Some aspects of partially ordered multisets

Funmilola Balogun¹ and Yohanna Tella²

Abstract

The paper outlines some structural properties of a partially ordered multiset (pomset). In the sequel, the *width* and *height* of a pomset are characterized into minimum number of mset chains and mset antichains, respectively. A set of necessary and sufficient conditions is given for $|C_i \cap A_j| = 1$, provided the intersection is not empty.

Mathematics Subject Classification: 06A07; 03E04; 06F25; 91B16

Keywords: Partially ordered multisets; multiset chains; multiset antichains

1 Introduction

An mset is an unordered collection of objects in which repetition of objects is

Article Info: *Received:* June 7, 2017. *Revised:* July 5, 2017. *Online appearance* : December 1, 2017.

¹ Department of Mathematical Sciences and Information Technology, Federal University Dutsinma, Katsina, Nigeria. E-mail: fbalogun@fudutsinma.edu.ng

² Department of Mathematical Sciences, Kaduna State University, Kaduna, Nigeria. E-mail: yot2002ng@yahoo.com

significant. For an mset M the root set (or support) of M, denoted by M^* , is given by the set $\{x \in S | M(x) > 0\}$, where S is a base set. An mset is called finite if the root set is finite and also, multiplicities are finite. In this paper, we shall confine our attention to finite msets. The *cardinality* of an mset is the sum of the multiplicities of all its distinct elements. *Objects* in an mset *M* represent the elements of the root set of M. An mset can be represented in various forms. For instance, the mset M = [1,1,1,1,2,4,4,5,5] can be denoted by $[1,2,4,5]_{4,1,2,2}$ or $[1^4, 2^1, 4^2, 5^2]$ or $\{4/1, 1/2, 2/4, 2/5\}$. In this paper, we choose to denote an mset M by $[m_1x_1, m_2x_2, ..., m_nx_n]$, where m_i is the multiplicity of x_i in M, hence m_ix_i will denote a point in M. We will denote the class of all finite mset defined on a set S by M(S). Let $M, N \in M(S)$, then M is a submet of N, denoted by $M \subseteq N$, if $M(x) \leq N(x)$ for all $x \in S$, and $M \subset N$ if and only if M(x) < N(x) for at least one x. A submet of a given met that contains all multiplicities of common elements is called a *whole submset*. A *full submset* contains all objects of the parent mset. The union of two msets M and N is the mset given by $(M \cup N)(x) =$ $max\{m,n\}$ such that $mx \in M$ and $nx \in N$ for all $x \in S$. The *intersection* of M and N is the mset given by $(M \cap N)(x) = min\{m, n\}$ such that $mx \in$ M and $nx \in N$ for all $x \in S$ (see [2], [17] and [18] for details on msets). Some works have appeared dealing with infinite multiplicities as well as involving negative multiplicities [3, 22]. In this work, we consider only nonnegative integral multiplicities of objects in an mset.

It is well-known that partially ordered multisets constitute one of the most basic models of concurrency [8, 15, 16]. The problem of extending various mathematical notions and results related to partially ordered sets (posets) (see [20] and [21] for an exposition on posets) to pomsets has attracted serious attention during the last couple of decades [6, 9, 11, 10]. In this paper, we introduce an ordering $\leq \leq$ on an mset M and study some properties of the structure $\mathcal{M} =$ $(M, \leq \leq)$, in particular, characterization of the width and height of a pomset. In section 2, we define the ordering $\leq \leq$ and investigate some properties of the multiset structure \mathcal{M} . We discuss mset chains and mset antichains in section 3 and prove some related results. In section 4, we present bounds of pomsets. An extension of Dilworth's decomposition theorem and its dual to pomsets are presented in section 5.

2 Partially Ordered Multisets (Pomsets)

Let $M = [m_1 x_1, m_2 x_2, ..., m_n x_n]$ be an mset such that the points are ordered. We write $m_i x_i \bowtie m_j x_j$ whenever the two points $m_i x_i$ and $m_j x_j$ in M are *comparable* under the defined order and $m_i x_i ||m_j x_j$ whenever $m_i x_i$ and $m_j x_j$ are *incomparable*.

Definition 2.1

For any pair of points $m_i x_i$ and $m_j x_j$ in $M \in M(S)$, $m_i x_i \leq m_j x_j$ if and only if $x_i \leq x_j$, and the points $m_i x_i$ and $m_j x_j$ coincide i.e., $m_i x_i == m_j x_j$ if and only if $x_i = x_j$ (this follows from the principle of uniqueness of the multiplicity of an object in an mset). Also, $m_i x_i \neq m_j x_j$ if and only if $x_i \neq x_j$. Moreover, $m_i x_i \approx m_j x_j$ if and only if $m_i x_i \leq m_j x_j \vee m_j x_j \leq m_i x_i$ otherwise $m_i x_i ||m_j x_j$. The strict order associated with $\leq \leq$ is the ordering <<, where $m_i x_i << m_j x_j$ implies that $m_i x_i \leq m_j x_j$ and $m_i x_i \neq m_j x_j$.

Definition 2.2

The ordering $\leq \leq$ on M is said to be *reflexive* if and only if $m_i x_i \leq m_i x_i$ for all $m_i x_i \in M$, symmetric if and only if $m_i x_i \leq m_j x_j$ implies $m_j x_j \leq m_i x_i$, antisymmetric if and only if $m_i x_i \leq m_j x_j \wedge m_j x_j \leq m_i x_i$ implies that $m_i x_i = m_j x_j$, and transitive if and only if $m_i x_i \leq m_j x_j \wedge m_j x_j \leq m_k x_k$ implies $m_i x_i \leq m_k x_k$.

Definition 2.3

A relation *R* is called a *quasi-mset order* (or a *pre-mset order*) if it is reflexive and transitive, and a *strict mset order* if it is irreflexive and transitive. The relation *R* is called a *partial mset order* (or simply *mset order*) if it is reflexive, antisymmetric and transitive. *R* is a *linear* (or *total*) mset order if it is a partial mset order and for all pairs of point $m_i x_i, m_j x_j$ in *M*, we have $m_i x_i R m_j x_j \vee m_j x_j R m_i x_i$.

Definition 2.4

A pomset \mathcal{M} is a pair $(M, \leq \leq)$, where $M \in M(S)$, and $\leq \leq$ is a partial mset order defined on M.

Theorem 2.1

Let (S, \leq) be a poset and $M \in M(S)$. Then $\mathcal{M} = (M, \leq \leq)$ is a pomset.

Proof

For any $m_i x_i$ in M, since $x_i \leq x_i$ we have $m_i x_i \leq m_i x_i$, implying that $(M, \leq \leq)$ is reflexive.

Let $m_i x_i \leq m_j x_j$ and $m_j x_j \leq m_i x_i$ in \mathcal{M} . Then, $x_i \leq x_j$ and $x_j \leq x_i$, and hence $x_i = x_j$.

In particular, $m_i x_i == m_j x_j$, hence $\leq \leq$ is antisymmetric.

Let $m_i x_i, m_j x_j, m_k x_k$ be points in M such that

 $m_i x_i \leq m_j x_j$ and $m_j x_j \leq m_k x_k$.

We have $x_i \leq x_j \leq x_k$. Thus transitivity holds.

Therefore, $(M, \leq \leq)$ is a pomset.

Definition 2.5

For two mset orders $\leq_1 \leq_1$ and $\leq_2 \leq_2$ on an mset M, the mset order $\leq\leq$ is said to be an intersection of $\leq_1 \leq_1$ and $\leq_2 \leq_2$ if and only if $m_i x_i \leq\leq m_j x_j \Rightarrow$ $m_i x_i \leq_1 \leq_1 m_j x_j \land m_i x_i \leq_2 \leq_2 m_j x_j$, for all $m_i x_i, m_j x_j \in M$.

Theorem 2.2

If $\mathcal{M} = (M, \leq_1 \leq_1)$ and $\mathcal{N} = (M, \leq_2 \leq_2)$ are pomsets corresponding to (S, \leq_1) and (S, \leq_2) , then $\mathcal{M} \cap \mathcal{N} = (M, \leq\leq)$ is also a pomset, where $\leq\leq \leq \leq_1 \leq_1 \cap \leq_2 \leq_2$.

Proof

For any point $m_i x_i$ in M, clearly $m_i x_i \leq_1 \leq_1 m_i x_i$ and $m_i x_i \leq_2 \leq_2 m_i x_i$ since $\leq_1 \leq_1$ and $\leq_2 \leq_2$ are partial mset orders.

Thus, $m_i x_i \leq m_i x_i$ (reflexive property).

Let $m_i x_i$ and $m_i x_i$ be points in M such that

$$m_i x_i \leq m_j x_j \text{ and } m_j x_j \leq m_i x_i.$$
 (1)

From (1) we have,

$$m_i x_i \leq_1 \leq_1 m_j x_j$$
 and $m_j x_j \leq_1 \leq_1 m_i x_i$. (2)

Since $\leq_1 \leq_1$ is antisymmetric, we have $m_i x_i == m_j x_j$ (3)

Similarly,

$$m_i x_i \preccurlyeq_2 \le_2 m_j x_j$$
 and $m_j x_j \preccurlyeq_2 \le_2 m_i x_i$ imply $m_i x_i == m_j x_j$. (4)

From (2) - (4) we can conclude that,

 $m_i x_i \leq m_j x_j$ and $m_j x_j \leq m_i x_i$ imply $m_i x_i = m_j x_j$.

Therefore, $\leq \leq$ is antisymmetric.

For transitivity let $m_i x_i, m_j x_j$ and $m_k x_k$ be points in M such that,

$$m_i x_i \leq m_i x_i$$
 and $m_i x_i \leq m_k x_k$.

We need to show that $m_i x_i \leq m_k x_k$.

Now, $m_i x_i \leq m_j x_j$ and $m_j x_j \leq m_k x_k$ imply

 $m_i x_i \leq_1 \leq_1 m_j x_j$ and $m_j x_j \leq_1 \leq_1 m_k x_k$.

Since $\leq_1 \leq_1$ is transitive, we have $m_i x_i \leq_1 \leq_1 m_k x_k$. (5)

Similarly,

$$m_i x_i \leq_2 \leq_2 m_j x_j$$
 and $m_j x_j \leq_2 \leq_2 m_k x_k$ imply $m_i x_i \leq_2 \leq_2 m_k x_k$. (6)

From (5) and (6), we obtain $m_i x_i \leq m_k x_k$, hence $\leq \leq$ is transitive.

Therefore, $\mathcal{M} \cap \mathcal{N} = (M, \leq \leq)$ is a pomset.

Theorem 2.3

Let (S, \leq) be a poset. An mset $M \in M(S)$ is partially ordered if and only if its root set is a subposet of (S, \leq) .

Proof

Suppose $M \in M(S)$ is partially ordered. Thus, for $m_i x_i \in M$, $m_i x_i \leq m_i x_i$ holds. The definition of $\leq \leq$ implies that

$$x_i \leq x_i \text{ for all } x_i \in M^*, \text{ with } i \in [1, n].$$
 (7)

Also, for all $m_i x_i, m_j x_j \in M$, we have

$$m_i x_i \leq m_j x_j \wedge m_j x_j \leq m_i x_i \Longrightarrow m_i x_i == m_j x_j.$$

Again by the ordering $\leq \leq$, it must be the case that

 $x_i \leq x_j \wedge x_j \leq x_i \Longrightarrow x_i = x_j \text{ for all } x_i, x_j \in M^*.$ (8)

Now, let $m_i x_i, m_j x_j, m_k x_k$ be any three points in M. Since M is partially ordered we have

$$m_i x_i \leq m_j x_j \wedge m_j x_j \leq m_k x_k \Longrightarrow m_i x_i \leq m_k x_k, \text{ and}$$

$$x_i \leq x_j \wedge x_j \leq x_k \Longrightarrow x_i \leq x_k \text{ for all } x_i \in M^*.$$
 (9)

From (7) through (9), it follows that $(M^*, \leq \leq)$ is a subposet of (S, \leq) .

The converse part is straightforward. Suppose that $(M^* \preccurlyeq)$ is a subposet of (S, \preccurlyeq) . Clearly, $x_i \preccurlyeq x_i$ for all $x_i \in M^*$. Let m_i be the multiplicity of x_i in $M \in M(S)$. From the definition of $\preccurlyeq \le$, we have $m_i x_i \preccurlyeq \le m_i x_i$ (reflexivity of $\preccurlyeq \le$). Also, $x_i \preccurlyeq x_j \land x_j \preccurlyeq x_i \Longrightarrow x_i = x_j$ for all $x_i, x_j \in M^*$, this in turn gives, $m_i x_i \preccurlyeq \le$ $m_j x_j \land m_j x_j \preccurlyeq \le m_i x_i \Longrightarrow m_i x_i == m_j x_j$ (antisymmetry of $\preccurlyeq \le$). And for all $x_i, x_j, x_k \in M^*$, we will have $x_i \preccurlyeq x_j \land x_j \preccurlyeq x_k \Longrightarrow x_i \preccurlyeq x_k$. Again, it follows that $m_i x_i \preccurlyeq \le m_j x_j \land m_j x_j \preccurlyeq \le m_k x_k \Longrightarrow m_i x_i \preccurlyeq \le m_k x_k$ (transitivity of $\preccurlyeq \le$). \Box

3 Mset Chains and Mset Antichains

Definition 3.1

Let $\mathcal{M} = (M, \leq \leq)$ be a point $m_i x_i$ in M is maximal in \mathcal{M} if for any

other point $m_j x_j \in M$ with $m_i x_i \leq m_j x_j$ we have $m_i x_i == m_j x_j$. Similarly, a point $m_i x_i$ in M is *minimal* if for any other point $m_j x_j \in M$ with $m_j x_j \leq m_i x_i$ we have $m_i x_i == m_j x_j$. If such points are unique, we call them *maximum* and *minimum* respectively.

Theorem 3.1

Let $\mathcal{M} = (M, \leq \leq)$ be a pomset. If \mathcal{M} is totally ordered then maximal and maximum points coincide.

Proof

Let $m_i x_i$ and $m_j x_j$ be points in M such that $m_i x_i$ is a maximal point in \mathcal{M} and $m_i x_i$ is a maximum point in \mathcal{M} .

Since \mathcal{M} is totally ordered, we will have either $m_i x_i \leq m_j x_j$ or $m_j x_j \leq m_i x_i$. Now, suppose that $m_i x_i \leq m_i x_j$, then, by definition of a maximal point

$$m_i x_i == m_j x_j.$$

Similarly, the other case follows.

A similar argument holds for minimal and minimum points if \mathcal{M} is totally ordered.

Definition 3.2

Let $\mathcal{M} = (M, \leq \leq)$ be a pomset and N, a submet of M. A suborder $\leq \leq_{\mathcal{K}}$ is the restriction of $\leq \leq$ to pairs of points in the submet N of M such that $n_i x_i \leq \leq_{\mathcal{K}} n_j x_j \Leftrightarrow m_i x_i \leq m_j x_j$, where $n_i x_i, n_j x_j \in N$ and $n_i \leq m_i$. The pair $(N, \leq \leq_{\mathcal{K}})$ is called a subpomset of \mathcal{M} .

Definition 3.3

A subpomset C of a pomset $\mathcal{M} = (M, \leq \leq)$ is called an *mset chain* if C is linearly (or totally) ordered.

A subpomset A of \mathcal{M} is called an *mset antichain* if no two points in A are comparable.

A pomset \mathcal{M} is *connected* (or is an mset chain) if $m_i x_i \bowtie m_j x_j$ for all distinct pairs of points $m_i x_i, m_j x_j \in M$. \mathcal{M} is an mset antichain if $m_i x_i ||m_j x_j$ for all distinct pairs of points $m_i x_i, m_j x_j$ in M.

Definition 3.4

An mset chain C in a pomset \mathcal{M} is *maximal* if it is not strictly contained in any other mset chain of \mathcal{M} . An mset chain C in a pomset \mathcal{M} is a *maximum mset chain* if it contains maximum number of points. Maximal and maximum mset antichains are defined analogously.

Remark 3.1

A pomset can contain more than one maximal mset chain. Also, in a pomset, maximal and maximum mset chains may coincide. The following example illustrates this.

Example 3.1

Let $\mathcal{M} = (M, \leq \leq)$ and let $X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$ be the root set for the mset $M = [2x_1, 3x_2, 4x_3, 6x_4, 8x_5, 16x_6]$ where X is partially ordered as follows: $x_1 \leq x_3 \leq x_5 \leq x_6$, $x_1 \leq x_4$, and $x_2 \leq x_4$.

The following are mset chains in \mathcal{M} :

 $C_1 = [2x_1, 4x_3, 8x_5, 16x_6]$ $C_2 = [2x_1, 6x_4]$ $C_3 = [3x_2, 6x_4]$ $C_4 = [4x_3, 8x_5]$ Clearly, C_1 , C_2 and C_3 are maximal mset chains. Where C_1 is the maximum.

Definition 3.5

A pomset $\mathcal{M} = (M, \leq \leq)$ is said to be well-ordered if for any submet N of M, there exists a point $n_i x_i$ in N, such that $n_i x_i$ is the minimum point with respect to the defined order.

Lemma 3.2

Every well-ordered pomset is an mset chain.

Proof

Let $\mathcal{M} = (M, \leq \leq)$ be a pomset and $m_i x_i, m_j x_j$ be any arbitrary pair of distinct points in M. Since \mathcal{M} is well-ordered, the submet $[n_i x_i, n_j x_j]$ has a minimum point.

Thus, either $n_i x_i \ll n_j x_j$ or $n_j x_j \ll n_i x_i$.

Since this condition holds for every pair of distinct points in M, it follows that \mathcal{M} is totally ordered.

4 Bounds of pomsets

Definition 4.1

Let $\mathcal{K} = (N, \leq \leq_{\mathcal{K}})$ be a subpomset of a pomset $\mathcal{M} = (M, \leq \leq)$. A point $m_i x_i \in M$ is an upper bound for \mathcal{K} if $m_i x_i \geq n_j x_j$ for all points $n_j x_j$ in N. Dually, $m_i x_i \in M$ is a lower bound of \mathcal{K} if $m_i x_i \leq n_j x_j$ for all points $n_j x_j$ in N.

Lemma 4.1

If an mset chain C is maximal in a pomset \mathcal{M} , then C necessarily contains its upper bound.

Proof

Let $\mathcal{M} = (M, \leq \leq)$ be a pomset and let $C = (N, \leq \leq_C)$ be a maximal mset chain in \mathcal{M} . Since *C* is linearly ordered, for some *i* we will have a point $n_i x_i \in N$ such that $n_i x_i \gg n_j x_j$ for all other points $n_j x_j \in N$. This implies that $n_i x_i$ is a maximum point. Suppose a point $m_k x_k \notin N$ is an upper bound for *C*. Now *C* is maximal implies that for any point $m_k x_k \notin N$, we would have either $m_k x_k ||n_i x_i|$ or $m_k x_k \leq n_i x_i$ since $n_i x_i$ is the maximum point.

If $m_k x_k || n_i x_i$, then $m_k x_k$ cannot be an upper bound for *C*.

Now, suppose that $m_k x_k \leq n_i x_i$, by the definition of upper bound we have a contradiction, hence the result.

Theorem 4.2

Let \mathcal{M} be a pomset and let \mathcal{C} be a collection of all maximal mset chains in \mathcal{M} . If K is an mset containing all upper bounds of the elements of \mathcal{C} . Then any two distinct points in K are incomparable.

Proof

Let $C_1, ..., C_n$ be the maximal mset chains in \mathcal{M} . Suppose that $m_1 x_1, m_2 x_2, ..., m_n x_n$ are upper bounds for the mset chains $C_1, C_2, ..., C_n$, then $K = [m_1 x_1, ..., m_n x_n]$.

Let $m_i x_i$ and $m_j x_j$ be distinct points in K, then there exists maximal mset chains C_i and C_j in C such that $m_i x_i$ is an upper bound for C_i and $m_j x_j$ is an upper bound for C_j say.

Now, $C_i \cup [m_j x_j]$ is not an mset chain since C_i is maximal in \mathcal{M} . Similarly, $C_j \cup [m_i x_i]$ is not an mset chain. Assume that $m_i x_i \bowtie m_j x_j$, then either $m_i x_i \prec < m_j x_j$ or $m_j x_j \prec < m_i x_i$ holds.

Suppose $m_i x_i \prec m_j x_j$. Now, $m_i x_i$ is an upper bound for C_i implies that $m_i x_i \ge m_k x_k$ for all other points $m_k x_k \in C_i$. By transitivity, it follows that, $m_j x_j \ge m_k x_k$ for all $m_k x_k \in C_i$, which is a contradiction since C_i is maximal in \mathcal{M} .

A similar argument holds for the case $m_i x_i \prec m_i x_i$ in C_i .

Hence it must be the case that $m_i x_i || m_j x_j$.

Now $m_i x_i, m_j x_j$ are arbitrary points in *K*, therefore, no two points in *K* are comparable.

5 Height and width of pomset

Definition 5.1

The *height* of a pomset \mathcal{M} denoted by \hbar is the number of points in a maximum mset chain in \mathcal{M} . The *width* of a pomset \mathcal{M} denoted by ϖ is the number of points in a maximum mset antichain in \mathcal{M} .

Remark 5.1

The number of mset chains in a chain partitioning of \mathcal{M} can be described in relation to the width of \mathcal{M} . Likewise, the number of mset antichains in an antichain partitioning of a pomset \mathcal{M} can be described with respect to the height of \mathcal{M} . Dilworth's theorem [7], and its dual [14] describe these relationships in the classical setting.

Using the idea of set-based partitioning [10], the next result necessarily guarantees that if the intersection of any mset chain and mset antichain in a pomset is not empty, then its cardinality is at most 1.

Theorem 5.1

Let $\mathcal{M} = (M, \leq \leq)$ be a pomset and let C_i, A_j be mset chains and mset antichains in \mathcal{M} , respectively with $i, j \in \{1, 2, ..., n\}$. Then $|C_i \cap A_j| \leq 1$ for any i, j, if and only if the partitions of the mset antichains are such that each occurrence of the generating object of a point $m_i x_i$ belongs to a different partition i.e. $x_i, x_j \in A_j \Longrightarrow$ $x_i \neq x_j$.

Proof

Assume that $|C_i \cap A_j| \leq 1$. Now, $C_i \cap A_j$ is either empty or has only one point for any i, j. Let the points $l_1 x_1, ..., l_n x_n$ be in A_j , with $l_i \leq m_i$. The case where $|C_i \cap A_j| < 1$ is trivial. Suppose $C_i \cap A_j \neq \emptyset$ and let $l_i x_i$ in A_j be a point in $C_i \cap A_j$. Now $|C_i \cap A_j| \leq 1$ implies that $l_i \geq 1$. Hence it must be the case that $l_i = 1$. We can apply this process inductively on all points $l_1x_1, ..., l_nx_n \in A_j$ since each point $l_ix_i \in A_j$ must belong to a different mset chain C_i . Hence all points in A_j will be of the form l_ix_i with $l_i = 1$. Therefore, $x_i, x_j \in A_j \implies x_i \neq x_j$. Next, assume the converse. Clearly, for each point $l_ix_i \in A_j$, $l_i \ge 1$, otherwise we will have a contradiction. If $C_i \cap A_j = \emptyset$, the result follows. Now assume that $C_i \cap A_j$ is not empty and suppose that $|C_i \cap A_j| > 1$. Then there will be points say $x_1, ..., x_n$ of A_j , with $n \le |A_j|$ in $C_i \cap A_j$. This implies that $x_1, ..., x_n$ are comparable since they are also points in C_i which is a contradiction. Hence $C_i \cap A_j$ is empty or $|C_i \cap A_j| = 1$. Therefore, $|C_i \cap A_j| \le 1$.

Theorem 5.2

Let $\mathcal{M} = (M, \leq \leq)$ be a pomset defined over a partially ordered base set. Then \mathcal{M} can be partitioned into exactly ϖ mset chains where ϖ is the width of the pomset \mathcal{M} .

Proof

The case where \mathcal{M} contains only one point $m_i x_i$ is trivial. Suppose the assertion is true for all pomsets $\mathcal{N}_i, i = 1, 2, ..., k$ with $|\mathcal{N}_i| < |\mathcal{M}|$ for each *i* and let $\mathcal{M} = \mathcal{N}_k \cup [m_i x_i]$, this implies that $|\mathcal{M}| = |\mathcal{N}_k| + |m_i x_i|$. If *A* is an mset antichain in \mathcal{M} containing only one point $m_i x_i$, then the assertion is true. Now assume that *A* contains more than one point and let *C* be a maximal mset chain in \mathcal{M} , then $\varpi - |A| \le width(\mathcal{M} \setminus \mathcal{C}) \le \varpi$. Let *F* be the subpomset $\mathcal{M} \setminus \mathcal{C}$, if *F* has width $\varpi - |A|$, by the induction hypothesis *F* can be partitioned into $\varpi - |A|$ mset chains, together with *C* gives a partition into at most ϖ mset chains. Furthermore, if the pomset \mathcal{M} is partitioned into *n* mset chains then, $n = \varpi$. Observe that since ϖ is the cardinality of a maximum mset antichain, every point in that mset antichain must belong to a different mset chain. Taking $n < \varpi$ will imply that there exist $m_i x_i, m_j x_j \in C_i$ for some *i*, *j* with $m_i x_i ||m_j x_j$, which is a contradiction. Dually, we present an extension of Mirsky's theorem to pomsets as follows:

Theorem 5.3

Let $\mathcal{M} = (M, \leq \leq)$ be a pomset. Then \mathcal{M} can be partitioned into exactly \hbar mset antichains where \hbar is the height of the pomset \mathcal{M} .

Proof

We prove the theorem by induction. If \mathcal{M} is an mset antichain, we have a trivial case. Next, assume that the theorem holds for pomsets of height t where $t < \hbar$. Define \mathcal{H} to be the mset of all maximal points of \mathcal{M} . Clearly \mathcal{H} is an mset antichain in \mathcal{M} and every maximal mset chain in \mathcal{M} contains exactly one point $m_i x_i$ from \mathcal{H} which is also the maximum point in that mset chain. Let \mathcal{B} be the pomset $\mathcal{M}\backslash\mathcal{H}$, height of \mathcal{B} , denoted height (\mathcal{B}), will be $\hbar - (height of \mathcal{H})$. By the induction hypothesis, height (\mathcal{B}) $< \hbar$ implies that \mathcal{B} is partitioned into $\hbar - (height of \mathcal{H})$ mset antichains. Therefore the pomset \mathcal{B} together with \mathcal{H} is partitioned into at most \hbar mset antichains.

Example 5.1

Let $\mathcal{M} = (M, \leq \leq)$ be a pomset and

 $M = [2x_1, 6x_2, 2x_3, 5x_4, 3x_5, x_6]$

Suppose that the ordering $\leq \leq$ on *M* is defined as follows:

 $2x_1 \leq 6x_2, \ 2x_3 \leq 5x_4, \ 2x_1 \leq 3x_5.$

The pomset \mathcal{M} has $\varpi = 4$ and $\hbar = 2$.

Observe that, in an mset chain partitioning of \mathcal{M} , there are 4 mset chains:

 $C_1 = [2x_1, 6x_2], C_2 = [2x_3, 5x_4], C_3 = [3x_5], C_4 = [x_6].$

In view of Theorem 5.1, a set-based antichain partitioning of the pomset gives the following:

 $A_1 = \{x_2, x_4, x_5, x_6\}, A_2 = \{x_2, x_4, x_5\}, A_3 = \{x_2, x_4, x_5\}, A_4 = \{x_2, x_4\}, A_5 = \{x_2, x_4\}, A_6 = \{x_2\}, A_7 = \{x_1, x_3\}, A_8 = \{x_1, x_3\}$

6 Concluding Remarks

It is known that several characterizations exist for the set of maximal antichains of a poset. An interesting problem will be to characterize the maximal mset antichains of a pomset. In view of wide practical applications of msets, a number of mset orderings have been studied in the literature (see [1, 6, 10, 13]). The orderings defined in the aforementioned literatures are exploited in comparing msets in M(S). With further investigations, the ordering $\leq can$ be extended to compare msets in M(S).

References

- Bachmair, L., Dershowitz, N., and Hsiang, J., Orderings for equational proofs, *Proc. IEEE Symp. on Logic in Computer Science*, Cambridge, MA, (1986), 346-357.
- [2] Blizard, W., Multiset theory, Notre Dame Journal of Formal Logic, 30, (1989), 36-66.
- [3] Blizard, W., Negative membership, *Notre Dame Journal of Formal Logic*, **31**, (1990), 346-368.
- [4] Brandt, J., Cycles of partitions, *Proc. American Mathematical Society*, 85, (1982), 483-486.
- [5] Conder, M., Marshall, S., and Slinko, A., Orders on multisets and discrete cones, *Order*, 24, (2007), 277-296.
- [6] Dershowitz, N., and Manna, Z., Proving termination with multiset orderings, *Communications of the Journal of Association for Computing Machinery*, 22, (1979), 465-476.
- [7] Dilworth, R.P., A decomposition theorem for partially ordered sets, *Annals of Mathematics*, **51**(1), (1950), 161-166, doi: 10.2307/1969503.

- [8] Fanchon, J., and Morin, R., Regular sets of pomsets with autoconcurrency, Proceedings of the 13th International Conference on Concurrency Theory, (2002), 402-417.
- [9] Girish, K.P., and Sunil, J.J., General relationship between partially ordered multisets and their chains and antichains, *Mathematical communications*, 14(2), (2009), 193-205.
- [10] Jouannaud, J-P., and Lescanne, P., On multiset orderings, *Information Processing Letter*, 15, (1982), 57-63.
- [11] Kilibarda, G., and Jovovic, V., Antichains of multisets, *Journal of integer sequences*, 7(1), (2004), Article 04.1.5
- [12] Kilibarda, G., Enumeration of certain classes of antichains, *Publications De L'Institut Mathematique*, 97(111), (2015), 69-87.
- [13] Martin, U., A geometrical approach to multiset orderings, *Theoretical Computer Science*, 67, (1989), 37-54.
- [14] Mirsky, L., A dual of Dilworth's decomposition theorem, American Mathematical Monthly, 78(8), (1971), 876-877.
- [15] Pratt, V. R., Modelling concurrency with partial orders, *International Journal of Parallel Programming*, **15**, (1986), 33-71.
- [16] Rensink, A., Algebra and theory of order-deterministic pomsets. *Notre Dame Journal of Formal Logic*, **37**(2), (1996), 283-320.
- [17] Singh, D., Ibrahim, A.M., Yohanna, T., and Singh, J.N., An overview of the applications of multisets, *Novi Sad Journal of Mathematics*, **37**(2), (2007), 73-92.
- [18] Singh, D., and Isah, A. I., Mathematics of multisets: a unified approach, *Afri. Mat.*, 27(1), (2016), 1139-1146.
- [19] Tella, Y., Singh, D., and Singh, J.N., A comparative study of multiset orderings, *International Journal of Mathematics and Statistics Invention*, 2(5), (2014), 59-71.

- [20] Trotter, W.T., Combinatorics and partially ordered sets: Dimension Theory, The Johns Hopkins University Press, 1992.
- [21] Trotter, W.T., Partially ordered sets, in R.L. Graham, M. Grotschel, L. Lovasz (Eds.), Handbook of combinatorics, Elsevier, pp. 433-480, 1995.
- [22] Wildberger, N.J., A new look at multiset, *School of Mathematics, UNSW Sydney 2052, Australia,* (2003).