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Abstract

Estimating causal effect of a treatment on an outcome is often com-

plicated. This is because the treatment effect may be deviated by the

confounding variables. These variables affect treatment and outcome si-

multaneously, and the causal effect estimation thus depends upon these

variables. Several methods have been proposed to reduce the attribute

bias of confounding effect. In this article, we compare the traditional

method of Propensity score through Stratification; and recent method

of Propensity score through Bayesian in observational studies. Compar-

ison is constructed on Mont Carlo simulation of the hypothetical binary

treatment.
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1 Introduction

In many fields of researchers are faced with the problem of estimating

causal effects from non-experimental data. This interest of using study in fact

increases gradually in recent decades [1, 2, 3]. This might be because the lack

of time or consuming money to perform Randomized study [3, 4, 5]. One of the

ubiquitous issues in observation studies is the impact of confounding variables

[6, 7]. The simultaneous effect of these variables on treatment and outcome

make causal effect estimation invalid. Propensity score is one method to decline

the effect of measured confounding variables when we confront with a binary

outcome in observational studies [7, 8]. This method allocates a value which is

called score to each person in a population. Then the causal effect is estimated

based on new population which is stratified through propensity scores [9]. Re-

cently, an alternative method is designed which combines propensity score with

Bayesian techniques [7, 8]. In this method, propensity score as a latent variable

is integrated from the posterior distribution for the treatment effect. Bayesian

propensity score adjustment fits regression models for treatment and outcome

simultaneously rather than one at a time. When propensity score is estimated,

Bayesian propensity score adjustment incorporates prior information about re-

lationship between outcome and propensity score within treatment groups [9,

10]. In contrast, standard analytic methods estimate propensity scores from

the marginal model for treatment given measured confounding variables [9,

11].

In this paper, we use Stratification and Bayesian propensity score adjust-

ment based on propensity score method to estimate the causal effect of a

treatment. In Section 2, we review the content of potential outcomes which

formalizes the notion of causal effect. In addition, the propensity score method

is surveyed in this Section. In Section 3 Bayesian propensity score adjustment

is explained. We report on extensive comparative simulations in Section 4.

Conclusion is summarized in Section 5.
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2 Strategy of Causal Effect Estimation

2.1 Potential outcomes

Without loss of generality, we throughout consider X is a binary treatment

(X = 1 treated, X = 0 control); and C is a vector of measured covariates prior

to receipt of treatment (baseline) or, if measured post treatment, not affected

by either treatment. Each individual is assumed to have an associated random

vector (Y0;Y1), where Y0 and Y1 are the values for outcome that would be

observed if, possibly contrary to the fact of what actually happened, she/he

were to receive control or treatment, respectively. Consequently, Y0 and Y1 are

referred to as potential outcomes and may be viewed as inherent characteristics

of an individual. We can formalize the observed outcome Y which would be

observed under the exposure actually received, as follow;

Y = XY1 + (1−X)Y0.

Thus (Y,X,C) are our observed variables for each individual. It is impor-

tant to distinguish between the observed outcome Y and potential outcomes

Y0 and Y1. The latter are hypothetical and may never be observed simulta-

neously. However, they are a convenient construct allowing precise statement

of questions of interest, as we now describe. The distributions of Y0 and Y1

may be thought as representing the hypothetical distributions of outcome for

the population of individuals were all individuals receive control or treatment,

respectively. So the means of these distributions correspond to the mean out-

come if all individuals were to receive each treatment. Hence, a difference in

these means would be attributable to, or caused by, the treatments. Formally,

we would have

ψ = µ1 − µ0 = E(Y1)− E(Y0)

and we define no unmeasured confounding variable assumption [9, 10]

(Y1, Y0)⊥X|C (1)

where A⊥B|D means A is independent from B given D. This assumption

states if we can measure the confounding variables then potential outcomes

are independent from treatment. That means there are no more confounding

variables which affect on treatment causal effect.
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2.2 Propensity score

The propensity score e(C) = P (X = 1|C); 0 < e(C) < 1, is the probability

of treatment given the observed covariates, in which C⊥X|e(C). Therefore

individuals from either treatment group with the same propensity score are

balanced; in distribution of C regardless of treatment status.

If (1) holds, then (Y1, Y0)⊥X|e(C) [9], that is, treatment X is independent

from the potential outcomes for individuals whom sharing the same propensity

score. In practice, the propensity score is unlikely to be known, so it is common

to estimate it from observed data (Xi, Ci), i = 1, ..., n by assuming that e(C)

follows a parametric model; e.g., a logistic regression model [5, 6], e(C, β) ={
1 + exp(−CTβ)

}−1

, where β is a p × 1 vector parameter. Interaction and

higher-order terms may also be included. Here, β may be estimated by the

maximum likelihood (ML) estimator β̂, by solving the following expression [5,

6]
n∑

i=1

ψβ(Xi, Ci, β) =
n∑

i=1

Xi − e(Ci, β)

e(Ci, β)(1− e(Ci, β))
×

∂

∂β
e(Ci, β) = 0. (2)

We assume that the analyst is proficient at modeling e(C, β), so that it is

correctly specified.

2.3 Estimation of ψ based on stratification

The popular approach using stratification on estimated propensity scores

to estimate ψ involves the following steps [5]:

(i) Estimate β as in (2) and calculate estimated propensity scores êi =

e(Ci, β̂) for all i.

(ii) Form K strata according to the sample quantiles of the êi, where the

jth sample quantile q̂j , j = 1, ..., K, is such that the proportion of êi ≤ q̂j is

roughly j/k, q̂0 = 0 and q̂1 = 1.

(iii) Within each stratum, calculate the difference of sample means of the

Yi for each treatment.

(iv) Estimate ψ by a weighted sum of the differences of sample means

across strata, where weighting is by the proportion of observations falling in

each stratum.
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Defining Q̂j = [q̂j−1, q̂j]; and nj =
∑n

i=1
I(êi ∈ Q̂j) , the number of individ-

uals in stratum j; and n1j =
∑n

i=1
XiI(êi ∈ Q̂j) is the number of these who

are treated, the estimator using a weighted sum is

ψ̂S =
n∑

i=1

(
nj
n
)

{
n−1

1j

n∑

i=1

XiYiI(êi ∈ Q̂j)− (nj − n1j)
−1

n∑

i=1

(1−Xi)YiI(êi ∈ Q̂j)

}
(3)

As the weights nj/n ≈ k−1, they may be replaced by k−1 to yield an average

across strata.

3 Bayesian Propensity Score Adjustment

(BPSA)

Suppose that (Yi, Xi, Ci) for i = 1, ..., n are identically distributed observa-

tions drawn from A population with probability density function P (Y,X,C).

Based on the Bayesian propensity score analysis, we model the conditional

density P (Y,X|C) using a pair of logistic regression models [8]:

logit [p(Y = 1|X,C)] = ψX + ξT g {z(C, γ)} (4)

logit[p(X = 1|C)] = γTC (5)

where z(C, γ) is the propensity score.

Equation (5) models the probability of treatment, which depends on the

measured confounding variables via the regression coefficients γ = (γ0, ...., γp).

Equation (4) is a model for outcome and includes causal effect parameter ψ.

To ease modeling of regression intercept terms, we set the first component

of C equal to one, so C is a (p+1)×1 vector. Accordingly, equation (4) includes

the quantity Z(C, γ) as a covariate in a regression model for the outcome via

a linear predictor g {0}. We let g {a} =
∑l

j=0
ξjgj {a} where the quantities

gj {0} are natural cubic spline basis functions with l = 3 knots (q1, q2, q3) and

regression coefficients ξ = (ξ0, ξ1, ξ2, ξ3). The choice of l = 3 knots reflects

a tradeoff between smoothness and complexity. To go further, the following

assumptions should be satisfied;
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1. No unmeasured confounding variables;

2. Propensity score model correctly specified.

We assign the prior distributions for the model parameters ψ, γ, ξ as follows;

ψ ∼ N(0, σ2

ψ)

γ0, ..., γp ∼ N(0, σ2

γ)

ξ0, ..., ξ3 ∼ N(0, σ2

ξ )

where σ2

ψ = σ2

γ = σ2

ξ = {log(15)/2}2. The value for σ2

ψ states that the odds

ratio for the treatment effect is not overly large and lies between 1/15 and

15 with probability 0.95. The values for σ2

γ and σ2

ξ make similar modeling

assumptions about the prior magnitude for the association between Y and Z

given X, and also the association between C and X. The regression models

in equations (4) and (5) give a likelihood function for the data. Combining

the likelihood and prior distributions, we can sample from the posterior distri-

bution of the treatment effect ψ and nuisance parameters γ, ξ; using Markov

chain Monte Carlo.

Conceptually, the implementation involves two steps iterative procedures;

1. Impute the propensity score parameter,

2. Fit a complete data step to estimate the treatment effect ψ and ξ given

the propensity scores.

Successive iterations average over uncertainty in the propensity scores. The

approach has close connections to the EM algorithm and multiple imputations.

Before applying BPSA to the data, we first select the knots used in the spline

regression for the relationship between mortality and propensity score. To

choose the knots, we fit the logistic regression model given in equation (5)

via ML and compute the fitted values. We then apply BPSA to the data

by sampling from the posterior density P (ψ, ξ, γ|data). Note that here the

posterior expected propensity score is used

ẐBPSA
i = E [Z(Ci, γ)]γ|data =

∫
expit(γTCi)p(γ|data)

and compute from the posterior samples directly.
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4 Simulation Design

To investigate the efficiency of two explained method we perform a hy-

pothetical study through simulation. We consider the case where there are

four measured confounding variables. We simulate matrix C, where the each

columns of C are independent and identically distributed as N(0, 1). Note

that the first component of C is equal to one. To generate X we use logistic

regression model in equation (5). Also a binary outcome is generated from as

follows;

logit [P (Y = 1|X,C)] = ψX + ξTC

where ψ is equal to 1. The results are shown in Table 1. It should be noted

that exp(ψ̂) is reported in Table 1. By comparison the estimated value of

causal effect, we can figure out that Bayesian propensity score could result

in better estimation than the Stratification propensity score. To compare the

Table 1: Odds ratios for association between Y and X given C to compare

Bayesian and Stratification propensity score methods when ψ = 1

exp(ψ̂B) = 2.49 exp(ψ̂S) = 1.05

exp(ξ1) 1.80 exp(β1) 1.16

exp(ξ2) 2.68 exp(β2) 1.16

exp(ξ3) 2.94 exp(β3) 1.07

exp(ξ4) 5.75 exp(β4) 1.89

Bayesian propensity score and the Stratification propensity score, we choose;

exp(ψ) = 1, 1.5, 2, 2.5, 3, 3.5. We plot of ψ versus mean square error (MSE)

of both estimator [10, 11, 12]. In fact the mean squared error (MSE) of two

estimators is way to quantify the difference between values implied by an

estimator and the true values of the quantity being estimated. Whether an

estimator of a causal effect is consistent estimator of the causal effect of the

treatment on the outcome of interest [12, 13, 14].

The MSE of Bayesian and stratification propensity score method have the

same fluctuation when the exp(ψ̂) is over 5. Whereas the MSE of stratification

propensity score method tended to increase until exp(ψ̂) gain nearly 5.
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Figure 1: exp(ψ) versus the MSE of Bayesian propensity score method

5 Conclusion

The control of confounding is essential in many statistical problems, espe-

cially in those that attempt to estimate exposure effects. The objective of this

study was to compare two estimations based on Propensity score method. To

challenge of this issue, several methods of adjustment are available whether

confounders are measured or unmeasured. One of which is to adjusting effect

estimates for unmeasured confounding with validation data using propensity

score calibration [14, 15]. One case is to use secondary sample in addition to

the primary sample in which though having no direct information about the

treatment effect contains information about the confounding factors [16, 17].

Our case-study reveals that treatment is associated with all components covari-

ate C, and this association persists even after adjustment for four considered

measured confounders.

As the simulation shows, the Bayesian estimation of the causal effect can

present better estimate, whereas the Stratification propensity score method
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Figure 2: exp(ψ) versus the MSE of Stratification propensity score method

has large bias in comparison with the Bayesian propensity score method. Since

both estimations have bias we prefer to consider the MSE of both estimators.

As plots shown, the MSE of each estimator increases as the exp(ψ) grows. But

the fluctuations in first values of exp(ψ) are related to definition of g function

in equation 5. After estimating Propensity score through equation 4 and using

these values in g function, we are expected to have increase sinusoidal wave.

The similar trend exists for the Stratification propensity score method. If

the bias estimators are large in magnitude, meaning that C contains powerful

confounders, then the variability of P (Y |X,C) and P (X|C) will increase. To

capture this variability, one extension would be to model uncertainty in the

quantity in equation using a Bayesian bootstrap [13, 17].
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Figure 3: exp(ψ) versus the correlation between X and Y given C
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