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Abstract 

The paper outlines some structural properties of a partially ordered multiset 

(pomset). In the sequel, the width and height of a pomset are characterized into 

minimum number of mset chains and mset antichains, respectively. A set of 

necessary and sufficient conditions is given for  �∁𝑖 ∩ 𝐴𝑗� = 1, provided the 

intersection is not empty.  
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1  Introduction  

An mset is an unordered collection of objects in which repetition of objects is 
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2                                   Some aspects of partially ordered multisets  

significant. For an mset 𝑀 the root set (or support) of 𝑀, denoted by 𝑀∗, is given 

by the set {𝑥 ∈ 𝑆|𝑀(𝑥) > 0}, where 𝑆 is a base set. An mset is called finite if the 

root set is finite and also, multiplicities are finite. In this paper, we shall confine our 

attention to finite msets. The cardinality of an mset is the sum of the multiplicities 

of all its distinct elements. Objects in an mset 𝑀 represent the elements of the root 

set of 𝑀. An mset can be represented in various forms. For instance, the mset 

𝑀 = [1,1,1,1,2,4,4,5,5] can be denoted by [1,2,4,5]4,1,2,2  or [14, 21, 42, 52 ] or 

{4/1, 1/2,2/4,2/5} . In this paper, we choose to denote an mset 𝑀  by 

[𝑚1𝑥1,𝑚2𝑥2, … ,𝑚𝑛𝑥𝑛], where 𝑚𝑖  is the multiplicity of 𝑥𝑖  in 𝑀 , hence 𝑚𝑖𝑥𝑖 

will denote a point in 𝑀. We will denote the class of all finite mset defined on a set 

𝑆 by 𝑀(𝑆). Let 𝑀,𝑁 ∈ 𝑀(𝑆), then 𝑀 is a submset of 𝑁, denoted by 𝑀 ⊆ 𝑁, if 

𝑀(𝑥) ≤ 𝑁(𝑥) for all 𝑥 ∈ 𝑆, and 𝑀 ⊂ 𝑁 if and only if 𝑀(𝑥) < 𝑁(𝑥) for at least 

one 𝑥 . A submset of a given mset that contains all multiplicities of common 

elements is called a whole submset. A full submset contains all objects of the parent 

mset. The union of two msets 𝑀  and 𝑁  is the mset given by (𝑀 ∪ 𝑁)(𝑥) =

𝑚𝑎𝑥{𝑚,𝑛} such that 𝑚𝑥 ∈ 𝑀 and 𝑛𝑥 ∈ 𝑁  for all 𝑥 ∈ 𝑆. The intersection of 𝑀 

and 𝑁  is the mset given by (𝑀 ∩𝑁)(𝑥) = 𝑚𝑖𝑛{𝑚, 𝑛} such that 𝑚𝑥 ∈

𝑀 and 𝑛𝑥 ∈ 𝑁 for all 𝑥 ∈ 𝑆 (see [2], [17] and [18] for details on msets). Some 

works have appeared dealing with infinite multiplicities as well as involving 

negative multiplicities [3, 22]. In this work, we consider only nonnegative integral 

multiplicities of objects in an mset. 

It is well-known that partially ordered multisets constitute one of the most 

basic models of concurrency [8, 15, 16]. The problem of extending various 

mathematical notions and results related to partially ordered sets (posets) (see [20] 

and [21] for an exposition on posets) to pomsets has attracted serious attention 

during the last couple of decades [6, 9, 11, 10]. In this paper, we introduce an 

ordering ≼≤ on an mset 𝑀  and study some properties of the structure ℳ =

(𝑀,≼≤), in particular, characterization of the width and height of a pomset. In 

section 2, we define the ordering ≼≤  and investigate some properties of the 
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multiset structure ℳ. We discuss mset chains and mset antichains in section 3 and 

prove some related results. In section 4, we present bounds of pomsets. An 

extension of Dilworth’s decomposition theorem and its dual to pomsets are 

presented in section 5. 

 

 

2  Partially Ordered Multisets (Pomsets) 

 Let 𝑀 = [𝑚1𝑥1,𝑚2𝑥2, … ,𝑚𝑛𝑥𝑛] be an mset such that the points are ordered. 

We write 𝑚𝑖𝑥𝑖 ⋈ 𝑚𝑗𝑥𝑗  whenever the two points 𝑚𝑖𝑥𝑖  and 𝑚𝑗𝑥𝑗  in 𝑀  are 

comparable under the defined order and 𝑚𝑖𝑥𝑖||𝑚𝑗𝑥𝑗  whenever 𝑚𝑖𝑥𝑖  and 𝑚𝑗𝑥𝑗 

are incomparable. 

 

Definition 2.1 

For any pair of points 𝑚𝑖𝑥𝑖 𝑎𝑛𝑑 𝑚𝑗𝑥𝑗  in 𝑀 ∈ 𝑀(𝑆), 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 if and only if 

𝑥𝑖 ≼ 𝑥𝑗 , and the points 𝑚𝑖𝑥𝑖 and 𝑚𝑗𝑥𝑗 coincide i.e., 𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗 if and only if 

𝑥𝑖 = 𝑥𝑗  (this follows from the principle of uniqueness of the multiplicity of an 

object in an mset). Also, 𝑚𝑖𝑥𝑖 ≠≠ 𝑚𝑗𝑥𝑗  if and only if 𝑥𝑖 ≠ 𝑥𝑗 . Moreover, 

𝑚𝑖𝑥𝑖 ⋈ 𝑚𝑗𝑥𝑗  if and only if 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 ∨ 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑖𝑥𝑖otherwise 𝑚𝑖𝑥𝑖||𝑚𝑗𝑥𝑗 . 

The strict order associated with ≼≤ is the ordering ≺<, where 𝑚𝑖𝑥𝑖 ≺< 𝑚𝑗𝑥𝑗  

implies that 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 and 𝑚𝑖𝑥𝑖 ≠≠ 𝑚𝑗𝑥𝑗. 

 

Definition 2.2  

The ordering ≼≤ on 𝑀 is said to be reflexive if and only if  𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑖𝑥𝑖 for 

all  𝑚𝑖𝑥𝑖 ∈ 𝑀, symmetric if and only if 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗  implies 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑖𝑥𝑖, 

antisymmetric if and only if 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 ∧ 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑖𝑥𝑖  implies that  

𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗 , and transitive if and only if 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 ∧ 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑘𝑥𝑘 

implies 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑘𝑥𝑘. 
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Definition 2.3 

A relation 𝑅 is called a quasi-mset order (or a pre-mset order) if it is reflexive and 

transitive, and a strict mset order if it is irreflexive and transitive. The relation 𝑅 is 

called a partial mset order (or simply mset order) if it is reflexive, antisymmetric 

and transitive. 𝑅 is a linear (or total) mset order if it is a partial mset order and for 

all pairs of point 𝑚𝑖𝑥𝑖,𝑚𝑗𝑥𝑗 in 𝑀, we have 𝑚𝑖𝑥𝑖𝑅𝑚𝑗𝑥𝑗 ∨ 𝑚𝑗𝑥𝑗𝑅𝑚𝑖𝑥𝑖. 

 

Definition 2.4 

A pomset ℳ is a pair (𝑀,≼≤), where 𝑀 ∈ 𝑀(𝑆), and ≼≤ is a partial mset order 

defined on 𝑀. 

 

Theorem 2.1 

Let (𝑆,≼) be a poset and 𝑀 ∈ 𝑀(𝑆). Then ℳ = (𝑀,≼≤) is a pomset. 

Proof 

For any 𝑚𝑖𝑥𝑖  in 𝑀 , since 𝑥𝑖 ≼ 𝑥𝑖  we have 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑖𝑥𝑖 , implying that 

(𝑀,≼≤) is reflexive. 

Let 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗  and 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑖𝑥𝑖  in ℳ . Then, 𝑥𝑖 ≼ 𝑥𝑗  and 𝑥𝑗 ≼ 𝑥𝑖 , and 

hence 𝑥𝑖 = 𝑥𝑗.                                                                                    

In particular, 𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗, hence ≼≤ is antisymmetric. 

Let 𝑚𝑖𝑥𝑖,𝑚𝑗𝑥𝑗 ,𝑚𝑘𝑥𝑘 be points in 𝑀 such that 

𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 and 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑘𝑥𝑘. 

We have 𝑥𝑖 ≼ 𝑥𝑗 ≼ 𝑥𝑘. Thus transitivity holds.  

Therefore, (𝑀,≼≤) is a pomset.                                                □     

                                                                         

Definition 2.5 

For two mset orders ≼1≤1 and ≼2≤2 on an mset 𝑀, the mset order ≼≤ is said 

to be an intersection of ≼1≤1  and ≼2≤2  if and only if 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 ⟹

𝑚𝑖𝑥𝑖 ≼1≤1 𝑚𝑗𝑥𝑗 ∧ 𝑚𝑖𝑥𝑖 ≼2≤2 𝑚𝑗𝑥𝑗 , for all 𝑚𝑖𝑥𝑖 ,𝑚𝑗𝑥𝑗 ∈ 𝑀.  
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Theorem 2.2 

If ℳ = (𝑀,≼1≤1) and 𝒩 = (𝑀,≼2≤2) are pomsets corresponding to (𝑆,≼1) 

and (𝑆,≼2), then ℳ∩𝒩 = (𝑀,≼≤) is also a pomset, where  ≼≤= ≼1≤1∩

≼2≤2. 

Proof 

For any point 𝑚𝑖𝑥𝑖  in 𝑀, clearly 𝑚𝑖𝑥𝑖 ≼1≤1 𝑚𝑖𝑥𝑖  and 𝑚𝑖𝑥𝑖 ≼2≤2 𝑚𝑖𝑥𝑖  since 

≼1≤1 and ≼2≤2 are partial mset orders. 

Thus, 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑖𝑥𝑖 (reflexive property). 

Let 𝑚𝑖𝑥𝑖 and 𝑚𝑗𝑥𝑗 be points in 𝑀 such that  

𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 and 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑖𝑥𝑖.                                           (1)                                                         

From (1) we have, 

𝑚𝑖𝑥𝑖 ≼1≤1 𝑚𝑗𝑥𝑗  and 𝑚𝑗𝑥𝑗 ≼1≤1 𝑚𝑖𝑥𝑖.                                       (2)                                                        

Since ≼1≤1 is antisymmetric, we have 𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗
                   

(3) 

Similarly, 

𝑚𝑖𝑥𝑖 ≼2≤2 𝑚𝑗𝑥𝑗 and 𝑚𝑗𝑥𝑗 ≼2≤2 𝑚𝑖𝑥𝑖  imply 𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗.               (4)                                   

From (2) - (4) we can conclude that, 

𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 and 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑖𝑥𝑖 imply 𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗. 

Therefore, ≼≤ is antisymmetric.   

For transitivity let  𝑚𝑖𝑥𝑖,𝑚𝑗𝑥𝑗 and  𝑚𝑘𝑥𝑘 be points in 𝑀 such that, 

𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 and  𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑘𝑥𝑘. 

We need to show that 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑘𝑥𝑘. 

Now, 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗  and  𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑘𝑥𝑘 imply 

𝑚𝑖𝑥𝑖 ≼1≤1 𝑚𝑗𝑥𝑗  and  𝑚𝑗𝑥𝑗 ≼1≤1 𝑚𝑘𝑥𝑘. 

Since ≼1≤1 is transitive, we have 𝑚𝑖𝑥𝑖 ≼1≤1 𝑚𝑘𝑥𝑘.                         (5)                                                               

Similarly, 

𝑚𝑖𝑥𝑖 ≼2≤2 𝑚𝑗𝑥𝑗 and 𝑚𝑗𝑥𝑗 ≼2≤2 𝑚𝑘𝑥𝑘 imply 𝑚𝑖𝑥𝑖 ≼2≤2 𝑚𝑘𝑥𝑘.            (6)                                   

From (5) and (6), we obtain 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑘𝑥𝑘 , hence ≼≤ is transitive. 

Therefore, ℳ∩𝒩 = (𝑀,≼≤) is a pomset.                         □                                
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Theorem 2.3 

Let (𝑆,≼) be a poset. An mset 𝑀 ∈ 𝑀(𝑆) is partially ordered if and only if its root 

set is a subposet of (𝑆,≼). 

Proof 

Suppose 𝑀 ∈ 𝑀(𝑆)  is partially ordered. Thus, for 𝑚𝑖𝑥𝑖 ∈ 𝑀 , 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑖𝑥𝑖 

holds. The definition of ≼≤ implies that  

𝑥𝑖 ≼ 𝑥𝑖 for all 𝑥𝑖 ∈ 𝑀∗, with 𝑖 ∈ [1,𝑛].                                       (7)                                                        

Also, for all 𝑚𝑖𝑥𝑖,𝑚𝑗𝑥𝑗 ∈ 𝑀, we have 

 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 ∧ 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑖𝑥𝑖 ⟹ 𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗. 

Again by the ordering ≼≤, it must be the case that 

𝑥𝑖 ≼ 𝑥𝑗 ∧ 𝑥𝑗 ≼ 𝑥𝑖 ⟹ 𝑥𝑖 = 𝑥𝑗 for all 𝑥𝑖, 𝑥𝑗 ∈ 𝑀∗.                              (8)                                                               

Now, let 𝑚𝑖𝑥𝑖,𝑚𝑗𝑥𝑗 ,𝑚𝑘𝑥𝑘 be any three points in 𝑀. Since 𝑀 is partially ordered 

we have 

𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 ∧ 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑘𝑥𝑘 ⟹ 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑘𝑥𝑘, and 

𝑥𝑖 ≼ 𝑥𝑗 ∧ 𝑥𝑗 ≼ 𝑥𝑘 ⟹ 𝑥𝑖 ≼ 𝑥𝑘 for all 𝑥𝑖 ∈ 𝑀∗.                                 (9)                                                      

From (7) through (9), it follows that (𝑀∗,≼≤) is a subposet of (𝑆,≼). 

The converse part is straightforward. Suppose that (𝑀∗ ≼) is a subposet of (𝑆,≼). 

Clearly, 𝑥𝑖 ≼ 𝑥𝑖 for all 𝑥𝑖 ∈ 𝑀∗. Let 𝑚𝑖 be the multiplicity of 𝑥𝑖 in 𝑀 ∈ 𝑀(𝑆). 

From the definition of ≼≤, we have 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑖𝑥𝑖  (reflexivity of ≼≤). Also, 

𝑥𝑖 ≼ 𝑥𝑗 ∧ 𝑥𝑗 ≼ 𝑥𝑖 ⟹ 𝑥𝑖 = 𝑥𝑗  for all 𝑥𝑖, 𝑥𝑗 ∈ 𝑀∗ , this in turn gives, 𝑚𝑖𝑥𝑖 ≼≤

𝑚𝑗𝑥𝑗 ∧ 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑖𝑥𝑖 ⟹ 𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗  (antisymmetry of ≼≤ ). And for all 

𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘 ∈ 𝑀∗, we will have 𝑥𝑖 ≼ 𝑥𝑗 ∧ 𝑥𝑗 ≼ 𝑥𝑘 ⟹ 𝑥𝑖 ≼ 𝑥𝑘. Again, it follows that 

𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 ∧ 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑘𝑥𝑘 ⟹ 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑘𝑥𝑘 (transitivity of ≼≤).      □ 

 

 

3  Mset Chains and Mset Antichains  

Definition 3.1 

Let ℳ = (𝑀,≼≤) be a pomset. A point 𝑚𝑖𝑥𝑖 in 𝑀 is maximal in ℳ if for any 
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other point 𝑚𝑗𝑥𝑗 ∈  𝑀 with 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 we have 𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗 . Similarly, a 

point 𝑚𝑖𝑥𝑖 in 𝑀 is minimal if for any other point 𝑚𝑗𝑥𝑗 ∈ 𝑀 with 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑖𝑥𝑖 

we have 𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗. If such points are unique, we call them maximum and 

minimum respectively. 

 

Theorem 3.1 

Let ℳ = (𝑀,≼≤)  be a pomset. If ℳ  is totally ordered then maximal and 

maximum points coincide. 

Proof  

Let 𝑚𝑖𝑥𝑖 𝑎𝑛𝑑 𝑚𝑗𝑥𝑗  be points in 𝑀 such that 𝑚𝑖𝑥𝑖 is a maximal point in ℳ and 

𝑚𝑗𝑥𝑗 is a maximum point in ℳ. 

Since ℳ is totally ordered, we will have either 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗  or 𝑚𝑗𝑥𝑗 ≼≤ 𝑚𝑖𝑥𝑖.          

Now, suppose that 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 , then, by definition of a maximal point 

𝑚𝑖𝑥𝑖 == 𝑚𝑗𝑥𝑗.  

Similarly, the other case follows.                                                □                                                                                                 

 

A similar argument holds for minimal and minimum points if ℳ  is totally 

ordered.     

                           

Definition 3.2 

Let ℳ = (𝑀,≼≤) be a pomset and 𝑁, a submset of 𝑀. A suborder ≼≤𝒦 is the 

restriction of ≼≤ to pairs of points in the submset 𝑁 of 𝑀 such that 

𝑛𝑖𝑥𝑖 ≼≤𝒦 𝑛𝑗𝑥𝑗 ⟺ 𝑚𝑖𝑥𝑖 ≼≤ 𝑚𝑗𝑥𝑗 , where 𝑛𝑖𝑥𝑖 ,𝑛𝑗𝑥𝑗 ∈ 𝑁 and 𝑛𝑖 ≤ 𝑚𝑖 . The pair 

(𝑁,≼≤𝒦) is called a subpomset of ℳ. 

 

Definition 3.3 

A subpomset C  of a pomset ℳ = (𝑀,≼≤) is called an mset chain if C  is 

linearly (or totally) ordered.  
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A subpomset A  of ℳ is called an mset antichain if no two points in A   are 

comparable. 

A pomset ℳ is connected (or is an mset chain) if 𝑚𝑖𝑥𝑖 ⋈ 𝑚𝑗𝑥𝑗 for all distinct 

pairs of points 𝑚𝑖𝑥𝑖 ,𝑚𝑗𝑥𝑗 ∈ 𝑀 . ℳ  is an mset antichain if 𝑚𝑖𝑥𝑖||𝑚𝑗𝑥𝑗  for all 

distinct pairs of points 𝑚𝑖𝑥𝑖 ,𝑚𝑗𝑥𝑗 in 𝑀. 

 

Definition 3.4 

An mset chain 𝐶 in a pomset ℳ is maximal if it is not strictly contained in any 

other mset chain of ℳ. An mset chain 𝐶  in a pomset ℳ is a maximum mset 

chain if it contains maximum number of points. Maximal and maximum mset 

antichains are defined analogously. 

    

Remark 3.1 

A pomset can contain more than one maximal mset chain. Also, in a pomset, 

maximal and maximum mset chains may coincide. The following example 

illustrates this. 

 

Example 3.1 

Let ℳ = (𝑀,≼≤) and let 𝑋 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6} be the root set for the mset 

𝑀 = [2𝑥1, 3𝑥2, 4𝑥3, 6𝑥4, 8𝑥5, 16𝑥6]  where 𝑋  is partially ordered as follows: 

𝑥1 ≼ 𝑥3 ≼ 𝑥5 ≼ 𝑥6,  𝑥1 ≼ 𝑥4, and  𝑥2 ≼ 𝑥4. 

The following are mset chains in ℳ: 

𝐶1 = [2𝑥1, 4𝑥3, 8𝑥5, 16𝑥6]   𝐶2 = [2𝑥1, 6𝑥4]  𝐶3 = [3𝑥2, 6𝑥4]  𝐶4 = [4𝑥3, 8𝑥5]  

Clearly, 𝐶1, 𝐶2 and 𝐶3 are maximal mset chains. Where 𝐶1 is the maximum. 

 

Definition 3.5 

A pomset ℳ = (𝑀,≼≤) is said to be well-ordered if for any submset 𝑁 of 𝑀, 

there exists a point 𝑛𝑖𝑥𝑖 in 𝑁, such that 𝑛𝑖𝑥𝑖 is the minimum point with respect to 

the defined order. 
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Lemma 3.2 

Every well-ordered pomset is an mset chain. 

Proof 

Let ℳ = (𝑀,≼≤) be a pomset and 𝑚𝑖𝑥𝑖 ,𝑚𝑗𝑥𝑗 be any arbitrary pair of distinct 

points in 𝑀. Since ℳ is well-ordered, the submset  [𝑛𝑖𝑥𝑖 ,𝑛𝑗𝑥𝑗] has a minimum 

point. 

Thus, either 𝑛𝑖𝑥𝑖 ≺< 𝑛𝑗𝑥𝑗  or 𝑛𝑗𝑥𝑗 ≺< 𝑛𝑖𝑥𝑖. 

Since this condition holds for every pair of distinct points in 𝑀, it follows that ℳ 

is totally ordered. 

 

 

4  Bounds of pomsets  

Definition 4.1 

Let 𝒦 = (𝑁,≼≤𝒦)  be a subpomset of a pomset ℳ = (𝑀,≼≤) . A point 

𝑚𝑖𝑥𝑖 ∈ 𝑀 is an upper bound for 𝒦 if 𝑚𝑖𝑥𝑖 ≽≥ 𝑛𝑗𝑥𝑗   for all points 𝑛𝑗𝑥𝑗  in 𝑁. 

Dually, 𝑚𝑖𝑥𝑖 ∈ 𝑀 is a lower bound of 𝒦 if  𝑚𝑖𝑥𝑖 ≼≤ 𝑛𝑗𝑥𝑗  for all points 𝑛𝑗𝑥𝑗  in 

𝑁. 

 

Lemma 4.1 

If an mset chain 𝐶 is maximal in a pomset ℳ, then 𝐶 necessarily contains its 

upper bound. 

Proof 

Let ℳ = (𝑀,≼≤) be a pomset and let 𝐶 = (𝑁,≼≤𝐶) be a maximal mset chain in 

ℳ. Since 𝐶 is linearly ordered, for some 𝑖 we will have a point 𝑛𝑖𝑥𝑖 ∈ 𝑁 such 

that 𝑛𝑖𝑥𝑖 >≻ 𝑛𝑗𝑥𝑗  for all other points 𝑛𝑗𝑥𝑗 ∈ 𝑁 . This implies that 𝑛𝑖𝑥𝑖  is a 

maximum point. Suppose a point 𝑚𝑘𝑥𝑘 ∉ 𝑁 is an upper bound for 𝐶. Now 𝐶 is 

maximal implies that for any point 𝑚𝑘𝑥𝑘 ∉ 𝑁, we would have either 𝑚𝑘𝑥𝑘||𝑛𝑖𝑥𝑖 

or 𝑚𝑘𝑥𝑘 ≼≤ 𝑛𝑖𝑥𝑖 since 𝑛𝑖𝑥𝑖 is the maximum point. 
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If 𝑚𝑘𝑥𝑘||𝑛𝑖𝑥𝑖, then 𝑚𝑘𝑥𝑘 cannot be an upper bound for 𝐶. 

Now, suppose that 𝑚𝑘𝑥𝑘 ≼≤ 𝑛𝑖𝑥𝑖, by the definition of upper bound we have a 

contradiction, hence the result.                                                  □   

                                                                                                                                                                                                                                                 

Theorem 4.2 

Let ℳ be a pomset and let 𝒞 be a collection of all maximal mset chains in ℳ. If 

𝐾 is an mset containing all upper bounds of the elements of 𝒞. Then any two 

distinct points in 𝐾 are incomparable.  

Proof 

Let 𝐶1, … ,𝐶𝑛  be the maximal mset chains in ℳ . Suppose that 

𝑚1𝑥1 ,𝑚2𝑥2, … 𝑚𝑛𝑥𝑛  are upper bounds for the mset chains 𝐶1,𝐶2, … ,𝐶𝑛 , then 

𝐾 = [𝑚1𝑥1, … ,𝑚𝑛𝑥𝑛]. 

Let 𝑚𝑖𝑥𝑖 𝑎𝑛𝑑 𝑚𝑗𝑥𝑗  be distinct points in 𝐾, then there exists maximal mset chains 

𝐶𝑖 and 𝐶𝑗 in  𝒞 such that 𝑚𝑖𝑥𝑖 is an upper bound for 𝐶𝑖 and 𝑚𝑗𝑥𝑗 is an upper 

bound for 𝐶𝑗 say. 

Now, 𝐶𝑖 ∪ [𝑚𝑗𝑥𝑗] is not an mset chain since 𝐶𝑖  is maximal in ℳ . Similarly, 

𝐶𝑗 ∪ [𝑚𝑖𝑥𝑖] is not an mset chain. Assume that 𝑚𝑖𝑥𝑖 ⋈ 𝑚𝑗𝑥𝑗 , then either 𝑚𝑖𝑥𝑖 ≺<

𝑚𝑗𝑥𝑗 or 𝑚𝑗𝑥𝑗 ≺< 𝑚𝑖𝑥𝑖 holds. 

Suppose 𝑚𝑖𝑥𝑖 ≺< 𝑚𝑗𝑥𝑗 . Now, 𝑚𝑖𝑥𝑖  is an upper bound for 𝐶𝑖  implies that 

𝑚𝑖𝑥𝑖 ≽≥ 𝑚𝑘𝑥𝑘  for all other points 𝑚𝑘𝑥𝑘 ∈ 𝐶𝑖 . By transitivity, it follows that, 

𝑚𝑗𝑥𝑗 ≻> 𝑚𝑘𝑥𝑘 for all 𝑚𝑘𝑥𝑘 ∈ 𝐶𝑖, which is a contradiction since 𝐶𝑖 is maximal in 

ℳ. 

A similar argument holds for the case 𝑚𝑗𝑥𝑗 ≺< 𝑚𝑖𝑥𝑖 in 𝐶𝑗. 

Hence it must be the case that 𝑚𝑖𝑥𝑖||𝑚𝑗𝑥𝑗 . 

Now 𝑚𝑖𝑥𝑖,𝑚𝑗𝑥𝑗  are arbitrary points in 𝐾 , therefore, no two points in 𝐾  are 

comparable.                                                                    □                                                                                               
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5  Height and width of pomset  

Definition 5.1 

The height of a pomset ℳ denoted by ℏ is the number of points in a maximum 

mset chain in ℳ. The width of a pomset ℳ denoted by 𝜛 is the number of points 

in a maximum mset antichain in ℳ. 

 

Remark 5.1    

The number of mset chains in a chain partitioning of ℳ  can be described in 

relation to the width of ℳ. Likewise, the number of mset antichains in an antichain 

partitioning of a pomset ℳ can be described with respect to the height of ℳ. 

Dilworth’s theorem [7], and its dual [14] describe these relationships in the classical 

setting. 

 

Using the idea of set-based partitioning [10], the next result necessarily guarantees 

that if the intersection of any mset chain and mset antichain in a pomset is not 

empty, then its cardinality is at most 1. 

 

Theorem 5.1 

Let ℳ = (𝑀,≼≤) be a pomset and let ∁𝑖 ,𝐴𝑗 be mset chains and mset antichains 

in ℳ, respectively with 𝑖, 𝑗 ∈ {1,2, … ,𝑛}. Then �∁𝑖 ∩ 𝐴𝑗� ≤ 1 for any 𝑖, 𝑗, if and 

only if the partitions of the mset antichains are such that each occurrence of the 

generating object of a point 𝑚𝑖𝑥𝑖 belongs to a different partition i.e. 𝑥𝑖 , 𝑥𝑗 ∈ 𝐴𝑗 ⟹

𝑥𝑖 ≠ 𝑥𝑗. 

Proof 

Assume that |𝐶𝑖 ∩ 𝐴𝑗| ≤ 1. Now, 𝐶𝑖 ∩ 𝐴𝑗 is either empty or has only one point for 

any 𝑖, 𝑗 . Let the points 𝑙1𝑥1, … , 𝑙𝑛𝑥𝑛  be in 𝐴𝑗 , with 𝑙𝑖 ≤ 𝑚𝑖 . The case where 

�𝐶𝑖 ∩ 𝐴𝑗� < 1  is trivial. Suppose 𝐶𝑖 ∩ 𝐴𝑗 ≠ ∅  and let 𝑙𝑖𝑥𝑖  in 𝐴𝑗  be a point in 

𝐶𝑖 ∩ 𝐴𝑗 . Now |𝐶𝑖 ∩ 𝐴𝑗| ≤ 1 implies that 𝑙𝑖 ≯ 1. Hence it must be the case that 
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𝑙𝑖 = 1. We can apply this process inductively on all points 𝑙1𝑥1, … , 𝑙𝑛𝑥𝑛 ∈ 𝐴𝑗  since 

each point 𝑙𝑖𝑥𝑖 ∈ 𝐴𝑗  must belong to a different mset chain 𝐶𝑖. Hence all points in 

𝐴𝑗 will be of the form 𝑙𝑖𝑥𝑖 with 𝑙𝑖 = 1 . Therefore, 𝑥𝑖 , 𝑥𝑗 ∈ 𝐴𝑗 ⟹ 𝑥𝑖 ≠ 𝑥𝑗. 

Next, assume the converse. Clearly, for each point 𝑙𝑖𝑥𝑖 ∈ 𝐴𝑗, 𝑙𝑖 ≯ 1, otherwise we 

will have a contradiction. If 𝐶𝑖 ∩ 𝐴𝑗 = ∅, the result follows. Now assume that  

𝐶𝑖 ∩ 𝐴𝑗 is not empty and suppose that �𝐶𝑖 ∩ 𝐴𝑗� > 1. Then there will be points say 

𝑥1, … , 𝑥𝑛   of 𝐴𝑗 , with 𝑛 ≤ |𝐴𝑗|  in 𝐶𝑖 ∩ 𝐴𝑗 . This implies that 𝑥1, … , 𝑥𝑛  are 

comparable since they are also points in 𝐶𝑖 which is a contradiction. Hence 𝐶𝑖 ∩ 𝐴𝑗 

is empty or  �𝐶𝑖 ∩ 𝐴𝑗� = 1. Therefore, |𝐶𝑖 ∩ 𝐴𝑗| ≤ 1.                            □                                                                                                                                                                                                                                                                                                                                                                                                                                        

 

Theorem 5.2  

Let ℳ = (𝑀,≼≤) be a pomset defined over a partially ordered base set. Then ℳ 

can be partitioned into exactly 𝜛 mset chains where 𝜛 is the width of the pomset 

ℳ. 

Proof 

The case where ℳ contains only one point 𝑚𝑖𝑥𝑖 is trivial. Suppose the assertion 

is true for all pomsets 𝒩𝑖, 𝑖 = 1,2, … ,𝑘  with |𝒩𝑖| < |ℳ|  for each 𝑖  and let 

ℳ = 𝒩𝑘 ∪ [𝑚𝑖𝑥𝑖] , this implies that |ℳ| = |𝒩𝑘| + |𝑚𝑖𝑥𝑖| . If 𝐴 is an mset 

antichain in ℳ containing only one point 𝑚𝑖𝑥𝑖, then the assertion is true. Now 

assume that 𝐴 contains more than one point and let 𝒞 be a maximal mset chain in 

ℳ, then 𝜛 − |𝐴| ≤ 𝑤𝑖𝑑𝑡ℎ(ℳ\ 𝒞) ≤ 𝜛. Let F  be the subpomset ℳ\ 𝒞, if F   

has width 𝜛 − |𝐴| , by the induction hypothesis F  can be partitioned into 

𝜛 − |𝐴| mset chains, together with 𝒞 gives a partition into at most 𝜛 mset chains. 

Furthermore, if the pomset ℳ  is partitioned into 𝑛  mset chains then, 𝑛 = 𝜛. 

Observe that since 𝜛 is the cardinality of a maximum mset antichain, every point 

in that mset antichain must belong to a different mset chain. Taking 𝑛 < 𝜛 will 

imply that there exist 𝑚𝑖𝑥𝑖 ,𝑚𝑗𝑥𝑗 ∈ ∁𝑖 for some 𝑖, 𝑗 with 𝑚𝑖𝑥𝑖||𝑚𝑗𝑥𝑗 , which is a 

contradiction.                                                                   □                                                                           
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Dually, we present an extension of Mirsky’s theorem to pomsets as follows: 

 

Theorem 5.3 

Let ℳ = (𝑀,≼≤) be a pomset. Then ℳ can be partitioned into exactly ℏ mset 

antichains where ℏ is the height of the pomset ℳ. 

Proof 

We prove the theorem by induction. If ℳ is an mset antichain, we have a trivial 

case. Next, assume that the theorem holds for pomsets of height 𝑡 where 𝑡 < ℏ. 

Define ℋ
 
to be the mset of all maximal points of  ℳ. Clearly ℋ is an mset 

antichain in ℳ and every maximal mset chain in ℳ contains exactly one point 

𝑚𝑖𝑥𝑖   from ℋ which is also the maximum point in that mset chain. Let ℬ be the 

pomset ℳ\ℋ, height of ℬ, denoted height (ℬ), will be ℏ − (ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 ℋ) . By 

the induction hypothesis, height  (ℬ) < ℏ  implies that ℬ  is partitioned into 

ℏ − (ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 ℋ) mset antichains. Therefore the pomset ℬ  together with ℋ
 
 

is partitioned into at most ℏ mset antichains.                                    □  

                                                                                                                                                      

 

Example 5.1 

Let ℳ = (𝑀,≼≤) be a pomset and 

𝑀 = [2𝑥1, 6𝑥2, 2𝑥3, 5𝑥4, 3𝑥5, 𝑥6]  

Suppose that the ordering ≼≤ on 𝑀 is defined as follows:  

2𝑥1 ≼≤ 6𝑥2, 2𝑥3 ≼≤ 5𝑥4, 2𝑥1 ≼≤ 3𝑥5.  

The pomset ℳ
 
 has 𝜛 = 4 𝑎𝑛𝑑 ℏ = 2. 

Observe that, in an mset chain partitioning of  ℳ, there are 4 mset chains: 

 ∁1= [2𝑥1, 6𝑥2], ∁2= [2𝑥3, 5𝑥4], ∁3= [3𝑥5], ∁4= [𝑥6]. 

In view of Theorem 5.1, a set-based antichain partitioning of the pomset gives the 

following: 

𝐴1 = {𝑥2, 𝑥4, 𝑥5, 𝑥6}, 𝐴2 = {𝑥2, 𝑥4, 𝑥5},  𝐴3 = {𝑥2, 𝑥4, 𝑥5},  𝐴4 = {𝑥2, 𝑥4},  𝐴5 =

{𝑥2, 𝑥4}, 𝐴6 = {𝑥2},𝐴7 = {𝑥1, 𝑥3},𝐴8 = {𝑥1, 𝑥3}     
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6  Concluding Remarks 

  It is known that several characterizations exist for the set of maximal 

antichains of a poset. An interesting problem will be to characterize the maximal 

mset antichains of a pomset. In view of wide practical applications of msets, a 

number of mset orderings have been studied in the literature (see [1, 6, 10, 13]). The 

orderings defined in the aforementioned literatures are exploited in comparing 

msets in 𝑀(𝑆). With further investigations, the ordering ≼≤ can be extended to 

compare msets in 𝑀(𝑆). 
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