath of September 2008.   

The metrics demonstrate the extreme risk-off market response and severe liquidity 

dislocations in US money markets. 

 

The paradigm shift from a market sentiment (confidence) of risk-on to risk-off can be sudden 

and violent, suggesting that market opinion has its own volatility that can quickly and 

significantly reverse episodes of optimal, efficient pricing and result in dramatic shifts in 

systemic risk profiles and contagion. Financial crises or panics reflect sudden reversals in 

market opinion or confidence, and the resulting risk-aversion impacts to liquidity conditions 

and contagion can be enormous to multiple segments of a market economy. Therefore, the 

ideology of unregulated financial markets guaranteeing complete information and complete 

markets that yield optimal risk-return pricing and dampening effects on market instability 

should be seriously re-evaluated. Macro-prudential financial regulation most likely is a very 

prudent endeavor.             
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8  Conclusion 
 

The standard core asset valuation model in modern analytical finance, a martingale 

representation, is used as a one-period, re-setting algorithm to effectively differentiate 

episodes of efficient and inefficient pricing in time series. As applied, the algorithm is shown 

to be extremely simple to utilize, and powerful and robust in calibrating and measuring 

systemic risk and diffusion dynamics. The algorithm derives precise, consistent and plausible 

systemic risk metrics based on actual agent market behavior. The use of the shadow volatility 

metric provides a scaled metric quantifying systemic risk through the re-establishment of 

efficient pricing in the time series. The algorithm-derived metrics signal the impending 

pre-crisis risk buildup and calibrate around the critical financial crisis event date of 

September 2008. The time-series analysis validates the use of the shadow volatility metric as 

exhibiting attributes of a dual variable and confirms efficient pricing that is consistent with 

both stationary and non-stationary processes. The algorithm sacrifices abstraction and 

micro-foundation detail in favor of providing a complete system, economy-wide measure of 

systemic risk. The risk metrics are heuristically consistent with the historical stylized facts of 

financial crises related to confidence, liquidity conditions and contagion. The risk metrics 

confirm the extraordinary policy response by US officials. The algorithm is robust in that it 

effectively exploits inefficient pricing episodes under both normal and crisis conditions.   
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