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Predicting Inflation Rates Of Nigeria Using A
Seasonal Box-Jenkins Model

Ette Harrison Etuk?

Abstract

Time series analysis of Nigerian monthly Inflation Rates (INFL) Data is done. It is
observed that it is seasonal. Based on its autocorrelation structure as depicted by
the correlogram, the multiplicative seasonal autoregressive integrated moving
average (ARIMA) model, (1, 1, 0)x(0, 1, 1)1, is fitted to the series. The model is
shown to be adequate and the 2012 forecasts are obtained on the basis of it. These
forecasts are shown to agree closely with the observations.
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1 Introduction

A time series has the property that neighbouring values are correlated. This
tendency is called autocorrelation. It is said to be stationary if it has a constant
mean, constant variance and autocorrelation that is a function of the lag separating
the correlated values. The autocorrelation expressed as a function of the lag is
called the autocorrelation function (ACF).

A stationary time series {X:} is said to follow an autoregressive moving
average model of orders p and q (denoted by ARMA(p,q) ) if it satisfies the
following difference equation
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Xi+tay X g +a,X ,+o+a X =&+ pie+ g o+t 6, 1)
or
A (L)Xi= B(L)e& 2

where {&} is a sequence of uncorrelated random variables with zero mean and
constant variance, called a white noise process, and the o;’s and p;’s constants;

AL)=1+al +opl®+ ... + opL?
and
B(L)=1+BiL + Bol® + ... + BL®

and L is the backward shift operator defined by LX; = X

If p=0, model (1) becomes a moving average model of order g (denoted by
MA(Q)). If, however, q=0 it becomes an autoregressive process of order p
(denoted by AR(p)). An AR(p) model of order p may be defined as a model for
which a current value of the time series X; depends on the immediate past p values:
X1, Xt2, ..., X-p . On the other hand an MA(q) model of order q is whereby the
current value X; is a linear combination of the immediate past q values of the
white noise process: €. 1, & 2, ..., & . Besides stationarity, invertibility is another
important requirement for a time series. It refers to the characteristic whereby the
covariance structure of the series is unique (Priestley, 1981). In addition it makes
meaningful association of current events with the past history of the series
possible (Box and Jenkins, 1976).

An AR(p) model can be put more specifically:

X+ Olplxt-l + OCpZXt-Z R Otppxt-p =&t

Then the sequence of the last coefficients{a.i} is called the partial autocorrelation
function(PACF) of {X}. The ACF of an MA(q) model cuts off after lag q
whereas that of an AR(p) model is a mixture of sinusoidals tailing off slowly. On
the other hand the PACF of an MA(q) model tails off slowly whereas that of an
AR(p) model tails off after lag p.
AR and MA models are known to have some duality characteristics. These
include:
1. Afinite order of the one type is equivalent to an infinite order of the other
type.
2. The ACF of the one type exhibits the same behaviour as the PACF of the
other type.
3. An AR model is always invertible but is stationary if A (L) = 0 has zeros
outside the unit circle.
4.  An MA model is always stationary but is invertible if B (L) =0 has zeros
outside the unit circle.

Parametric parsimony consideration in model building entails preference for the
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mixed ARMA fit to either the pure AR or the pure MA fit. Stationarity and
invertibility conditions for model (1) or (2) are that the equations A (L) = 0 and
B (L) = 0 should have roots outside the unit circle respectively.

Often, in practice, a time series is non-stationary. Box and Jenkins (1976)
proposed that differencing of an appropriate order could render a non-stationary
series {X;} stationary. Suppose the degree of differencing necessary for
stationarity is equal to d.  Such a series {X;} may be modelled as

((1+Zp:aiB‘) VX = B (L) (3)

i=1

LI

where V = 1 - L and in which case A (L) =(1+) aB')V® =0 shall have unit
i=1

roots d times. Then differencing to degree d renders the series stationary. The

model (3) is said to be an autoregressive integrated moving average model of

orders p, d and g and denoted by ARIMA(p, d, q).

1.1 Seasonal ARIMA Models

A time series is said to be seasonal of order d if it has a tendency to exhibit
periodic behaviour after every time interval d. Traditional time series analysis
involves the identification, disintegration and estimation of the traditional
components: secular trend, seasonal component, cyclical component and the
irregular movement. For the purpose of making forecasts, they are reintegrated.
Such techniques could be quite misleading.

The time series {X} is said to follow a multiplicative (p, d, qQ)x(P, D, Q)s
seasonal ARIMA model if

A(L)D(L)VIVEX, =B(L)O(L)e, (4)

where @ and ® are polynomials of order P and Q respectively. That is,
DO(L°) =1+ 4L +...+ 4, L, (5)
O(L) =1+6L° +..+6,L°%, (6)

where the ¢ and @, are constants such that the zeros of the equations (5) and

(6) are all outside the unit circle for stationarity and invertibility respectively. ®(L°)
represents the seasonal autoregressive operator whereas ®(L°) represents the
seasonal moving average operator.

A seasonal nature is often apparent from the time plot. Moreover for a
seasonal series the ACF or correlogram exhibits a spike at the seasonal lag. Box
and Jenkins (1976) and Madsen (2008) are a few authors that have written
extensively on such models. A knowledge of the theoretical properties of the
models provides basis for their identification and estimation. The purpose of this
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paper is to fit a seasonal ARIMA model to Nigerian Inflation Rate (INFL) series.
Earlier work on Nigerian Inflation rates includes those by Abidemi and Maliq
(2010), Olatunji et al (2010) and Chiakwelu (2012). Whereas Abidemi and Maliq
(2010) think that the inflation rates are stationary, Olatunji et al (2010) think
otherwise. The graph of the inflation rates from 1990 to 2010 given by Chiakwelu
(2012) corroborates the opinion of Olatunji et al. There is perhaps no known
attempt to model Nigerian inflation rates by a seasonal ARIMA model.

2 Materials and Methods

The data for this work are inflation rates — All items (Year on Change)- from
2003 t02011 obtainable from the Data and Statistics publication of Central Bank
of Nigeria retrievable from the website http://www.cenbank.org/.

2.1 Determination of the ordersd, D, p, P, gand Q

Seasonal differencing is necessary to remove the seasonal trend. If there is
secular trend non-seasonal differencing will be necessary. To avoid unnecessary
model complexity it has been advised that orders of differencing d and D should
add up to at most 2 (i.e. d + D < 3). If the ACF of the differenced series has a
positive spike at the seasonal lag then a seasonal AR component is suggestive; if it
has a negative spike then a seasonal MA term is suggestive.

As already mentioned above, an AR(p) model has a PACF that truncates at

lag p and an MA(q)) has an ACF that truncates at lag g. In practice ii, where
n
n is the sample size are the non-significance limits for both functions.

2.2 Model Estimation

The involvement of the white noise terms in an ARIMA model necessitates a
nonlinear iterative process in the model estimation. An optimization criterion
like the least squares, maximum likelihood or maximum entropy is used. An initial
estimate is usually used and each iteration is expected to be an improvement of the
previous one until the estimate converges to an optimal one. However, for pure
AR and pure MA models linear optimization techniques exist (See for example
Box and Jenkins (1976), Oyetunji (1985)). There are attempts to propose linear
methods to estimate ARMA models (See for example, Etuk (1987,1998)). We
shall use Eviews software which employs the least squares approach to analyze
the data.
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2.3 Diagnostic Checking

The model that is fitted to the data should be tested for goodness-of-fit. To do
this we shall do some residual analysis. In particular we shall plot the histogram of
the residuals and their correlogram. If the model is correct, the residuals would be
uncorrelated and would follow a normal distribution with mean zero and constant
variance. Assuming an adequate model, the autocorrelations of the residuals
should therefore not be significantly different from zero.

3 Results and Discussion

The time plot of the original series INFL in Figurel shows no clear secular
trend nor seasonality. Seasonal (i.e. 12-month) differencing of the series produces
a series SDINFL also with no trend nor clear seasonality (see Figure 2).
Non-seasonal differencing yields a series DSDINFL with no trend and no clear
seasonality (see Figure 3). Its ACF in Figure 4 has spikes at lags 1 and 12
revealing a seasonality of lag 12. The spike at lag 12 is negative indicating the
involvement of a seasonal MA component of order one. The PACF has a spike at
lag 1 indicating a nonseasonal AR component of order one.
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Figure 1: INFL
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Figure 2: SDINFL
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Figure 3: DSDINFL
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Autocorrelation Partial Correlation AC PAC Q-Stat Prob

0.212 0212 44230 0.035
0.081 0037 50671 0.079
0.079 0057 56852 0128
0132 0171 74598 0113
0.050 0005 7.7181 0172
-0.080 -0.084 83772 0.212
-0.088 -0.034 91877 0.239
0.068 0088 9.6801 0.288
-0.139 0176 11.758 0.227
10 -0.185 -0.152 15464 0.116
11 -0.181 -0.155 19.064 0.060
12 -0.461 -0.406 42662 0.000
13 -0.085 0.046 43543 0.000
14 0.012 0.008 43566 0.000
15 0.007 -0.007 43571 0.000
16 0137 -0.039 45757 0.000
17 0178 0120 494396 0.000
18 0157 0.056 52464 0.000
19 0.100 -0.015 53.677 0.000
20 0.007 0.020 53.684 0.000
21 0.091 -0.021 54.707 0.000
22 0.088 -0.042 55683 0.000
23 0.038 -0.045 55866 0.000
24 -0.015 -0.242 55894 0.000
25 0.015 0.063 55.923 0.000
26 -0.046 -0.011 56.203 0.001
27 -0.012 0106 56.224 0.001
28 -0.125 -0.077 58.377 0.001
29 -0113 0.085 60145 0.001
30 -0.052 0051 60.522 0.001
31 -0.086 -0.059 61.587 0.001
32 -0.041 -0.006 61.830 0.001
33 0.011 0009 &1.847 0.002
34 0072 0065 62626 0.002
3R 0052 -00R4 B3I 042 0003

Figure 4: Correlogram of DSDINFL
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We hereby propose the following (1, 1, 0)x(0, 1, 1);> model

DSDINFL; = 0yDSDINFL.; + B12et12 + & (7)
The estimation of the model is summarized in Table 1. The model is given by
DSDINFL; = 0.2023DSDINFL.; — 0.8858¢.1, + & (8)

(+0.0672) (+0.0255)
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The estimation involved 20 iterations. Both coefficients are significantly
different from zero, each being more than twice its standard error. As much as
65% of the variation in DSDINFL is accounted for by the model. The histogram
of the residuals in Figure 5 shows that the residuals are normally distributed with
zero mean indicating model adequacy; the mean of -0.16 is not significantly
different from zero given a standard deviation of 2.1 by t-test. Moreover the
correlogram of the residuals in Figure 6 depicts the adequacy of the model.
Virtually all the residual autocorrelations are not significantly different from zero.

Table 1: Model Estimation

Dependent Variable: DSDIMFL

Method: Least Squares

Date: 02/07/12 Time: 21:15

Sample(adjusted): 2004:03 2011:12

Included observations: 94 after adjusting endpoints
Convergence achieved after 20 iterations
Backcast: 2003:03 2004:02

Variable Coefficient Std. Error  t-Statistic Prob.
AR(T) 0.202287 0.067199 3.010279 0.0034
MA[12) -0.885827 0.025458  -34.79528 0.0000
R-sguared 0645616 Mean dependent var -0.202123
Adjusted R-squared 0641764 5.D. dependent var 3.620015
S.E. of regression 2.166682 Akaike info criterion 4.405318
Sum sqguared resid 431.8951 Schwarz criterion 4 459431
Log likelihood -205.0500 F-statistic 167.6052
Durbin-VWatson stat 1.888246 Prob(F-statistic) 0.000000
Inverted AR Roots .20
Inverted MA Roots .99 .86+ 49i .86 -.48i 49+ _86i
49 -861  -.00-.99i - 00+ 99i - 49 - 86i
- 49+ 861 -.86+.49i -.86 -.49i -.99

16

Series: Residuals
Sample 2004:03 2011:12
Observations 94

Mean -0.168401
Median -0.017137
Maximum 7.977948
Minimum -6.163596
Std. Dev. 2.148341
Skewness -0.108858
Kurtosis 5.376043

Jarque-Bera 2229751
Probability 0.000014

8 4 2 0 2 4 B8 8
Figure 5: Histogram of residuals
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Autocorrelation Partial Correlation

AC

PAC

Q-Stat  Prob

W00 = O Mo L) R —

0.038
0.016

-0.029
-0.059
-0.003
-0.089

0.032
0.055

-0.031
0.123
-0.088
-0.241
-0.035
-0.019

0.060

-0.044

0.095
0.092
0.055
0.053
0.002
0.074
0.002

-0.076

0.009

-0.045

0.083

-0.063
-0.004

0.032

-0.132
-0.028
-0.030

0.095

0.038
0.014
-0.030
-0.087
0.002
-0.088
0.036
0.0583
-0.042
-0.132
0.073
0.245
-0.032
-0.029
0.029
0110
0.096
0.060
0.071
0.056
0.000
0.002
0.017
-0.136
-0.007
0.078
0.121
-0.087
0.093
0.072
-0.087
-0.004
0.012
0.079

01417

0.1666

0.2505 0.617
0.5942 0.743
0.5955 0.897
1.3988 0.844
1.5055 0.912
1.8253 0.935
1.9298 0.964
3.5513 0.89%
4.3921 0.884
10.784 0.374
10.927 0.44%
10.969 0.532
11.377 0.579
11.588 0.639
12.654 0.629
13.667 0.624
14.033 0.664
14.378 0.704
14.378 0.761
15.065 0.773
15.066 0.820
15816 0.824
15.826 0.863
16.100 0.884
17.039 0.880
17.573 0.891
17.575 0.916
17.722 0.933
20.207 0.886
20.320 0808
20453 0.8926
21811 0..12

Figure 6: Correlogram of the residuals

4 Forecasting
For the model (7) at time t+k we have

Xirk = 01 Xtsk-1 + P1o€t+-12 + €tk

Obtaining conditional expectations given the series up to time t, we have

XAt(l) = o X+ P& 0

35
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XAt(k) = alX\t(k ~D+ B K22

where )Zt (k) is the k-step ahead forecast from time t.

The 2012 forecasts are given in Table 2. With the actual observed values for
the first seven months of the year being 12.6, 11.9, 12.1, 12.9, 12.7, 12.9 and 12.8
respectively, the chi-square goodness-of-fit test statistic is equal to 4.1132 which
with a p-value of greater than 0.5 is not statistically significant. This further shows
that the model is adequate.

TIME RESIDU DSDINFL SDINFL INFL
ALS

December 2010 -1.26140 -25 2.1 11.8
January 2011 0.3899 -0.2 -2.3 121
February 2011 -1.34231 -2.2 -4.5 111
March 2011 1.70871 25 -2.0 12.8
April 2011 -1.39008 -1.7 -3.7 11.3
May 2011 1.30454 3.2 -0.5 12.4
June 2011 -2.39750 -3.4 -3.9 10.2
July 2011 0.10659 0.3 -3.6 9.4
August 2011 -0.29539 -0.8 -4.4 9.3
September 2011 1.21624 11 -3.3 10.3
October 2011 -0.81674 0.4 -2.9 10.5
November 2011 0.46909 0.6 -2.3 10.5
December 2011 -0.43875 0.8 -15 10.3
January 2012 -0.40 -1.90 10.2
February 2012 1.11 -0.79 10.3
March 2012 -1.29 -2.08 10.7
April 2012 0.97 -1.11 10.2
May 2012 -0.96 -2.07 10.3
June 2012 1.93 -0.14 10.1
July 2012 0.30 0.16 9.6
August 2012 0.32 0.48 9.8
September 2012 -1.01 -0.53 9.8
October 2012 0.52 -0.01 10.5
November 2012 -0.31 -0.32 10.2
December 2012 0.33 0.01 10.3

5 Conclusion

The INFL series has been shown to follow a (1, 1, 0)x(0, 1, 1)1, model. This
model has been shown to be adequate. On the basis of the model 2012 forecasts
have been obtained. These forecasts have been shown to agree very closely with
the observed values of the year.
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