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Abstract

In this paper, we deal with the local existence and blow-up of solu-
tions for the higher-order nonlinear Kirchhoff-type equation:

utt+(−4)mut+φ(‖∇mu‖2)(−4)mu=g(u), x ∈ Ω, t > 0
in a bounded domain, where m > 1 is a positive integer. At first, we
prove the existence and uniqueness of the local solution by on the Ba-
nach contraction mapping principle, under some conditions and E(u0, u1)
is negative, we investigate the blow-up of solutions in finite time, and
the concavity method is widely used.
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1 Introduction

In this paper, we are concerned with the local existence and blow-up of the

solutions for the higher-type nonlinear Kirchhoff-type equation:

utt + (−∆)mut + φ(‖∇mu‖2)(−4)mu = g(u), x ∈ Ω, t > 0,m > 1, (1.1)

u(x, t) = 0, ∂iu
∂vi = 0, i = 1, 2, . . . ,m− 1, x ∈ ∂Ω, t > 0, (1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.3)

Where Ω is a bounded domain of Rn ,with a smooth Dirichlet boundary ∂Ω

and initial data, m > 1 is a positive integer, φ(s) is a positive local Lipschitz

function and v is the unit outward normal on ∂Ω.

When φ(s) = 1, m = 1, g(u) = |u|pu, the equation (1.1) becomes a nonlin-

ear wave equation:

utt −∆u−∆ut = |u|pu, (x, t) ∈ Ω× [0, +∞), (1.4)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.5)

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, +∞). (1.6)

It has been extensively studied and several results concerning existence and

blowing-up have been established [1-3].

In [4], when φ(s) 6= 1, g(u) = |u|pu, the equation (1.1) becomes the follow-

ing Kirchhoff equation with Lipschitz type continuous coefficient and strong

damping:

utt −M(‖∇u‖2)∆u− ω∆ut = |u|pu, (1.7)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.8)

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (1.9)

where Ω ∈ RN , N ≥ 1 is a bounded domain with a smooth boundary ∂Ω. p > 2

and M(s) = m0+bsr is a positive local Lipschitz function. Here, m0 > 0, b ≥ 0,

r ≥ 1, s ≥ 0. It has been studied and several results concerning existence and

blowing-up have been established.

In [5], Perikles G. Papadopoulos-Nikos M. Stavrakakis study the following

degenerate nonlocal quasilinear wave equation of Kirchhoff type with a weak

dissipative term

utt − φ(x)‖∇u(t)‖24u + δut = |u|αu, x ∈ RN , t ≥ 0, (1.10)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ RN , (1.11)
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with initial conditions u0, u1 in appropriate function spaces, N ≥ 3, and δ ≥ 0.

Throughout the paper they assume that the functions φ and g : RN → R

satisfy the following condition:

φ(x) > 0, for all x ∈ RN and (φ(x))−1 =: g(x) ∈ LN/2(RN) ∩ L∞(RN).

Their conclusion show that when the initial energy E(u0, u1) is non-negative

and small, there exists a unique global solution in time, when the initial energy

E(u0, u1) is negative, the solution blows-up in finite time. In their work, a

combination of the modified potential well method and the concavity method

is widely used.

In [6], Fucai Li investigate global existence and blow-up properties of the

solution for the following higher-order Kirchhoff-type equation with nonlinear

dissipation:

utt + (
∫
Ω
|Dmu|2dx)q(−4)mu + ut|ut|r = |u|pu, x ∈ Ω, t > 0 (1.12)

u(x, t) = 0, ∂iu
∂vi = 0, i = 1, 2, . . . ,m− 1, x ∈ ∂Ω, t > 0, (1.13)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.14)

where Ω ⊂ RN(N ≥ 1) is a bounded open domain with smooth boundary, v

is the outer norm vector; m > 1 is a positive integer, q, p, r > 0 are positive

constants.

they obtain that the solution exists globally if p ≤ r, while if p > maxr, 2q,

then for any initial data with negative initial energy, the solution blows up at

finite time in Lp+2 norm. For results of the same nature, we refer the reader

to [7-10] and the references therein.

But, for (1.12)-(1.14) Salim A. Messaoudi and Belkacem Said Houari have

different conclusion in [11] ,they improve Li’s result and show that certain

solutions with positive initial energy also blow up in finite time.

In the present work, we prove the existence and uniqueness of the local

solution by on the Banach contraction mapping principle. In particular, in the

process of proof about the blow-up solution of (1.1)-(1.3), we first improve the

blow-up condition about positive second order continuous differentiable func-

tion ψ(t), the blow-up condition was first given by Fajita, about the content of

the blow-up condition we can see[12], then we use the new blow-up condition

to prove the blow-up of solution for (1.1)-(1.3).

The content of the paper is organized as follows. In section 2, we give some

hypotheses and lemmas. In section 3, we prove the existence and uniqueness of
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the local solution by on the Banach contraction mapping principle. In section

4, we investigate the blow-up properties of solution and estimate the blow-up

time T ∗.

2 Preliminaries

For convenience, we first introduce the following notations: we define

Hm
0 (Ω) = {u ∈ Hm(Ω) : ∂iu

∂vi = 0, i = 0, 1, . . . ,m − 1}, D = ∇, D2m = (−4)m

, ‖.‖Hm = ‖.‖Hm(Ω), ‖.‖Hm
0

= ‖.‖Hm
0 (Ω), ‖.‖ = ‖.‖L2(Ω), ‖.‖p = ‖.‖Lp(Ω) for any

real number p > 1.

Now, we give the general hypotheses

A(1) Let g(u) be a nonlinear C1-function such that

|g(u)| ≤ k0|u|p+1, |f ′(u)| ≤ k1|u|p, (2.1)

where k0, k1 ≥ 0.

A(2) For the nonlinearity , we suppose that

0 ≤ p < +∞, if0 ≤ n ≤ 2m; 0 ≤ p ≤ 4m
n−2m

, ifn > 2m. (2.2)

(A3) we suppose that φ(s) is a positive local Lipschitz function

φ(s) = a + bs
r
2 , r > 1, (2.3)

for briefness, we suppose a = b = 1.

Lemma 2.1(Sobolev-Poincare inequality[12,13]) Let s be a number with

2 ≤ s < +∞, n < 2m and 2 ≤ s ≤ 2m
n−2m

, n > 2m. Then there is a constant

K depending on Ω and s such that

‖u‖s ≤ K‖(−4)
m
2 u‖,∀u ∈ Hm

0 (Ω). (2.4)
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3 Local existence of solution

In this section, we will consider the local existence of the solution for the

problem (1.1)-(1.3) by the similar arguments as in [14,15].

Theorem 3.1. Suppose that (A1)−(A3) hold, and for any given (u0, u1) ∈
H2m(Ω)∩Hm

0 (Ω)×L2(Ω), then there exists T > 0 such that the problem (1.1)-

(1.3) has a unique local solution satisfying

u ∈ C0([0, T ); H2m(Ω) ∩Hm
0 (Ω)),

ut ∈ C0([0, T ); L2(Ω)) ∩ L2(0, T ; Hm
0 (Ω)), (3.1)

moreover, at least one of the following statements holds: (1) T = +∞; (2)

‖ut‖2 + ‖D2mu‖2 → +∞, as t → T−.

Proof. To apply Banach contraction mapping principle, we introduce the two

parameter space of solutions

XT,R =:{v ∈ C0([0, T ); H2m(Ω) ∩Hm
0 (Ω)), vt ∈ C0([0, T );

L2(Ω)) ∩ L2(0, T ; Hm
0 (Ω)) :

e1(v(t)) ≤ R2, t ∈ [0, T ], v(0) = u0, vt(0) = u1},

where T > 0 and R > 0, e1(v(t)) = ‖D2mv‖2 + ‖vt‖2, then XT,R is a complete

metric space under the distance

d(v1, v2) = sup
0≤t≤T

e1(v1(t)− v2(t)). (3.2)

Next, we define the non-linear mapping S in the following way. Given

v ∈ XT,R, u = Sv is the unique solution of the following equation:

utt + (−∆)mut + φ(‖∇mv‖2)(−4)mu = g(v), x ∈ Ω, t > 0,m > 1, (3.3)

u(x, t) = 0, ∂iu
∂vi = 0, i = 1, 2, . . . ,m− 1, x ∈ ∂Ω, t > 0, (3.4)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (3.5)

We shall show that there exist T > 0 and R > 0 such that

(i) S maps XT,R into itself;

(ii) S is a contraction mapping with respect to the metric d(., .).
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first, we shall check (i). We multiply equation (3.4) by 2ut, and integrating

it over Ω, to get

de2(u(t))

dt
+ 2‖Dmut‖2

= ‖Dmu‖2 d

dt
(1 + ‖Dmv‖r) + (g(v), 2ut)

= I1 + I2,

(3.6)

where e2(u(t)) = ‖ut‖2 + (1 + ‖Dmv‖r)‖Dmu‖2. According to Lemma 2.1, for

v ∈ XT,R, we have

I1 = ‖Dmu‖2 d

dt
(1 + ‖Dmv‖r)

= ‖Dmu‖2 d

dt
‖Dmv‖r

= r‖Dmu‖2‖Dmv‖r−2

∫

Ω

D2mv.vtdx

≤ r‖Dmu‖2‖Dmv‖r−2‖D2mv‖‖vt‖
≤ rKr−2Rr‖Dmu‖2

≤ rKr−2Rre2(u(t)).

(3.7)

According to A(1) and A(2), then

I2 = (g(v), 2ut)

≤ 2k0|
∫

Ω

|v|p+1utdx|

≤ 2k0‖ut‖‖v‖p+1
2p+2

≤ 2k0K
2p+2Rp+1‖ut‖

≤ 2k0K
2p+2Rp+1(e2(u(t)))

1
2 .

(3.8)

Combining (3.7)-(3.9), we get

de2(u(t))
dt

+ 2‖Dmut‖2 ≤ rKr−2Rre2(u(t)) + 2k0K
2p+2Rp+1(e2(u(t)))

1
2 .(3.9)

Integrating (3.10) over [0, T ] and by Gronwall inequality, to get

e2(u(t)) + 2
∫ T

0
‖Dmut(s)‖2ds ≤ [(e2(u(0)))

1
2 + 2k0K

2p+2Rp+1T ]2erKr−2RrT ,(3.10)
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where e2(u(0)) = ‖u1‖2 + (1 + ‖Dmu0‖r)‖Dmu0‖2. So, for all t ∈ [0, T ], we

have

e1(u(t)) + 2

∫ T

0

‖Dmut(s)‖2ds

≤ e2(u(t)) + 2

∫ T

0

‖Dmut(s)‖2ds

≤ [(‖u1‖2 + (1 + ‖Dmu0‖r)‖Dmu0‖2)
1
2 + 2k0K

2p+2Rp+1T ]2erKr−2RrT .

(3.11)

Therefore, in order to that the map S verifies (1), it will be enough that the

parameters T and R satisfy:

[(‖u1‖2 + (1 + ‖Dmu0‖r)‖Dmu0‖2)
1
2 + 2k0K

2p+2Rp+1T ]2erKr−2RrT ≤ R2 (3.12)

Moreover, it follows from (3.12) that ut ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; Hm
0 (Ω))

and u ∈ L∞(0, t; H2m(Ω) ∩Hm
0 (Ω)). It implies

u ∈ C0([0, T ]; H2m(Ω) ∩Hm
0 (Ω)), ut ∈ C0([0, T ];

L2(Ω)) ∩ L2(0, T ; Hm
0 (Ω)). (3.13)

Next, (ii) will be proved. Suppose that (3.13) holds. We take v1, v2 ∈ XT,R,

let u1 = Sv1, u2 = Sv2, and set ω = u1 − u2. Then ω satisfies

ωtt + (−4)mωt + (1 + ‖Dmv1‖r)(−4)mω =

= −(‖Dmv1‖r − ‖Dmv2‖r)(−4)mu2 + g(v1)− g(v2) (3.14)

ω(x, t) =
∂iω

∂vi
= 0, i = 1, 2, . . . , m− 1, (x, t) ∈ ∂Ω× [0, T ], (3.15)

ω(x, 0) = 0, ωt(x, 0) = 0, x ∈ Ω. (3.16)

Multiplying (3.15) by 2ωt and integrating it over Ω and using Green’s formula,

we obtain

d

dt
[‖ωt‖2 + (1 + ‖Dmv1‖r)‖Dmω‖2] + 2‖Dmωt‖2 =

= ‖Dmω‖2 d

dt
(1 + ‖Dmv1‖r)−

− 2(‖Dmv1‖r − ‖Dmv2‖r)(D2mu2, ωt) + 2(g(v1)− g(v2), ωt)

= I3 + I4 + I5. (3.17)

By Lemma 2.1 observe that

I3 = ‖Dmω‖2 d
dt

(1 + ‖Dmv1‖r) ≤ rKr−2Rre1(ω(t)). (3.18)
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I4 = −2(‖Dmv1‖r − ‖Dmv2‖r)(D2mu2, ωt)

≤ r[θ‖Dmv1‖2 + (1− θ)‖Dmv2‖2]
r
2
−1×

(‖Dmv1‖+ ‖Dmv2‖)‖Dm(v1 − v2)‖‖D2mu2‖‖ωt‖
≤ 2rKrRr[e1(v1(t)− v2(t))]

1
2 [e1(ω(t))]

1
2 ,

(3.19)

where 0 < θ < 1.

I5 = 2(g(v1)− g(v2), ωt))

≤ 2k0

∫

Ω

(|v1|p + |v2|p)|v1 − v2||ωt|dx

≤ 2k0(‖v1‖p
np + ‖v2‖p

np)‖v1 − v2‖ 2n
n−2
‖ωt‖

≤ 4k0K
2p+2Rp‖D2m(v1 − v2)‖‖ωt‖

≤ 4k0K
2p+2Rp[e1(v1(t)− v2(t))]

1
2 [e1(ω(t))]

1
2 .

(3.20)

Inserting I3, I4 and I5 into (3.18), we get

de2(ω(t))

dt
≤ rKrRre1(ω(t)) + (2rKrRr + 4k0K

2p+2Rp)[e1(v1(t)− v2(t))]
1
2 [e1(ω(t))]

1
2

≤ rKrRre2(ω(t)) + (2rKrRr + 4k0K
2p+2Rp)[e2(v1(t)− v2(t))]

1
2 [e2(ω(t))]

1
2 ,

(3.21)

where e2(ω(t)) = ‖ωt‖2 + (1 + ‖Dmv1‖r)‖Dmω‖2.

Applying the Gronwall inequality, we obtain

e2(ω(t)) ≤ (2rKrRr + 4k0K
2p+2Rp)T 2erKrRrT sup

0≤t≤T
e1(v1(t)− v2(t)). (3.22)

So, we have

sup
0≤t≤T

e1(u1(t)− u2(t)) ≤ CT,R sup
0≤t≤T

e1(v1(t)− v2(t)), (3.23)

where CT,R = (2rKrRr + 4k0K
2p+2Rp)T 2erKrRrT . If CT,R < 1, we can see S

is a contraction mapping. Then we choose suitable R is sufficiently large and

T is sufficiently small, such that (i) and (ii) hold. By applying Banach fixed

point theorem, we get the local existence.

The second statement of the theorem is proved by a standard continuation

argument(see [14]). The proof of the theorem is now completed.
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4 Blow-up of solution

In this section we consider the blowing-up property of the solution of the

initial value problem (1.1)-(1.3), we give the following definition and lemma.

Now, we define the energy function E(u(t)) of the solution u of (1.1)-(1.3)

by

E(t) =: E(u(t)) = 1
2
‖ut‖2 + 1

2
‖Dmu‖2 + 1

r+2
‖Dmu‖r+2 − ∫

Ω
G(u)dx, (4.1)

where G(u) =
∫ u

0
g(η)dη.

Lemma 4.1. Suppose that ψ(t) is a nonnegative C2(0, +∞) function, as

t > 0, satisfying inequality

α(ψ′(t))2 − ψ′′(t)− 2C1ψ
′(t) ≤ C2, (4.2)

where α > 0, C1, C2 ≥ 0, then as ψ(0) > 0, ψ′(0) > −α−1r2, C1 + C2 > 0, we

have

ψ(t) →∞(t → t1), (4.3)

where t1 ≤ t2 = 1

2(C2
1+αC2)

1
2

ln r1ψ(0)+αψ′(0)
r2ψ(0)+αψ′(0)

, r1 = −C1 + (C2
1 + αC2)

1
2 , r2 =

−C1 − (C2
1 + αC2)

1
2 .

If ψ(0) > 0, ψ′(0) > 0, C1 = C2 = 0, then

ψ(t) →∞(t → t1 ≤ t2 = ψ(0)
αψ′(0)

). (4.4)

Proof. Let Φ(t) = e−αψ(t), then

Φ′(t) = e−αψ(t) · (−αψ′(t))

Φ′′(t) = e−αψ(t) · (−αψ′(t))2 + e−αψ(t) · (−αψ′′(t)) = α2e−αψ(t)(ψ′(t))2 − αe−αψ(t)ψ′′(t)

Φ′′(t) + 2C1Φ
′(t)− αC2Φ(t)

= α2e−αψ(t)(ψ′(t))2 − αe−αψ(t)ψ′′(t) + 2C1e
−αψ(t) · (−αψ′(t))− αC2e

−αψ(t)

= αe−αψ(t)[α(ψ′(t))2 − ψ′′(t)− 2C1ψ
′(t)− C2].

(4.5)

Let f(t) = α(ψ′(t))2 − ψ′′(t)− 2C1ψ
′(t)− C2, so we have

Φ′′(t) + 2C1Φ
′(t)− αC2Φ(t) ≡ f(t) ≤ 0. (4.6)



10 Local existence and Blow-up of solutions ...

For C1 + C2 > 0 this situation, we can calculate the solution of (4.6)

Φ(t) = β1e
r1t + β2e

r2t +
1

r1 − r2

∫ t

0

f(s)[er1(t−s) − er2(t−s)]ds

≤ β1e
r1t + β2e

r2t,

(4.7)

where r1, r2 are the eigenvalues of Φ′′(t) + 2C1Φ
′(t)− αC2Φ(t) = 0, and β1, β2

satisfying {
β1 + β2 = Φ(0)

β1r1 + β2r2 = Φ′(0).

Hence,

β1 = (r1 − r2)
−1[Φ′(0)− r2Φ(0)] = −(r1 − r2)

−1[αψ′(0) + r2]e
−αψ(0)

β2 = [1 + (r1 − r2)
−1(αψ′(0) + r2)]e

−αψ(0)

At the same time, we let Φ(t2) = 0, then t2 = 1

2(C2
1+αC2)

1
2

ln r1ψ(0)+αψ′(0)
r2ψ(0)+αψ′(0)

.

To sum up, we can know, Φ(t) → 0, as t1 ≤ t2, t → t1, i.e., ψ(t) → ∞.

(4.4) still hold when C1 = C2 = 0.

Theorem 4.1. Suppose that (A1) − (A3) hold, then for any initial data

(u0, u1) ∈ H2m(Ω) ∩Hm
0 (Ω)×Hm

0 (Ω), the solution of (1.1) blows up provided

that E(0) < 0.

Proof. ¿From (4.1), we can get

E ′(t) = −2‖Dmut‖2, (4.8)

i.e., E(t) is a decreasing function satisfying

E(t) ≤ E(0) < 0. (4.9)

Next,we introducing the function F (t) = 1
2
‖u‖2 for any solution u, then we

have that

F ′(t) =
∫
Ω

uutdx. (4.10)

Now, we define

H(t) =
∫ t

0
(−E(t))dt + F (t). (4.11)
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Next, our goal is to prove H(t) satisfying (4.2), and using the proof of

Lemma 4.1 to estimate the lifespan T ∗

H ′(t) = −E(t) + F ′(t)

= −E(t) +

∫

Ω

uutdx ≤ −E(t) +
1

2
‖u‖2 +

1

2
‖ut‖2. (4.12)

H ′′(t) = −E ′(t) + F ′′(t)

= −E ′(t) +

∫

Ω

uuttdx +

∫

Ω

ututdx (4.13)

= 2‖Dmut‖2 + ‖ut‖2 +

∫

Ω

uuttdx, (4.14)

where
∫

Ω

uuttdx =

∫

Ω

u[g(u)− (1 + ‖Dmu‖r)(−4)mu− (−4)mut]dx

= (u, g(u))− ‖Dmu‖2 − ‖Dmu‖r+2 −
∫

Ω

u(−4)mutdx

≤ k0‖u‖p+2 − ‖Dmu‖2 − ‖Dmu‖r+2 −
∫

Ω

u(−4)mutdx,

(4.15)

where

|
∫

Ω

u(−4)mutdx| ≤ ‖Dmu‖‖Dmut‖

≤ 1

4(2 + K)
‖Dmu‖2 + (2 + K)‖Dmut‖2. (4.16)

So, adding (4.14),(4.15) into (4.13), we can get

H ′′(t) ≤ k0‖u‖p+2 − 9 + 4K

8 + 4K
‖Dmu‖2 − ‖Dmu‖r+2. (4.17)

As t ∈ [0, T ], H ′(t), H ′′(t) are bounded values, and H ′(t) ≤ C1(t), H ′′(t) ≤
C2(t), so, we have

α(H ′(t))2 −H ′′(t)− 2C1H
′(t) ≤ C2. (4.18)

Then according to Lemma 4.1, we can get the lifespan T ∗

T ∗ = 1

2(C2
1+αC2)

1
2

ln r1H(0)+αH′(0)
r2H(0)+αH′(0)

i.e., the solution of (1.1)-(1.3) blows up, as t ≤ T ∗.
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