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Abstract 

A model of a viscoelastic infinite half-space with a concentrated tangential force 

applied on the boundary, namely, the viscoelastic Cerruti’s problem, is presented 

in this paper, with the derivation of the stress distributions by applying the 

elastic-viscoelastic correspondence principle to the displacements from the classic 

Cerruti’s problem. In the background viscoelastic materials, based on 

elastic-viscoelastic correspondence principle, the displacements of the classic 

Cerruti’s problem should have the similar expressions to elastic solutions but vary 

with time. Two auxiliary functions were used to replace the time components in 

displacements, which reduces the complexity. By satisfying the boundary 

conditions and balance conditions, the two auxiliary functions can be determined 
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after solving two Volterra integral equations.  With displacements known, the 

strains and stresses can be obtained. The results were also show that the two 

solutions match. 

 

Keywords: stress distribution, linear viscoelastic, concentrated force, half-space,  

Cerruti, correspondence principle 

 

 

1  Introduction  

Cerruti’s problem is of great importance in many researches since it gives the 

stress distribution inside a body. For some cutting problems, the tangential force 

plays an important role in the initiation of the cutting crack rather than the normal 

force. These problems can be modeled as the Cerruti’s problem where a tangential 

force applied on the boundary of the half body. The solution to Cerruti’s problem 

offers a prediction of the internal stress distributions and therefore researches can 

know where fracture initiates according to certain criterion. In many applications, 

the cutting operations are involved in the processing of many viscoelastic 

materials. Cutting yield and quality can be ensured via the control of the cutting 

force in the automation process by using robotic devices. The internal stress 

distribution in a viscoelastic body is not only directly related to the external 

cutting force; it is also the fundamental cause of cutting fractures. Thus, modeling 

the relationship between the external cutting force and internal stress distribution 

can help predict cutting fractures and identify different materials along the cutting 

path. Finally, a control algorithm can be applied to avoid cutting into the hard 

materials to ensure the cutting yield and quality.  

In actual cases, the contacting force on the cutting edge cannot be viewed as 

concentrated force, but a distributive force. Therefore the cutting problem can be 

modeled as a belt-shaped force acting on the surface of a half-space. The study of 
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the stress distribution due to a concentrated point force will be the first step in 

modeling the cutting stress distribution problem. A cutting force can be considered 

as the resultant of a normal force and a tangential force acting on the contact 

surface between the tool and the material. The stress distribution in an elastic 

half-space due to a normal point-force has been modeled by Boussinesq; the stress 

distribution due to a tangential point-force by Cerruti. Correspondingly, they are 

called Boussinesq’s problem and Cerruti’s problem. For viscoelastic materials, 

Talybly (2010) developed a method to solve viscoelastic problems by substituting 

the multiplication of external force and viscoelastic material functions with 

time-dependent functions. He formulated the solutions to Boussinesq’s 

viscoelastic problem in cylindrical coordinates, and two time-dependent functions 

have been used to replace the relaxation functions and Poisson’s ratio. During the 

derivation, the equations to solve the determining functions were obtained from 

equilibrium equations and boundary conditions and were uniquely solved via the 

Volterra integral equation of second kind (Zhang 1994). 

For viscoelastic materials, the formulation of the stress distribution due to the 

tangential point force on a half-space is called Cerruti’s viscoelastic problem. This 

paper will concentrate on the formulation of stress distribution in the material in 

Cerruti’s viscoelastic problem. The method used by Talybly (2010) will be 

adopted in our formulation. The symmetrical property in Boussinesq’s problem 

allowed for the usage of cylindrical coordinates, which greatly reduced the 

formulation complicity. In Cerruti’s problem, due to the asymmetry resulting from 

the tangential force, only Cartesian coordinates could be used. This makes our 

formulation much more complicated.  

Furthermore, using the solution to Boussinesq’s viscoelastic problem by 

Talybly (2010) and that to Cerruti’s viscoelastic problem formulated in this paper, 

a solution to the problem in viscoelastic materials with both normal and tangential 

point-forces can be obtained. This generalized solution can be used in many 

further problems; for example, the food slicing cut problems formulated by Zhou 
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and McMurray (2011). The remainder of this paper is as follows: Cerruti’s 

viscoelastic problem is explained in Section 2 and the solution to this problem is 

derived in Section 3. The solution to Boussinesq-Cerruti’s viscoelastic problem is 

shown in Section 4. The verification of elastic-viscoelastic corresponding 

principle is shown in Section 5. The conclusions are drawn in Section 6. 

 

 

2  Statement of Viscoelastic Cerruti’s Problem 

2.1 Elastic Cerruti’s Problem 

In Cerruti’s elastic problem, a reference frame O-xyz is defined on the 

half-space as shown in Figure 1, where the boundary of the half-space is at z = 0, a 

tangential concentrated force Px, which could be a function of time, is applied at 

the origin along the x-axis, and the positive z-axis points towards the interior of 

the half-space. The solution to this problem for elastic materials was given by 

Cerruti in 1882 by the use of singularities from potential theory and the results 

were also presented by Love (1927). The displacement distributions at point (x, y, 

z) inside the half-space body is shown in (1) and the stress distribution can then be 

obtained by using the kinematic equations and constitutive equations for elastic 

materials: 
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 (1)  

where ue, ve and we denote the displacements in the positive x-, y-, and z-axis 

directions in the elastic case,

 

2 2 2R x y z   , Px is the external tangential force, 
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G is the elastic shear modulus and,   is the Poisson’s ratio. 

 

 

 

Figure 1:  Model of Cerruti’s problem 

 

The stresses at point (x, y, z) satisfy the boundary conditions shown in (2) for 

Cerruti’s problem: 
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 (2)  

where the three equations in left column represent  0xF , ,0 yF  and 

,0 zF  respectively, and the three equations in right column 

represent  0xM , ,0 yM  and ,0 zM  respectively.   
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2.2 Cerruti’s Viscoelastic Problem 

In our derivation, the viscoelastic effect is taken into consideration based on 

the original Cerruti’s elastic problem. The difference between elastic and 

viscoelastic problems lies in the constitutive equations.  In an elastic material, the 

relationship between stress and strain can be described by Hooke’s Law. However, 

in a viscoelastic problem, the material will show elastic behaviors, like solids, and 

also show viscous behaviors, like fluids. This changes the relationship between 

stress and strain. During the calculation of the stress, instead of multiplying strain 

with material properties, such as Young’s Modulus and Poisson’s ratio, the 

convolutions of strain with relaxation functions are used. These relationships are 

shown in (2): 

       
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 (3)  

where G1 and G2 are the deviatoric and volumetric relaxation functions, 

respectively, and 
3

zyx 



 is the mean strain.  

Therefore, we state Cerruti’s viscoelastic problem as follows: finding out the 

solutions to the stress distribution of a half-space body under a concentrated 

tangential force applied to the surface, with boundary conditions (2) and 

stress-strain relationships (3) satisfied. 
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3 Solutions to Cerruti’s Viscoelastic Problem 

3.1 Displacements 

For the linear viscoelastic case, by applying the elastic-viscoelastic 

correspondence principle and replacing 
G

Px  and 
G

Px  with  t  and  t ,  (4) 

can be obtained from (1): 

 
 
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 (4)  

where u, v and w denote the displacements in the positive direction of the x-, y-, 

and z-axis in the viscoelastic case and:  
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In the following, all the derivations will be conducted with the terms of    

and   carried out individually. 

 

 

3.2 Normal Strains 

The normal strains are obtained via the derivative of displacements with 

coordinates. The obtained normal strains are shown in (5): 
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Thus the mean strain is: 
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3.3 Shear Strains 

The shear strains yz , ,xz and xy  can be obtained as: 
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1 11
2

2 22

1 1 1 1
 = 2

2 4 2 2

1 1 1
2

2 2 2

yz

xz

xy

v w v wv w
z y z yz y

u w u wu w

z y z y z y

u v uu v

z y y x

   

   

  







                                                                                        

 
 
t

t

v

y x





 
 
 
   
   
   
 

       

 (6)   

where: 

       

5

1 3
;

2

1
0.         

2

v w xyz

z y R

v w

z y

 

 

   
       


        

 

       

2

5

1 3
;

2

1
0.         

2

u w x z

z x R

u w

z x

 

 

   
       


        

 2 2 2

2 3 2 2 3 5

2 2

2 3 2 2 3

1 2 3
;

2 ( ) ( ) ( )

1 2
.               

2 ( ) ( ) ( )

u v y x y x y x y

y x R R z R R z R R z R

u v y x y x y

y x R R z R R z R R z

 

 

   
             


             

 

 

Noted is that the coefficients of  t  in yz  and xz  are zero, then (6) can 

be rewritten as: 

 
 

2

5

5

3
0

1 3
 = 0

4

1 1

2 2

yz

xz

xy

x z

R
txyz
tR

u v u v

y x y x
   









 
 
  
         

            
             

 (7)   

 



60   Stress Distributions Due to a Concentrated Force on Viscoelastic Half-Space  

3.4 Stresses 

Based on the strains shown in (5) and (7), the stresses can be obtained from 

the viscoelastic constitutive equations shown in (3) (Zhang 1994, p. 63) as: 
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yz xy

xz xz

xy xy

G d t

xz x
G d t

R R

x x
G d t

R R

xyz
G d G d t

R

x z
G d G d t

R

y x y x y x y
G d

R R z R R z R R z R









  


  


 




 
    

 
    
 

      
 
 

     
 

      
  

 

 

15

2 2

12 3 2 2 3

1 2
                          .

2 ( ) ( ) ( )

G d t

y x y x y
G d t

R R z R R z R R z








































  

  
 

            

 

(8)   
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3.5 Boundary Conditions 

Now let’s consider the boundary conditions (2) for Cerruti’s viscoelastic 

problem. First, we evaluate all left terms in (2). Since the convolution will not take 

part in the integral of coordinates, we get: 

         
2

1 15

1 3 1

4 2zx x x x

x z
dxdy P t G d t dxdy P t G d t P t

R
  



   

 

 
        

 
     (9)   

Equation (9) is obtained via the direct integration using the left-hand side of 

the first equation in (3). It represents the resultant force in the x direction on the 

O-x-y plane. It is worthy to mention that the integrals of the left-hand side of the 

other five equations in (3) give the value of zero since they are all odd functions of 

x and the integrations are over   ,x . By assigning (9) to be zero based on 

(3), we get: 

   1 2 xG d t P t   (10)   

 

 

3.6 Equilibrium Equation 

Substituting (8) into
 
the first equilibrium equation 

0,xyx xzE
x y z

  
   

  
 

yields: 

    

 

 

23

13

13

1 2
2

4 3

1 2 1 1
      

4 3 2 2

1 2 1
      0,

2 3 2

x
E G d t t

x R

u u v u wx
G d t

x x R y y x z z x

u u vx
G t

x x R y y x

    

  

 








        
            

                         
       

                 
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where the coefficients to dG 1 and  tG 1 are: 

3

3

3

3

2 1 1

3 2 2

1 1 2
     

2 2 3

2
    ;

3

2 1

3 2

  

u u v u wx

x x R y y x z z x

u u v u w x

x x y y x z z x x R

x

x R

u u vx

x x R y y x

    

    

  

           
                     
            

                       





      
            

3 3 3

3

1 2 2
 

2 3 3

    .
3

u u v x x x

x x y y x x R x R x R

x

x R

  

















                             
 

 

 

 

Thus there is: 

         2 13 3

1 2 1 2
2 0.

4 3 4 3

x x
E G d t t G d t t

x R x R
   

 
                  

 

By eliminating the same coefficients containing the coordinates, there is: 

         2 12 0.G d t t G d t t          (11)   

The second equilibrium equation 0














zyx
yzyxy 

will yield the same 

equation relationship as shown in (10). The third equilibrium equation 

0yzxz z

x y z

  
  

  
 has already been satisfied. 

 

 

3.7 Solution to Cerruti’s Viscoelastic Problem 

 t  and  t  are linearly independent in Equations (10) and (11). Thus, 
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 t  and  t  could be uniquely solved using the Volterra integral equations of 

the second kind (Zhang 1994, p.150-161). It is also interesting to mention that 

although the ways to apply external force are different, the determining equations 

(10) and (11) in Cerruti’s viscoelastic problem are the same as those given by 

Boussinesq’s viscoelastic problem.  

Given the initial condition Px(0) = 0, all stress and strain components are zero 

at t = 0 and   00  ,   00  , the solution to  t  can be obtained as follow: 

         
1 0

2

0

t

x xt P t t P d
G

   
 

    
 

  

where  t  is a resolvent of the kernel    
 1

1

1
.

0

dG t
L t

G dt
    

Noted is that the detailed derivations are not included in this part for the 

purpose of concision since the detailed derivations and the proof of the uniqueness 

can be found in the paper by Talybly (2010). 

Manipulating equations (10) and (11), there is: 

        1 22 2 6 xG G d t t P t      (12)   

Thus, similar to the solution to  t , the solution to  t  can be obtained 

as: 

             
1 2 0

1 3

2 0 2 0

t

x xt t P t U t P d
G G

    
 

    
  

  

where  tU  is a resolvent of the function: 

          1 2
1 2

1
2 .

0 2 0

d
M t G t G t

G G dt
  


 

 tU  could be written as a series composed of iterated kernels: 

   1
0

n
n

U t U t





  
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where: 

         1 1 1

0

, 1, 2,3...;
t

n nU t U t U d n U t M t        

Taking advantage of (10) and (11), the term of G2 can be eliminated and the 

stress distributions (11) can be rewritten as follows: 

      

      

 

 

3 3 3

12 3 2 2 3 3 5

2 2 2

12 3 2 2 3 3 5

2

5

5

2

1 3 2 3
 ;

2 ( ) ( ) ( )

1 2 3
 ;

2 ( ) ( ) ( )

3
 ;

2
3

;
2

3

2

x x x

y x x

z x

yz x

xz

x x x x x
P t G d t P t

R R z R R z R R z R R

x xy xy x xy
P t G d t P t

R R z R R z R R z R R

xz
P t

R
xyz

P t
R

x z

R

 


 











  
             

  
             





  

      

5

2 2 2

12 3 2 2 3 5

;

1 2 3
.

2 ( ) ( ) ( )

x

xy x x

P t

y x y x y x y
P t G d t P t

R R z R R z R R z R
 




















  
              

 (13)   

Comparing equations (13) with those of elastic Cerruti’s solution (Johnson, 

1985 p.69-70), we found that the term Px(t)-G1*dψ in the viscoelastic problem 

plays the same role as the term (1-2μ)P in the elastic problem. 

 

 

4  Solution to Generalized Viscoelastic Problem  

We now consider Boussinesq-Cerruti viscoelastic problem, in which two 

tangential forces, P1(t) and P2(t), along x- and y- axis respectively and one normal 

force, P3(t), along z-axis, are applied at the origin. The displacement and stress 

distributions are obtained using the superposition of the displacement and stress 

distributions by P1(t), P2(t), and P3(t). The stress and displacement distributions 

for the problem when only one tangential force P1(t) = Px(t) along x-axis has been 
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discussed in previous discussions. For disambiguation, we rewrite the solution 

with the proper superscript (i), (i = 1, 2 or 3), to denote the applied forces. 

Therefore we have: 

           1 1 1 1 1 1,  ,  ,  ,  ,  .x x y y z z yz yz xz xz xy xy                  (14)   

where the expressions of the right hand side are the same as in (13), only with Px(t) 

replaced by P1(t). 

When there is a single tangential force P2(t) applied on the O-x-y plane at 

point O along y-axis, the stress distributions are obtained through the calculation 

of the frame rotation. In this method, as shown in Figure 2, we first rotate the 

frames around z-axis by 90 and denote the new coordinate system as O-x’y’z’.  

 

 

Figure 2:  Model for coordinate’s transformation 

 

The corresponding Jacob matrix is shown as follow: 

cos(90 ) sin(90 ) 0 0 1 0

sin(90 ) cos(90 ) 0 1 0 0  

0 0 1 0 0 1

R

      
         
      
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The coordinates are transformed as: 

' ' '

' '  and ' ,

' ' '

x x y x y

y R y x y x

z z z z z

         
                     
                  

 (15)   

The corresponding stress tensors are transformed as: 

' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' ' '

' ' ' ' ' ' ' ' ' '

.
x xy xz x x y x z y y x y z

T
yx y yz y x y y z x y x x z

zx zy z z x z y z z y z x z

R R

        
        
        

      
     

       
          

 (16)   

Correspondingly, with the same resolvent of kernels as in Section 3.7, the 

determining functions can be rewritten as: 

           

                 

1 0

1 2 0

2
, 1,2,3,

0

1 3
, 1,2,3.

2 0 2 0

t
i

i i

t
i i

i i

t P t t P d i
G

t t P t U t P d i
G G

   

    

 
     

 
 

     
  




 

As shown in Figure 2, in coordinates O-x’y’z’, P2(t) is applied at the origin 

along x’-axis. Based on the solution we obtained in (13), the stresses in the 

O-x’y’z’ system can be obtained as: 

          

          

 

3 3 3
2 2
' 2 1 22 3 2 2 3 3 5

2 2 2
2 2
' 2 1 22 3 2 2 3 3 5

2
'

1 3 ' ' 2 ' ' 3 '
 ;

2 '( ' ') ' ( ' ') ' ( ' ') ' '

1 ' ' ' 2 ' ' ' 3 ' '
 ;

2 '( ' ') ' ( ' ') ' ( ' ') ' '

 

x

y

z

x x x x x
P t G d t P t

R R z R R z R R z R R

x x y x y x x y
P t G d t P t

R R z R R z R R z R R

 


 




  
             

  
             

 

   

   

          

2

25

2
' ' 25

2
2
' ' 25

2 2 2
2 2
' ' 2 1 22 3 2 2 3 5

3 ' '
;

2 '
3 ' ' '

;
2 '

3 ' '
;

2 '

1 ' ' ' 2 ' ' 3 ' '
.

2 '( ' ') ' ( ' ') ' ( ' ') '

y z

x z

x y

x z
P t

R
x y z

P t
R

x z
P t

R

y x y x y x y
P t G d t P t

R R z R R z R R z R









 













 

 


  
              

 (17)  
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where:  2 2 2' ' ' ' .R x y z    

Using (15) and (16) in O-xyz system, the stress tensors (17) can be obtained 

as: 

          

          

   

   

 

2 2 2
2 2

2 1 22 3 2 2 3 3 5

3 3 3
2 2

2 1 22 3 2 2 3 3 5

2
2

25

2
2

25

2

1 2 3
;

2 ( ) ( ) ( )

1 3 2 3
 ;

2 ( ) ( ) ( )

3
 ;

2

3
;

2
3

x

y

z

yz

xz

y x y x y y x y
P t G d t P t

R R z R R z R R z R R

y y y y y
P t G d t P t

R R z R R z R R z R R

yz
P t

R

y z
P t

R

 


 










  
             

  
             





  

          

25

2 2 2
2 2

2 1 22 3 2 2 3 5

;
2
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(18)  

When a single normal force, P3(t), is applied at point O and along the 

positive z-axis, the stress distributions are shown in (19). Noted is that this 

expression has been given by Talybly (2010). 
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 (19)  

Based on (14), (18) and (19), we can provide the solution of the stress 
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distributions to Boussinesq-Cerruti viscoelastic problem as follows: 
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Similarly, the displacement distributions to Boussinesq-Cerruti viscoelastic 

problem  ,    wu v and  as follows: 
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where the components are:  
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The results will be used in our future research about the formulation of the 

cuttings for linear viscoelastic materials, in which a distributive force is used 

instead of concentrated force. We could obtain the stress responses  trij ,


 
to a 

certain distributive force by considering the point- force P


as a function of   

and  , replacing x with x , y with ,y and R with 

    ,222 zyxR    and then integrating the corresponding stress or 

displacement components for   and   in x-y plane. 

 

 

5  Discussion on Correspondence Principle 

The correspondence principle (Lakes, 1998) states that if a solution to a 

linear elasticity problem is known, the solution to the corresponding problem for a 

linearly viscoelastic material can be obtained by replacing each quantity which 

can depend on time by its Laplace transform multiplied by the transform variable 

(p or s), and then by transforming back to the time domain. 

A restriction is that the boundaries under prescribed displacements or forces 
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may not vary with time, though the stresses and displacements are functions of 

time. An exceptional case exists when the boundary condition can be separated 

into spatial and time components. For example, in the viscoelastic Cerruti’s 

problem, the tangential force can be expressed as: 

      0, , ,P x y t P x y f t  

where 

   0
0

   if x=0 and y=0
,

0      else

P
P x y


 


 

In those cases, Laplace transform simply transform the time component into 

frequency domain while keeping the spatial profile of the prescribed loads and 

displacements. Therefore, the solution to viscoelastic problem still has the same 

profile as the solution to elastic problem, but it is multiplied by a time–dependent 

component that describes how the profile changes with time. 

In this paper, the boundary conditions for viscoelastic Cerruti’s problem 

satisfy the above requirement, and therefore theoretically, correspondence 

principle can be used to directly obtain the viscoelastic solution from the elastic 

solution. The solution to elastic Cerruti’s problem is written in (20). 
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 (20)  
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Applying correspondence principle, equations (20) in Laplace domain are: 
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 (21)  

where the superscript ‘ * ’ represents the function in frequency domain.  

From (21), we notice that only the first two and the last equations have the 

multiplication between two time-dependent functions, the external force and the 

time-dependent Poison’s ratio. Considering a simple case where the Poison’s ratio 

is held constant, equation (21) can be easily transformed back into time-domain. 

In this case, the only difference between the viscoelastic problem and elastic 

problem is whether the external force is a function of time. 

In a general case, the Poison’s ratio cannot be treated as a constant for a 

viscoelastic material (J. Kim, H.S. Lee and N.P. Kim, 2010), for there are two 

independent time-dependent material properties that characterize the viscoelastic 

material. In these cases, the direct multiplication of the external force and the 

time-dependent Poison’s ratio in frequency domain becomes a convolution in 

time-domain. Taking the first equation in (21) as an example, after the inverse 

Laplace transform, we have:   
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 (22) 
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Comparing (22) and the first equation in (13), we have: 

     
       

1

* * * *
1

2 * ,          in time-domain, or
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 
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


 (23) 

If the above relationship holds, then the solution from correspondence 

principle will be the same as the solution from the method used in this paper. To 

verify this equation, firstly we need to obtain the expression of  t  from the 

two determining conditions (10) and (12). We rewrite them in (24): 
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
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Taking Laplace transform to (24), we have: 
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 (25) 

Solving (25) for *s  and multiplying by  *
1G s  , we have: 

   
     
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* * *
2 1* *

1 * *
1 2
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
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
 (26) 

Comparing (23) with (26), we should have the following relationship: 

     
   

* *
2 1*

* *
1 22

G s G s
s

G s G s






 (27) 

Relation (27) gives the expression of time-dependent Poison’s ratio by shear 

and bulk relaxations  1G t and  2G t  for a homogenous and isotropic 

viscoelastic material. 

In another hand, for a homogeneous and isotropic viscoelastic material, the 

relationships among the relaxation modulus E(t), shear modulus G(t) and bulk 

modulus K(t) can be expressed as (28) (J. Kim, H.S. Lee and N.P. Kim, 2010):  
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 (28) 

Eliminating  *E s  in (28), we have: 
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K s G s
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Comparing (27) and (29), we have two expressions of the time-dependent 

Poison’s ratio in Laplace domain. Notice different material functions are used, a 

translation (29) is necessary (Christensen, R. M. 1971): 

   

   

* *
1

* *
2

1

2
1

3

G s G s

K s G s

 

 


 (30) 

Bringing relation (30) into (29), we can verify that equation sets (27) and (29) 

are actually the same. Therefore, the results from the method in this paper are 

verified by the elastic-viscoelastic correspondence principle. 

 

 

6  Conclusions 

Firstly, the solution to the stress and displacement distributions for Cerruti’s 

viscoelastic problem was presented in this paper. Based on the elastic-viscoelastic 

corresponding principle, the solution to the displacements of Cerruti’s elastic 

problem was used as the displacement solution for Cerruti’s viscoelastic problem. 

Based on the equilibrium equations and boundary conditions of a viscoelastic 

system, we obtained the solution of the two time-dependent determining functions 

via the Volterra integral equations of the second kind. Furthermore, Cerruti’s 

viscoelastic problem with a tangential force pointing to the y-axis was solved 
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based on a frame rotation method. Finally, by combining the solutions to 

Boussinesq’s viscoelastic problem, we get the results for the generalized case, 

where an arbitrary force with three non-zero components in the x, y, and z 

directions, is applied. These results could be further used to solve half-space 

viscoelastic problem under a distributive force by taking the integral over the area 

where the distributive force is applied.  
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