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Abstract 

Time series analysis of Nigerian monthly Inflation Rates (INFL) Data is done. It is 
observed that it is seasonal. Based on its autocorrelation structure as depicted by 
the correlogram, the multiplicative seasonal autoregressive integrated moving 
average (ARIMA) model, (1, 1, 0)x(0, 1, 1)12,  is fitted to the series. The model is 
shown to be adequate and the 2012 forecasts are obtained on the basis of it. These 
forecasts are shown to agree closely with the observations.  
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1  Introduction  
A time series has the property that neighbouring values are correlated. This 

tendency is called autocorrelation. It is said to be stationary if it has a constant 
mean, constant variance and autocorrelation that is a function of the lag separating 
the correlated values. The autocorrelation expressed as a function of the lag is 
called the autocorrelation function (ACF).   

A stationary time series {Xt} is said to follow an autoregressive moving 
average model of orders p and q (denoted by ARMA(p,q) ) if it satisfies the 
following difference equation 
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or 

   (L)Xt =  (L)t              (2)  

where {t} is a sequence of uncorrelated random variables with zero mean and 
constant variance, called a white noise process, and the i’s and j’s constants;  

 (L) = 1 + 1L + 2L
2 + ... + pL

p  

and  

 (L) = 1 + 1L + 2L
2 + ... + qL

q  

and L is the backward shift operator defined by LkXt = Xt-k.  
If p=0, model (1) becomes a moving average model of order q (denoted by 

MA(q)). If, however, q=0 it becomes an autoregressive process of order p 
(denoted by AR(p)). An AR(p) model of order p may be defined as a model for 
which a current value of the time series Xt depends on the immediate past p values: 
Xt-1, Xt-2, ..., Xt-p . On the other hand an MA(q) model of order q is whereby  the 
current value Xt is a linear combination of the  immediate past q values of the 
white noise process: t- 1, t- 2, ..., t- q. Besides stationarity, invertibility is another  
important requirement for a time series. It refers to the characteristic whereby the 
covariance structure of the series is unique (Priestley, 1981). In addition it makes 
meaningful association of current events with the past history of the series 
possible (Box and Jenkins, 1976). 

An AR(p) model can be put more specifically: 

Xt + p1Xt-1 + p2Xt-2 + ... + ppXt-p = t 

Then the sequence of the last coefficients{ii} is called the partial autocorrelation 
function(PACF) of {Xt}. The  ACF of an MA(q) model cuts off after lag q 
whereas that of an AR(p) model is a mixture of sinusoidals tailing off slowly. On 
the other hand the PACF of an MA(q) model tails  off slowly whereas that of an 
AR(p)  model tails off after lag p. 
  AR and MA models are known to have some duality characteristics. These 
include: 
1. A finite order of the one type is equivalent to an infinite order of the other 

type. 
2. The ACF of the one type  exhibits the same behaviour as the PACF of the 

other type. 
3. An AR model is always invertible but is stationary if  (L) = 0 has zeros 

outside the unit circle. 
4. An MA model is always stationary but is invertible if  (L) = 0 has zeros 

outside the unit circle. 

Parametric parsimony consideration in model building entails preference for the 
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mixed ARMA fit to either the pure AR or the pure MA fit. Stationarity and 
invertibility conditions for model (1) or (2) are that the equations  (L) = 0 and 
 (L) = 0 should have roots outside the unit circle respectively. 

Often, in practice, a time series is non-stationary. Box and Jenkins (1976) 
proposed that differencing of an appropriate order could render a non-stationary 
series {Xt} stationary. Suppose the degree of differencing necessary for 
stationarity is equal to d.  Such a series {Xt} may be modelled as  

 (
1

(1 )
p

i
i

i

a B


 dXt =  (L)t                (3) 

where  = 1 – L and in which case  (L) =
1

(1 ) 0
p

i d
i

i

a B


    shall have unit 

roots d times. Then differencing to degree d renders the series stationary. The 
model (3) is said to be an autoregressive integrated moving average model of 
orders p, d and q and denoted by ARIMA(p, d, q).  

 
 
1.1 Seasonal ARIMA Models 

A time series is said to be seasonal of order d if it has a tendency to exhibit 
periodic behaviour after every time interval d. Traditional time series analysis 
involves the identification, disintegration and estimation  of the traditional 
components: secular trend, seasonal component, cyclical component and the 
irregular movement. For the purpose of making forecasts, they are reintegrated. 
Such techniques could be quite misleading.  

The time series {Xt} is said to follow a multiplicative (p, d, q)x(P, D, Q)s 
seasonal ARIMA model if 

 t
s

t
D
s

ds LLXLL )()()()(                              (4) 

where  and  are polynomials of order P and Q respectively. That is, 

,...1)( 1
sP

P
ss LLL                           (5) 

,...1)( 1
sQ

Q
ss LLL                                      (6) 

where the i  and j
 
are constants such that the zeros of the equations (5) and 

(6) are all outside the unit circle for stationarity and invertibility respectively. (Ls) 
represents the seasonal autoregressive operator whereas (Ls) represents the 
seasonal moving average operator.  

A seasonal nature is often apparent from the time plot. Moreover for a 
seasonal series the ACF or correlogram exhibits a spike at the seasonal lag. Box 
and Jenkins (1976) and Madsen (2008) are a few authors that have written 
extensively on such models. A knowledge of the theoretical properties of the 
models provides basis for their identification and estimation. The purpose of this 
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paper is to fit a seasonal ARIMA model to Nigerian Inflation Rate (INFL) series. 
Earlier work on Nigerian Inflation rates includes those by Abidemi and Maliq 
(2010), Olatunji et al (2010) and Chiakwelu (2012). Whereas Abidemi and Maliq 
(2010) think that the inflation rates are stationary, Olatunji et al (2010) think 
otherwise. The graph of the inflation rates from 1990 to 2010 given by Chiakwelu 
(2012) corroborates the opinion of Olatunji et al. There is perhaps no known 
attempt to model Nigerian inflation rates by a seasonal ARIMA model. 

 
 

2 Materials and Methods 
The data for this work are inflation rates – All items (Year on Change)- from 

2003 to2011 obtainable from the Data and Statistics publication of Central Bank 
of Nigeria retrievable from the website http://www.cenbank.org/. 

 
 
2.1 Determination of the orders d, D, p, P, q and Q 

Seasonal differencing is necessary to remove the seasonal trend. If there is 
secular trend non-seasonal differencing will be necessary. To avoid unnecessary 
model complexity it has been advised that orders of differencing d and D should 
add up to at most 2 (i.e. d + D < 3). If the ACF of the differenced series has a 
positive spike at the seasonal lag then a seasonal AR component is suggestive; if it 
has a negative spike then a seasonal MA term is suggestive.  

As already mentioned above, an AR(p) model has a PACF that truncates at 

lag p and an MA(q)) has an ACF that truncates at lag q. In practice 
2

n
 , where 

n is the sample size are the non-significance limits for both functions.  

 
 
2.2 Model Estimation 

The involvement of the white noise terms in an ARIMA model necessitates a 
nonlinear iterative process in the model estimation.  An optimization criterion 
like the least squares, maximum likelihood or maximum entropy is used. An initial 
estimate is usually used and each iteration is expected to be an improvement of the 
previous one until the estimate converges to an optimal one. However, for pure 
AR and pure MA models linear optimization techniques exist (See for example 
Box and Jenkins (1976), Oyetunji (1985)). There are attempts to propose linear 
methods to estimate ARMA models (See for example, Etuk (1987,1998)). We 
shall use Eviews software which employs the least squares approach to analyze 
the data. 
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2.3 Diagnostic Checking 

The model that is fitted to the data should be tested for goodness-of-fit. To do 
this we shall do some residual analysis. In particular we shall plot the histogram of 
the residuals and their correlogram. If the model is correct, the residuals would be 
uncorrelated and would follow a normal distribution with mean zero and constant 
variance. Assuming an adequate model, the autocorrelations of the residuals 
should therefore not be significantly different from zero. 

 
 

3  Results and Discussion 
The time plot of the original series INFL in Figure1 shows no clear secular 

trend nor seasonality. Seasonal (i.e. 12-month) differencing of the series produces 
a series SDINFL also with no trend nor clear seasonality (see Figure 2). 
Non-seasonal differencing yields a series DSDINFL with no trend and no clear 
seasonality (see Figure 3).  Its ACF in Figure 4 has spikes at lags 1 and 12 
revealing a seasonality of lag 12. The spike at lag 12 is negative indicating the 
involvement of a seasonal MA component of order one. The PACF has a spike at 
lag 1 indicating a nonseasonal AR component of order one.   

 
 

 
 

Figure 1: INFL 
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Figure 2:  SDINFL 

 

 

 
 

Figure 3: DSDINFL 
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Figure 4: Correlogram of DSDINFL 

 
 
We hereby propose the following (1, 1, 0)x(0, 1, 1)12 model 

 DSDINFLt = 1DSDINFLt-1 + 12t-12 + t         (7)             

The estimation of the model is summarized in Table 1. The model is given by 

 DSDINFLt =  0.2023DSDINFLt-1 – 0.8858t-12 + t     (8) 

                   (0.0672)           (0.0255)                                                
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The estimation involved 20 iterations. Both coefficients are significantly 
different from zero, each being more than twice its standard error. As much as 
65% of the variation in DSDINFL is accounted for by the model. The histogram 
of the residuals in Figure 5 shows that the residuals are normally distributed with 
zero mean indicating model adequacy; the mean of -0.16 is not significantly 
different from zero given a standard deviation of 2.1 by t-test. Moreover the 
correlogram of the residuals in Figure 6 depicts the adequacy of the model. 
Virtually all the residual autocorrelations are not significantly different from zero. 

 
Table 1: Model Estimation 

 
 

 

Figure 5: Histogram of residuals 
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Figure 6: Correlogram of the residuals 

 
 

4  Forecasting 
For the model (7) at time t+k we have 

 Xt+k = 1Xt+k-1 + 12t+-12 + t+k 

Obtaining conditional expectations given the series up to time t, we have 

 11121)1(ˆ
 ttt XX   



36                      Predicting Inflation Rates of Nigeria … Box-Jenkins Model  

  12121 )1(ˆ)(ˆ
 kttt kXkX  , k  2 

where )(ˆ kX t is the k-step ahead forecast from time t. 

The 2012 forecasts are given in Table 2. With the actual observed values for 
the first seven months of the year being 12.6, 11.9, 12.1, 12.9, 12.7, 12.9 and 12.8 
respectively, the chi-square goodness-of-fit test statistic is equal to 4.1132 which 
with a p-value of greater than 0.5 is not statistically significant. This further shows 
that the model is adequate. 

 
 

TIME RESIDU
ALS 

DSDINFL SDINFL INFL 

December 2010 
January 2011 
February 2011 
March 2011 
April 2011 
May 2011 
June 2011 
July 2011 
August 2011 
September 2011 
October 2011 
November 2011 
December 2011 

-1.26140 
0.3899 
-1.34231 
1.70871 
-1.39008 
1.30454 
-2.39750 
 0.10659 
-0.29539 
1.21624 
-0.81674 
0.46909 
-0.43875 

-2.5 
-0.2 
-2.2 
2.5 
-1.7 
3.2 
-3.4 
0.3 
-0.8 
1.1 
0.4 
0.6 
0.8 

-2.1 
-2.3 
-4.5 
-2.0 
-3.7 
-0.5 
-3.9 
-3.6 
-4.4 
-3.3 
-2.9 
-2.3 
-1.5 

11.8 
12.1 
11.1 
12.8 
11.3 
12.4 
10.2 
9.4 
9.3 
10.3 
10.5 
10.5 
10.3 

January 2012 
February 2012 
March 2012 
April 2012 
May 2012 
June 2012 
July 2012 
August 2012 
September 2012 
October 2012 
November 2012 
December 2012 

 -0.40 
1.11 
-1.29 
0.97 
-0.96 
1.93 
0.30 
0.32 
-1.01 
0.52 
-0.31 
0.33 

-1.90 
-0.79 
-2.08 
-1.11 
-2.07 
-0.14 
 0.16 
0.48 
-0.53 
-0.01 
-0.32 
 0.01 

10.2 
10.3 
10.7 
 10.2 
 10.3 
 10.1 
 9.6 
 9.8 
 9.8 
10.5 
10.2 
10.3 

 

 

5  Conclusion 
The INFL series has been shown to follow a (1, 1, 0)x(0, 1, 1)12 model. This 

model has been shown to be adequate. On the basis of the model 2012 forecasts 
have been obtained. These forecasts have been shown to agree very closely with 
the observed values of the year.  
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