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Abstract    

The aim of this paper is to present and study a new type of monads, named P-

monad, which plays an important role in our approach to p-closed spaces, pre-

Urysohn spaces ...etc. Also, we investigated some new properties and 

relationships between this monad with other types of monads by using some 

concepts of nonstandard analysis.  
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1  Introduction 

            The concept of point monads, was first introduced by Robinson, A. [8], 

and axiomatazed by Nelson, E. [7], they has been proved to be a useful tool for 

characterizing and studying some topological concepts. In 1976 Herrmann, R.A. 

[5] introduced two new types of monads, namely the  and α monads in general 

topology, which are capable of similarly characterizing the various topological 

concepts associated with quasi-H-closed, nearly compact, Urysohn spaces,…..etc.. 

In 1982, Mashhour, A.S. & El-Deeb, S.N.[6], defined a new version of nearly 

open sets which is significant notion to the field of general topology called 

preopen sets . This work is another attempt of the authors in applying nonstandard 

analysis in general topology, the previous one was entitled “βθ-monads in general 

topology” given in [11]. In this paper, we use the notion of preopen sets in 

topological spaces to introduce and study a new type of monads named P-monad.        

 

 

2  Basic Backgrounds in General Topology 

     Throughout this work, (X,) or (simply X) denotes a standard topological space 

on which no separation axioms are assumed unless explicitly stated, we recall the 

following definitions, notational conventions and characterizations.  

The closure (resp., Interior) of a subset A of a space X is denoted by ClA (resp., 

IntA). 

 A subset A of a space X is said to be 

 preopen set [6] if and only if  AIntClA. 

 preclosed closed set if and only if  X\A is preopen set. 

 regular closed set if and only if  X\A is regular closed. 

The intersection of all pre-closed (pre--closed) sets containing A is called pre-

closure (pre--closure) and denoted by pClA( pClA). 
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The union of all preopen sets contained in A is called pre-interior and denoted by 

pIntA. 

A subset A of a space X is said to be 

 pre--open [2] if for each xA, there is a preopen subset G of X such that 

xG pClGA. 

 pre-regular p- open set [2] if and only if  A= pIntpClA. 
 

The family of all pre-open sets of a space X is denoted by PO(X). 

The family of all pre-closed (pre-regular p- closed)sets of a space X is denoted by 

PC(X)(PRPC(X)). 

 

Definition 2.1 [3] A space X is called submaximal if each dense subset of X is 

open set. 

 

Definition 2.2 [2] A point xX is said to be -accumulation (resp.,pre- 

accumulation) point of a subset A of a space X if ClGA≠ (resp., pClGA≠ 

for every G (resp., GPO(X)).  

 

Definition 2.3 [2] 

 A space X is said to be p-closed space if every pre-open cover of X has a finite 

subfamily whose pre-closure covers X.   

 

Definition 2.4 [3] 

 A space X is said to be pre-urysohn if and only if for each x,yX, with x≠y, there 

exists G,HPO(X), such that xG, yH, and  pClGpClH=. 

 

Definition 2.5 [2] A space X is said to be pre-T2  if and only if for each distinct 

points x,yX,  there exists G,HPO(X), such that xG, yH, and GH=. 
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Definition 2.6 [2] A space X is said to be locally indiscrete if every open subset of 

X is closed set.  

 

Theorem 2.7 [2] Let G be a subset of topological space (X,τ). Then                                   

i) pClG=GClIntG,    

ii) pClpIntpClG=pClG,   

iii) pClAClA. 

 

Theorem 2.8 [9] Let A  and B be any two subsets of the space X. If A B   , 

then   Int Clp A p B   . 

 

 

3  Basic Backgrounds in Nonstandard Analysis 

            In this section, we use Nelson's nonstandard analysis construction, based 

on a theory called internal set theory IST. 

Recall that for a topological space (X,), the monad µ(p), α-monad µα(p), and -

monad µ(p) at a point p are defined as follows[5] 

µ(p)= {*G; pG}, α-monad= {*(IntClG); pG}, and it denoted by 

µα(p). 

-monad = {*ClG; pG}. and it denoted by µ(p).        

 

Definition 3.1 [1] A relation r is called concurrent in a standard set U, if rU, and 

if a1 , a2 ,…,andom(r),then there is an element b such that (ai ,b) r, for 

i=1,2,…,n 

 

Theorem 3.2 (Concurrence relation) [1] Let r be a standard concurrent relation in 

a standard set U, then there is an element bU, such that (a,b) r, for each 

adom( r). 
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4 P - Monads 

Definition 4.1 Let (X,) be a standard topological space. Then the P- monad at 

the point aX is defined as follows P-monad= { ; ( )}A A GP a  , where 

( ) { Cl ; ( )}GP a p A A GP a  , ( ) { ; O( )}GP a A a AP X  , and it is denoted by 

µp(a).    

    
 

Proposition 4.2 Let (X,) be a standard topological space, and aX. Then  

µp(a)= {pClA ; AGP(a) }. 

Proof. Follows directly from Definition 4.1.                                                            

 

Proposition 4.3 Let (X,) be a standard topological space, then for each aX, the 

relation µp(a)  µ(a) is true. 

Proof.  Follows from Theorem 2.7(iii) and definitions of µ and µp .                     

 

Remark 4.4 The equality of the relation given in Proposition 4.3 is not true in 

general, such as shown in the following example. 

 

Example 4.5 Let X={a,b,c}, and  be indiscrete space . Then the family of all 

preopen sets are PO(X)=P(X) , then, µ(a)=X, and ={{a},{a,b},{a,c}, X},     

µp(a)= {a}. 

 

Remark 4.6 Let (X,) be a standard topological space, then 

i)     For the trivial topological space µp(x)={x}, for each standard xX. 

ii)   For the discrete topological space µp(x)={x}, for each standard xX. 

iii)  For the locally indiscrete space, µp(x)={x}, for each standard xX. 
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Proposition 4.7 If X is a submaximal , then µ(a) = µp(a), for each aX. 

Proof.  Follows from Theorem 2.1 and Proposition 4.3.                                          

 

Proposition 4.8 Let (X,) be a standard topological space, and aX. If every 

preopen set is regular closed set, then µp(a)= {G;  G GP(a) }. 

Proof.  By Theorem 2.7(i) pClG=GClIntG, since G, then G is regular closed 

set. Therefore pClG=G. Using Proposition 4.2, we obtain  

µp(a) = {G; G GP(a)}.                                                                                      

 

Theorem 4.9 Let (X,) be a standard topological space. Then the following 

statements are valid 

i) For each aX, a µp(a). 

ii) For each aX, b µp(a) implies µp(b)  µp(a). 

Proof.   i) Is obvious. 

ii) Let x µp(b). Since b µp(a), then for each standard GPO(X) if a pClG, 

then  b pClG, and if b pClG, then   

x pClG                                                                                                                 (1) 

By transfer axiom, for each GPO(X), and hence we get that the equation (1) holds 

true. Hence µp(b)  µp(a).                                                                                      

 

Proposition 4.10 Let (X,) be a standard topological space, and aX. Then 

µp(a)= {G;  GPRPC(X,a)}. 

Proof.  Follows directly from Theorem 2.7(ii) and Proposition 4.2.                        

 

Theorem 4.11 Let (X,) be a standard topological space, and let aX. Then there 

exists a standard pre-open H such that  pClH  µp(a). 

Proof. Let r(pClG, pClH) be a binary relation defined by r(pClG, pClH) 

equivalently pClH  pClG. Then  r(pClG, pClH) is concurrent relation. For this, 
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 if G1 , G2,…, Gn  PO(X), such that pClH= pClGi for i=1,2,…,n, then r(pClG, 

pClH) holds true. 

Now, by Theorem 3.2 we get that  pClH  pClG for each GPO(X). Therefore 

pClH  µp(a).                                                                                                             

                       

Corollary 4.12. 

 Let (X,) be a standard topological space, and let aX. Then there exists a 

standard pre-regular-p- open set H such that  H  µp(a). 

Proof.  Follows directly from Theorem 4.11 and Theorem 2.7(ii).                          

 

Theorem 4.13 Let A be a standard subset of a standard topological space X. Then 

A is pre--open set if and only if µp(a) A, for each aA. 

Proof. Assume that A is pre--open set, and let aA. Then there exists a standard 

pre-open G such that aG pClG A,  

by transfer axiom pClG A for each G,A and aGPO(X).  

Now,  {pClG ; GGP(a) } pClG A, by Proposition 4.2 we obtain that  µp(a) 

A. 

Conversely, suppose that µp(a) A, then by using  Theorem 4.11, for each aA 

that there exists a standard pre-open set G such that  pClG  µp(a).  

Thus aG pClGA, for each standard a.  Therefore by transfer axiom we have 

aG pClGA, for each a. Hence A is pre--open set.                                          

 

Proposition 4.14 Let S be a standard non-empty subset of a standard topological 

space (X,). Then S contains the pre-closure of a non-empty pre-open set if and 

only if   µp(a) S, for some aS. 

Proof. Assume that S contains the pre-closure of a non-empty pre-open set G. 

Then by Proposition 4.2 we get  µp(a)  pClG, for each G ( )GP a  . Therefore 

µp(a) S for some aS.                                                                                           
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Conversely, assume that µp(a) S, for some aS.  Then by Theorem 4.11, there 

exists a standard pre-open set H such that  pClH  µp(a). By transfer axiom this 

hold for each H ( )GP a . Hence S contain the pre-closure of a non-empty pre-

open set H.                                                                                                                   

 

Theorem 4.15 Let A be a standard subset of a standard topological space X. Then 

A is pre--closed set if and only if   µp(a)  A=, for each aXA. 

Proof. Assume that A is pre--closed set.  

Then by Theorem 4.13 we have µp(a) X/A for each aX\A, hence  

µp(a)  A=.  

Conversely, assume that µp(a)  A=. Then µp(a) X\A for each aX\A. Hence 

by Theorem 4.13 we get that A is pre--closed set.                                                    

     

Corollary 4.16 Let A be a standard subset of a space X. Then A is pre--closed 

set if and only if   µp(a)  A≠ implies aA. 

Proof. It is similar to the proof of Theorem 4.15.                                                       

 

Theorem 4.17 Let (X,) be a standard topological space, and µp(p) be the  p-

monad at the point pX. If µp(p) B, for some internal subset B of X. Then there 

exists a standard pre-open set G such that  µp(p)  pClGB. 

Proof. Suppose that pClG-B≠, for all GPO(X), pG.  Then the family  

{pClG-B} has a finite intersection property.  Since  

pClG1-B pClG2-B= (pClG1 pClG2)-B,  it follows that µp(p)-B≠ which is a 

contradiction.                                                                                                               

     

Theorem 4.18 A point x is pre--accumulation point of a subset A of a space X, if 

and only if  µp(x) contains a point yA difference from x. 
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Proof.  If x is a pre--accumulation point of a subset A of a space X , then for each 

GPO(X) which contains x, pClGA≠, this means that there is y pClGA , 

with y≠x, and each pClG contains a point y≠x. By using Theorem 4.11 we get  y 

µp(x)A, with y≠x. 

Conversely, assume that µp(x) contains a point y≠x in A. Then for a fixed 

GPO(X), pClG contains a point y≠x. Therefore there is y pClGA, and by 

transfer axiom, there is y in standard pClGA. Hence pClG  A≠,  

Therefore x is a pre--accumulation point of a subset A of a space X.                      

 

Theorem 4.19 A point x is -accumulation point of a subset A of a space X, if and 

only if  µ(x) contains a point yA difference from x. 

Proof. It is prove is similar to the proof of Theorem 4.18.                                          

 

Theorem 4.20 Every pre--accumulation point of a subset A of a standard space 

X is -accumulation point. 

Proof.  Let xX be a standard pre--accumulation point of a subset A of a 

standard topological space (X,). Then by Theorem 4.18 we get µp(x)  A≠,  

and then by using Proposition 4.3 we obtain µ(x)  A≠. Thus by Theorem 4.19, 

x is a -accumulation point.                                                                                         

 

Theorem 4.21 Let A be a standard subset of a space X. Then  

pCl A={ aX;  µp(a)  A≠ }. 

Proof. Let a pCl A. Then aF, for each pre--closed superset of A. If  

µp(a)  A=, then µp(a) X\A, and by Theorem 4.7, there exists a standard 

preopen set G such that µp(a)  pClG X\A. Therefore pClG  A= , which 

implies that apCl A. 
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Conversely, suppose that aX and µp(a)  A≠.  We have to show that aF, for 

all pre--closed superset of A.  Now, if aF, then by Theorem 4.13 we get µp(a) 

X/F.  Therefore  µp(a)  A=, which is a contradiction.                                     

 

Theorem 4.22 A standard topological space X is p-closed space if and only if   

X= { µp(a); aX}. 

Proof. Assume that X is p-closed space, and let qX, such that qµp(x). Then for 

each standard xX, there exists a pre-open set Gx such that  qpCl Gx,  

thus ={ Gx, xX , qpCl Gx , Gx  PO(X)} is a pre -open cover of X .  

Since X is p-closed space, then there exists a finite subfamily {G1,G2,…,Gn} such 

that  X= { pCl Gi , for i=1,2,…,n}.  

This means that, for each standard xX, implies that xpCl Gi for some i. Thus by 

transfer axioms for each xX, we have xpcl Gi ,for some i, which is a 

contradiction. 

Conversely, suppose that X is not p-closed space, and let  be a pre-open cover of 

X such that it has no finite subfamily whose pre-closure covers X. Let 

{G1,G2,…,Gn} PO(X) , define a relation r such that r(pClG,x) iff xpCl G. Then 

r is concurrent relation. Then by Theorem 3.2 we get that there is yX, with y 

pCl G. 

Now, if xX such that  x pCl G, then ypClG, for each standard G  PO(X), 

therefore yµp(x), which is a contradiction.                                                           

 

Theorem 4.23 A standard topological space X is pre-Urysohn if and only if  

µp(x)  µp(y)=, for each x,yX, with x≠y. 

Proof. Assume that X is pre-Urysohn , and let x,yX , with x≠y. Then there exists  

G,H PO(X), and xG, yH, with pClG  pClH=. Now, by Proposition 4.2 we 

have µp(x) pClG  and µp(y) pClH. Hence µp(x)  µp(y)=. Conversely, 

assume that the condition is valid,  
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Then by Proposition 4.3 for each x,yX, there exists D,EPO(X), such that 

xpClD µp(x), and ypClE µp(y). Therefore  pClD  pClE=. Hence X is 

pre-Urysohn space.                                                                                                   

               

Corollary 4.24  A standard topological space X is pre-Urysohn, p-closed space if 

and only if  {µp(a); aX} is a  partition of X. 

Proof. Follows from Theorem 4.22 and Theorem 4.23.                                           

 

Theorem 4.25 A standard space X is pre-T2 if and only if for each x,yX, 

whenever y µp(x) then  x=y. 

Proof. Assume that X is pre-T2 and there is x,yX, such that y µp(x) and x≠y.  

Then by Definition 2.5 there exists G,HPO(X), such that xG, yH, and G  

H=. By Theorem 2.8  pClG  pIntH=. Since HPO(X), then  

 pClG  H=, and µp(x)  pClG, which imply that y µp(x), which is a 

contradiction. 

Conversely, assume that the condition valid. Then there is A such that xA 

µp(x). If yA, then the hypothesis implies that x=y. So, if x,yX, such that x≠y, 

then yA. Therefore there exists GPO(X), such that xG but ypClG.  Hence X 

is pre-T2 space.                                                                                                             

        

Remark 4.26 The concepts of compactness and p-closedness are independent, as 

shown in the following example. 

 

Example 4.27 Let X=R be the set of real numbers, with the topology in which 

non-empty open sets are those subsets of X which contain the point 1. Then X is 

not compact space. 

 Since {{x,1}, xX } is an open cover of X, but has no finite sub cover in this 

space, every non-empty pre-open set must contain point 1. 
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 Hence X is the only pre-closed set containing any non-empty pre-open set. 

Therefore pClGi=X for any Gi PO(X), which implies that µp(a)=X for any aX, 

and { µp(a); aX}=X.                                                                                           
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