
Journal of Computations & Modelling, vol.2, no.3, 2012, 1-16
ISSN: 1792-7625 (print), 1792-8850 (online)
Scienpress Ltd, 2012

Open Source Software: Quality Benefits,

 Evaluation Criteria and Adoption Methodologies

Lekshmy Preeti Money1, S. Praseetha2 and D. Mohankumar3

Abstract

This paper takes an in-depth look into Open Source Software (OSS), the various

licensing schemes of OSS, quality benefits OSS imparts over commercial software,

widely reported factors for switching to OSS and evaluation of OSS in each of

those factors, methodologies to adopt OSS including a case study of InfoCache

software.

Subject Classification: Software

Keywords: Open Source Software (OSS), Total Cost of Ownership (TCO),

security, ease of evolution, maintainability, testability, reliability,

understandability, operability, Brown field modernization, Green Field Adoption,

licences, copyright

1 Computer Division, VSSC,ISRO, Trivandrum, India, e-mail: lp_money@vssc.gov.in
2 Computer Division, VSSC, ISRO, Trivandrum, India, e-mail: s_praseetha@vssc.gov.in
3 Computer Division, VSSC, ISRO, Trivandrum, India
 e-mail:d_mohankumar@vssc.gov.in

Article Info: Received : December 28, 2011. Revised : February 18, 2012
 Published online : November 20, 2012

2 Open Source Software

1 Introduction

Open Source Software (OSS, also known as Free and Open Source Software

-FOSS) refers to software that may be freely used, modified or distributed subject

to certain restrictions with respect to copyright and protection of its open source

status. It must be noted that the free in FOSS doesn’t mean free of cost, but

freedom to modify and/or re-distribute, [3].

The term open source software at the most basic level simply means software for

which the source code is open and available. Open and available is meant to

convey two concepts:

• open—The source code for the software can be read (seen) and written

(modified). Further, this term is meant to promote the creation and distribution of

derivative works of the software.

• available—The source code can be acquired either free of charge or for a

nominal fee (e.g., media and shipping charges or online connection charges).

2 Various kinds of OSS projects

Some of the best known OSS projects are the Linux OS, the Mozilla FireFox web

browser and the Apache web server. Developers commonly use OSS tools- e.g.:

the scripting languages Perl, Python, PHP and Ruby; Ant and Maven for building

applications; XUnit for testing; CVS and Subversion for source code control; and

Eclipse or NetBeans as IDE. Open source desktop environments and related

end-user desktop applications have increased both numbers and functionality.

Lekshmy Preeti Money, S. Praseetha and D. Mohankumar 3

Table1: Various kinds of OSS projects

Type Objective Control

style

Community

Structure

E.g.

Exploration

oriented

Sharing

knowledge and

innovation

Cathedral [7]

style central

control

Project Leader,

many readers

GNU, Perl,

Linux Kernel

Utility

oriented

Satisfying an

individual

need

Baazaar [7]

like

decentralized

control

Many peripheral

developers, peer

support to passive

users

Linux system

excluding

kernel

Service

oriented

Providing

stable services

Council-like

central control

Core project

members, passive

system developers

Apache,

PostgreSQL

3 Infocache: A Case Study

With the increasing cost of commercial software, technology leaders are looking

for ways to reduce software licensing fees. Several software systems traditionally

developed using proprietary closed source software are being re-developed using

open source alternatives.

To study the switching from proprietary to OSS, InfoCache- an indigenously

developed software of VSSC/ISRO is considered. It is a central repository of

information for storing and analyzing mission related data. This includes data

related to mission performance, telemetry and Post Flight Analysis (PFA) reports.

InfoCache was originally developed in Microsoft Active Server Pages (ASP) and

Microsoft Access database, using Internet Information Service (IIS) web server on

Windows operating system.

4 Open Source Software

Figure 1: Version 1.0 of InfoCache View module

Figure 2: Version 1.0 – Listing subsystems for selected Missions

Figure 3: Listing pages of subsystems

Figure 4: Parameters listed for selected subsystems

Lekshmy Preeti Money, S. Praseetha and D. Mohankumar 5

Inefficiencies due to the existing software design, coupled with the organizational

policy favoring development in OSS, led to the project to be re-developed using

open source tools. The new project aimed at re-developing the View module

(module for viewing post flight data associated with each mission) for better

maintenance, more configurable display and implementation using open source

solutions – Java, Java Server Pages (JSP), MySQL database and Apache Tomcat

as middle tier.

Figure 5: Version 2.0 InfoCache Enhanced View - Mission, Parameter selection
 and display in single page as opposed to hierarchical structure of pages
 in Version 1.0

Despite the fact that ASP supported dynamic paging, the previous module used

static web pages to display data of each launch vehicle mission. Hence thousands

of ASP files were maintained. Figures 1 to 4 show the various pages required to

view parameters in the old version of InfoCache View module. The enhanced

View module would use dynamically created web pages for display, and thus

reduce the number of middle-tier files. This would eliminate manual intervention

for enabling new mission data. Display properties would be easily reconfigured,

since they are stored in database. Figure 5 shows the enhanced view module.

The following two functionalities would also be developed as add-ons to the

existing software: - ‘Online Upload’ for mission data based on well defined

6 Open Source Software

workflow and online status display including e-mail notifications, ‘Advanced Post

Flight Analysis Search’ with facility for full text search and highlighting search

string occurrences in a document. (Ref. Figure 6). The previous Search Engine

conducted searches using keywords stored in the database. The new search engine

would be implemented using an open source component SearchBlox customized

to SearchVSSC.

Figure 6: SearchVSSC– customized from Open Source component SearchBlox

The database design would also be modified. In the earlier version of InfoCache,

there were multiple MS Access databases - one for each subsystem of a particular

mission. The new system envisaged a single database with multiple database

tables for all missions. There would also be a shift from proprietary MS Access to

an open source solution - MySQL.

InfoCache software also sought the following security enhancements:- Email ID

authenticated login, Module wise access rights, Role based Access, Avoid

inconsistency by record locking, Logging all transactions.

High level of security offered by OSS, platform independence, multitude of

user forums, high level of community support, interoperability with other

commonly available open source components and ISRO’s policy in favor of using

FOSS solutions were the main reasons for choosing OSS over closed source

systems in the InfoCache project.

Lekshmy Preeti Money, S. Praseetha and D. Mohankumar 7

4 Quality Benefits Imparted by OSS

OSS can enhance certain software attributes as compared to development with

proprietary software. These attributes include security, ease of, evolution,

maintainability, testability, reliability, understandability and interoperability, [1].

4.1 Security

Hoepman et. al. [8] argue that OSS is essential to building secure systems. Their

main argument is that “opening the source allows an independent assessment of

the exposure of a system, and the risk associated with using the system makes

patching bugs easier and more likely and forces software developers to spend

more effort on the quality of their code.” They further state that OSS is easier for

multiple security teams, outside vendors or independent agencies to assess. In high

security organizations like ISRO, secure software – software less prone to threats-

external or internal, is of paramount importance.

4.2 Ease of evolution

Another hallmark of OSS is a vibrant community; if the community is vibrant,

the software is more likely to rapidly evolve new features and bug fixes. Feature

innovation in OSS does not depend on a single entity – e.g.: a vendor – so the

software product is easier to change and evolve. Open source also allows for code

branching – the process by which a new community forms around an existing

application code base to take the features and functions or underpinnings in a

different direction than that of the original team. In the InfoCache scenario, the

vibrant user community of Java, mySQL and Apache was a definite advantage.

8 Open Source Software

4.3 Maintainability

By its nature, OSS enhances maintainability. Not only is the software more

available for maintenance, but active OSS communities participate in and cultivate

high level of interest in the software viability. In many cases, the code team is also

part of the user population and has a vested interest in the product’s

functionability and growth.

4.4 Testability, Reliability, Understandability

Because OSS code is readily available, testability is easier, both functionally

and structurally. Since open source communities are very comfortable with full

disclosure of bugs (as opposed to hiding them or treating them as features),

software users can more easily track defects and their workarounds. The argument

that thorough testing is impossible because of the absence or incompetence of

software requirements (as is frequently the case in OSS projects) doesn’t hold

because some testing approaches don’t need such requirements, [9]. For the same

reason that testability is easier, reliability is also higher with OSS. OSS’s open

nature also means understandability since there are no black boxes.

4.5 Interoperability

Interoperability is much greater with OSS because projects almost always use

shared components, and these components tend to comply with relevant

international standards. Frequently these standards are the main form of

requirements satisfaction for all externally furnished (including open source)

components available.

Lekshmy Preeti Money, S. Praseetha and D. Mohankumar 9

5 Adoption Factors and Evaluation Criteria of OSS

Here are the five distinct adoption factors and evaluation criteria for deciding

whether adoption of OSS is truly beneficial to an organization. This section details

the pros and cons of OSS associated with each factor, [2].

5.1 Cost Advantage

The OSS movement has always tried to downplay the fact that OSS generally

doesn’t require a licence fee. But studies have shown that lower costs have largely

helped drive the use of OSS. But not all OSS is free. Some products include

additional service for enterprise customers, such as the certification for certain

hardware, access to software updates and support services.

To estimate the costs involved in introducing OSS, an organization can

calculate the Total Cost of Ownership (TCO) in the environment in which the

adoption will occur. Switching costs include the costs necessary to migrate data

from the old system to the new and the costs required to retrain personnel.

In the case of InfoCache, since no change in operating system was planned and

the software development team being already trained in Java and mySQL,

switching costs were minimal and licensing costs were greatly reduced.

5.2 Source Code Availability

The Open Source Software movement has always emphasized the advantages of

source code availability. Proponents argue that making source code available lets

everyone peer review the code, resulting in higher quality software. It is also

suggested that it gives users more choice and control because it lets them read and

modify the source code. Although many OSS advocates have proclaimed these

10 Open Source Software

advantages, several authors have questioned or cast doubts on them. Consider the

following three scenarios

1) Source code’s availability is neither an advantage nor disadvantage: This is

because the organization never uses the source code. Organizations might have

little need to modify the source code of highly mature infrastructure software such

as Linux and Apache. This was the scenario in InfoCache.

2) Organization considers the source code availability to be an advantage, but

doesn’t use it to study or customize the program: Some organizations expressed a

greater trust in OSS because of the source code’s availability. Although they

might not actually use the source code, its availability gives them the option of

doing so later.

3) OSS serves as a white box: Organizations can use the source code to study

the software’s inner working or to adapt the software to their own needs. They

might also customize the software e.g.: customized web mail applications.

5.3 Maturity

Another important question is whether OSS is mature enough for use in

organizations aim to help decision makers decide whether a particular OSS

package is mature enough to adopt. Reliability is one aspect of maturity. If an

organization is unfamiliar with OSS, it should restrict its use to software that is

generally considered to be mature such as Linux and Apache.

5.4 Avoiding Vendor Lock-In

 Organizations frequently adopt OSS to reduce vendor lock-in and become

less dependent on their software vendors. Although using OSS can reduce vendor

lock-in, choosing OSS won’t make an organization fully independent of vendors.

Lekshmy Preeti Money, S. Praseetha and D. Mohankumar 11

Decision makers should not adopt OSS simply to reduce their dependency on their

vendor. Instead, they should investigate the degree to which the organization

would depend on OSS vendors for services such as support or updates.

5.5 External support availability

Support for OSS can take different forms. Some vendors offer support contracts

– e.g.: the enterprise versions of Linux distributions and the services offered by

companies such as SourceLabs. Large software vendors such as IBM openly

declare their commitment to OSS and offer various services to customers.

Additionally, many independent consultancy firms will install, configure and

maintain OSS systems.

Table 2 summarizes the claims and counter-claims of each of the five factors

discussed above.

Table 2: Evaluation Factors for Adopting OSS

Factor Merits/ Claims Demerits/Counter-Claims

Cost advantage OSS is free of charge.

Linux can lower hardware

costs.

Enterprise Linux isn’t free.

Dual licensing (e.g. mySQL)

might require a commercial

license

Source Code

Availability

Source code availability leads

to higher quality, enables

customizations, provides

more choice and control and

provides more trust in the

software.

Lack of knowledge to apply

modifications

12 Open Source Software

Maturity OSS is reliable

OSS is unreliable (claimed by

advocates of proprietary

software)

Vendor lock-in OSS avoids vendor lock-in Still dependent on OSS

vendors for updates, services

and support

External support Support for OSS is available

from commercial vendors

Type of support differs.

Support is lacking for some

OSS

6 When and how to convert to OSS

Assuming the OSS can enhance certain software qualities, an enterprise must

ask two questions before deciding to use OSS to improve those qualities. Are we

ready and how do we do it? The answer to the first question is complex. Readiness

standards are available in Open Source Maturity Models. The answer to the

second concern – how we use OSS to enhance quality assumes that the

organization is culturally ready to adopt OSS and understand what areas would

benefit from OSS use. To maximize quality, an organization must

 determine the benefits and risks of OSS:- In the case of InfoCache

software, the benefits were - avoiding vendor lock-in, less cost, more secure,

reliable software. The potential risk area was associated with licensing but with

careful study, it was concluded that there were no copyright infringements made

by using the respective OSS in InfoCache

 determine the total costs, including ongoing and switching : The ongoing

system used static display of flight parameters maintaining several ASP files and

databases. This was eliminated in the new system where four JSP files handled

the business logic and the operation was database centric. Since there was no

change in Operating System, the switching cost was minimized. Trained

Lekshmy Preeti Money, S. Praseetha and D. Mohankumar 13

manpower in Java and open source technologies further reduced the switching

cost

 analyze internal and external support resources: ISRO, as an organization

has always been a supporter of free and open source software. There has been a

gradual shift from proprietary to OSS and many new software projects use the

OSS tools and technologies. The human resources in ISRO are well trained in

open source platforms. There is also good external support from the vibrant OSS

community with numerous communities and forums to resolve any issues faced.

 assess the impact of organizational performance: The organizational

performance was greatly improved with the new version of InfoCache, the

enhanced view module that provided better maintenance, configurable display,

better organized database and enhanced security

 assess the health of the OSS product’s ecosystem : Since the OSS selected

for InfoCache were highly mature and established ones like Apache, mySQL,

Java with a broad community of developers, testers, it had high vigor and

resilience.

An enterprise can begin integrating OSS in one of two ways: Green Field

Adoption, which is to use OSS from the outset, or Brown Field Modernization,

which is to convert existing software to OSS.

7 Ways to Integrate Open Source Software

7.1 Green Field Adoption

Here, the OSS is implemented either as a distro (short for distribution) or as a

standalone application or as an integrated stack of related or integrated solutions.

Distros incorporate the Linux kernel wrapped with a series of customized desktop

and server maintenance applications and a load and install routine. A standalone

solution can be any open source equivalent to commercial software (e.g. a CRM

14 Open Source Software

package), which could run either out-of-the-box or customized. Because the open

source code is available, the customization could include integration with other

enterprise software, as well as extensions to the internal functions of the

application itself.

7.2 Brown Field Modernization

It is the process of understanding and evolving existing software assets within

an architectural framework. Modernization can take many forms such as

Application portfolio management, Application improvement, Platform migration,

Data architecture migration, Data warehouse deployment, Reusable software

assets etc. One approach to Brown field modernization is to use certain building

blocks in various combinations to create target architecture. The building blocks

include:

7.2.1 Refactoring: It is a process to preserve code transformation and results in

modifying or cleaning up source code without changing the platform, language or

external behavior. Refactoring might be the only action taken if the code is hard to

maintain or change. However, refactoring might also be required to effectively

wrap the application as a service and plug it into an orchestration.

7.2.2 Translating: This usually involves converting code into another language,

frequently Cobol to Java. Automated translation tools are available, but without

subsequent refactoring, conversion might wind up going from spaghetti Cobol to

spaghetti Java. Translation can also involve different platforms or data models.

7.2.3 Wrapping: This surrounds existing applications with an interface layer to

expose some or all of its functionality as a service so that it is easily re-used in

Lekshmy Preeti Money, S. Praseetha and D. Mohankumar 15

building new solutions. Sometimes wrapping is possible without refactoring the

existing application, in other cases much refactoring is needed.

7.2.4 Replacement: This means eventually decommissioning an application and

replacing it with an entirely new solution either designed or off the shelf. Even if

the solution represents a novel vision of how to run the business, the enterprise

must still know something about what the old application does.

7.2.5 Orchestration: This requires integrating OSS enabled legacy applications or

newly created custom or packaged applications, components or services with the

help of processes implemented using business-process enactment and monitoring

services.

Figure7: Brown field modernization involves reengineering legacy software so

 that one or more qualities are significantly improved

8 Conclusion

Open Source Software is an inevitable evolution that can fulfill software

engineering’s basic needs. It is increasingly important that software engineers

16 Open Source Software

become proficient regarding the advantages and constraints associated with

specific open source components as well as legal issues related to licenses. They

should not take the widely claimed advantages or disadvantages of open source

software for granted, but rather should investigate how each of these claims could

manifest itself in an organization-specific context.

References

[1] A.Gold, T.Costello and P. Laplante, Open Source Software:Is It Worth

Converting?: IT Professional, (July, 2007).

[2] J. Verelst, H. Manneet, K. Ven: Should You Adopt Open Source Software :

IEEE Software, (May, 2008).

[3] C. Ebert, Open Source Software in Industry: IEEE Software, (May, 2008).

[4] B.A. Calloni, J.F. McDowen and R. Stanley, Open source Software: Free

Isn’t Exactly Cheap! : AIAA, 2005-7108.

[5] S. Hissam, C.B. Weinstock, D. Plakish and J. Asund, Perspectives on Open

Source Software: (November, 2001), CMU/SEI-2001-TR-019

ESC-TR-2001-019.

[6] http://mil-oss.org/learn-more/oss-licensing-overview

[7] E.Raymond, The Cathedral and the Bazaar

 http://www.catb.org/~esr/writings/cathedral-bazaar/

[8] J.-H. Hoepman and B. Jacobs, Increased Security Through Open Source:

Communications of the ACM, 50(1), (2007), 79-83.

[9] A. Elcock and P. Laplante, Testing without Requirements: Innovations in

System and Software Engineering, A NASA J., 2, (December 2006), 137-145.

