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Krylov subspace methods for solving
quadratic eigenvalue problems

Juan Song!

Abstract

In this paper, the Arnoldi-type process and symmetric Lanczos-type
process for solving large scale quadratic eigenvalue problem (A2 A+ \B+
C)z = 0 are given. One decomposition theorem about the matrices A,
B and C is obtained based on the Householder transformation. The
advantage of the Arnoldi-type process and symmetric Lanczos-type pro-
cess is that they can preserve the matrix structure and properties of the
original problems. Finally, some numerical examples are presented to

show the efficiency of the proposed methods.
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1 Introduction

This is the text of the introduction. To find a scalar A € C and nontrivial
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40 Krylov subspace methods for solving QEP

vectors x € C"™ satisfying the following equation
(NA+AB+C)z =0 (1)

is known as the quadratic eigenvalue problem (QEP). Here, A, B,C € C™*" is
called as the coefficient matrices, A is called as the eigenvalue, nonzero vectors
x is the associated eigenvectors of the QEP, (A, x) is known as eigenpair or
Ritz pair, A and x are called as Ritz value and Ritz vector, respectively. The
studies on the QEP have attracted more and more attentions recently. In gen-
eral, there are mainly two methods for solving the QEP, namely lineralization
method and direct projection method [13].

Linearization method is to transform the QEP (1) into an linear form
(M — AN)y = 0 equivalently, where M, N € C?"*?" y ¢ C?". The possi-
bility of lineralization was proved in [4, 13], and the properties of lineralization
method were studied in [3, 9, 10, 12]. But the drawback of linearization method
is the double size of the problem (1), and make the condition number and back-
ward error larger. Meanwhile, the essential spectral properties of the original
problems may not be preserved.

Krylov subspace based on matrix A € C™*™ and vector v € C" is of the

form
Kk(Aa U) = Span{v, Av, AQU’ e ,Ak_lv}_

Krylov subspace method is often used to solve matrix computational problem,
such as linear system and eigenvalue problem [1, 2, 5, 6, 8, 11, 14]. The main
advantage of Krylov subspace techniques is that it can transform large scale
problem into small size problem and find the desired eigenvalues.

By building one orthogonal bases V}, and projecting the original problem (1)
into the problem V;*(A\2A+AB+C)V, V2 = 0 with smaller size, the projection
method can be applied to the QEP directly. The advantage of the projection
methods is the spectral property of the original problem can be guaranteed
by preserving the structure of the coefficient matrix, such as the symmetry
or skew-symmetry or positive-definiteness or semipositive-definiteness. In or-
der to obtain a projected lower-dimensional matrix polynomial to approximate
the original one, a Krylov-type projection process was applied to the coeffi-
cient matrices B and C' simultaneously [8, 6]. However, in the method, the

coefficient matrix A should be the unity matrix I, or should be transformed
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to the unity matrix I by displacement inverse transformation, which makes
the computation more complex. Therefore, in this paper, the Krylov-type
projection process was applied to all three coefficient matrices A, B and C'
simultaneously, in which the coefficient matrix A can be projected directly,
and need not be unity matrix or transformed.

This paper is organized as follows. In Section 2, an Arnoldi-type process
and a symmetric Lanczos-type process for solving the large scale QEP (1) are
presented, and the matrix A is different from the investigations in [8, 6], where
A is the unity matrix I. In Section 3, the residual upper bound for approx-
imate Ritz pairs are given out. In Section 4, combining the orthogonal basis
generated in Section 2 with the refined idea, we give out the refined Arnoldi-
type algorithm for solving quadratic matrix polynomial. Finally, numerical
examples are given to illustrate the efficiency of given algorithm in Section 5.

Throughout this article, we use following notations. || - ||2 denotes 2-norm.
-T denotes the transpose and -* denotes the conjugate transpose. I, refers the
n X n identity matrix, e; denotes its jth column. MATLAB-like notations are
adopted: the ith to jth entries of v consists vy, the intersection of rows i to
J and columns k to [ of the matrix X consists the submatrix X;.; ), X ra)
refers all rows and kth to /th columns of X, X(;;.) refers ¢th to jth rows and

all columns of X.

2 New Arnoldi-type process and symmetric

Lanczos-type process for (\2A+AB +C)z =0
For solving one special kind of quadratic matrix polynomial
(NI —AB - C)z =0,

an Arnoldi-type process and a symmetric Lanczos-type process were presented
in [8] and [6], respectively.

In this section, based on orthogonal transformations of coefficient matrices
A, B and C' simultaneously, we propose an new Arnoldi-type process and

symmetric Lanczos-type process for solving the QEP (1).
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2.1 Decomposition theorem for the coefficient matrices
A, B and C

By using Householder transformation, the following decomposition theorem

for the coefficient matrices A, B and C' were derived.

Lemma 2.1. There exists an unitary matriz Q € C™™ with Qe; = e;

satisfying

Q"AQ = H, = (haij), Q"BQ = Hy = (hyij), Q°CQ = H = (heyij)
where hqi; =0 for i > 37, hyi; =0 fori > 35+ 1, heij =0 fori > 35 4 2.
Proof. Split

T
a1 Cl2

A= ,
a; | Agg

_ T _ T
where a; = (021,031, ---,an1) , Qg = (012,013, ---aaln) .

n—1)

There exists an unitary matrix Qla e Cn—1x( satisfying Q’{aal = €.

Let Q1. = diag(1,Q1,). Then, we have

ail | @ b1 | x
QTQAQIG = QG | T ) QTQBQI(L - b21 4y
0 | X by | X
Similarly, there exists an unitary matrix Qy, € C®=2x(1=2) gatisfying
QATbbl = 6161. Let le = diag(IQ, le). Then, we have
Ci1| T
leQ1aBQ1aQ1b = ) Q1bQ1aCQ1aQ1b =
61 x C31 | T
0| X c1 | X

In the same way, we can find an unitary matrix Q. € C®3x(=3) gatisfy-
ing Q1c01 = me1. Let Q. = diag(l3, Q1) and define Q1 = Q1,Q1,Q 1. Then,

we have

C11 T
bH T
aipl | & Co1 T
; ; b | @ ;
Q1AQ1: ap | T ) Q1BQ1: ) Q1OQ1: C31 | T
0 |x b @ "
1
0| X
0| X
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According to the above transformation, the first columns of the matrix A,
B and C' have been transformed into the desired forms. Then, we transform
the second columns of the matrix A, B, and C into the desired forms in the

same way.

Split the matrices

T T
(6%} T
Q){ AQI = 0 T )
g2 | T
L a9 X

then there exists a unitary matrix Qg, € C"~*(=% gatisfying Q},as = aze;.

Let Qo = diag(1y, an). Then we have

[z T [ by | x|z ]
o T boy | ¢ | x
* )k 0 Y N 51 xr |z
QZanAQ1Q2a - ) QZanBQ1Q2a =
0 |ag | x 0| x|z
0| ay| x 0 |bs2 |
L 0 0 X i L b2 x |

Find an unitary matrix Qg € C=9*(=5) satisfying Q},by = fBoe1. Let
Qo = diag(Is, Q%). Then, we have

b | v |x ci1| r | @

bor | @ | Co1 | T | @

G| x| x ca1| T | x

Q3 Q5,Q1BQ1Q2,Q = | 0 | z |z |, Q5Q5Q1CQ1Q20Qxn=| 1| v |2
0 |bse | x 0|z |x

01|/ |x 0 |cg2| x

| 0] 0z i co | X

Find an unitary matrix Q}, € C X6 gatisfying Q%.c, = voe1. Let
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Q2c = diag(Iﬁa QZC) and define QZ - QZaQ2bQ2c- Thena we have

_ . [ z |z ]
T T
|z |z
« T
01 Bi| v |
* * :L. * *
Q2Q1AQ1Q2 = 0 la . 7Q2Q1BQ1Q2: 0 xr |\x |,
i 0 b52 T
0|y | x 0|3
T
00 |X >
- - | 0] 0 T |
_ el
T |z
T |z
. Ml x |x
QQICQIQ, = |
O x | x
0 Cg2 | T
0|y |
L 0] 0 |X |

The following proof can be continued in a similar way. At the jth step,
the jth column of matrices A, B and C' has at most 35 — 1, 35 and 35 + 1

nonzero entries at the top respectively. The reduction can be completed by

setting @ = Q1Qs - - - Q, where k < n/3.
Obviously, we have

Qey = Q1Q2 -+ - Qrer = ey,
where Ql = QlanbQICa Q2 = Q2aQ2bQ207 Tty Qk = Qkankac- ]

Based on the above discussions, we can get the following another descrip-

tion of the decomposition theorem for the coefficient matrices.

Theorem 2.2. Given ¢ € C™ with ||q1]|2 = 1, there is an unitary matriz
Q € C™" with Qe, = q1, such that

Q*AQ = H, = (hayij), Q"BQ = Hy = (hyy5), Q°CQ = H. = (heyj) (2)

satisfied hgyi; = 0 for @ > 37, hyi; = 0 fori > 35+ 1, hej =0 fori > 35 4+ 2.
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Proof. There exists an unitary matrix @)y € C™*" with Qpe; = ¢;. Then,
applying Lemma 2.1 to QjAQy, Q5BQo and Q;C'Qy to get an unitary Qe
C™" with Qel — ¢; such that

Q" (Q5AQ0)Q = Ha, Q" (Q5BQ0)Q = Hy, Q*(Q5CQ0)Q = H.

have the desired forms. Then, the proof is completed by letting ) = QOQ. O

2.2 A new Arnoldi-type process for (\M>’A+ A B+ C)z =0

According to Lemma 2.1 and Theorem 2.2, the reduced matrices H,, Hp,
H, of coefficient matrices A, B and C' can be obtained, but they are of little
use in the numerical computation when A, B and C are large and sparse.
Therefore, a new Arnoldi-type process for the QEP (1) were presented in this
section.

Rewrite (2) as

AQ = QH,, BQ =QH,, CQ = QH..

Inspecting the jth column, we see

3j-2
Agj = Z Gihasij + G3j—1hasj—1,5, 3)
i=1
3j-1
Bg; = Z Gilsis + q35hw:35.4, @)
i=1
3j
Cq; = ZQihc;ij + @3jr1hesitg ©)
=1
From (3) and since ¢1, ¢, -+, gs; is orthogonal, we have
haij = a;Ag; for i<3j-2,
3j-2
hg,;3j71,j = qu - Z qih“;ij ’
i=1 2
37—2

q3j—1 = (qu - Z qiha;i]‘)/ha;?ﬂ'—l;j’
i=1
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where assume that h,;3;-1; # 0.
Similarly, assuming Ay, ; # 0, the formula (4) implies

hyij = ¢ Bg; for i<3j—1,
3j—1

Byq; — Z Gihwsij
i=1

35—1

q3j = (Bq] - Z qihb;ij)/hb§3jaj'
i=1

h;35,5

b

2

In the same way, assuming h.3;1,; # 0, the formula (5) implies

hc;ij - qz*CQJ fO?" 1 < 3]7

3j
hc;3j+1,j CQ] - Z QihC;ij ’
i=1 2
3j
q3j+1 = (C%’ - ZQihC;ij)/hC;?)j-l-l,j'
=1

Above derivation leads to a process that gs;_1, ¢35, ¢3j+1 can be constructed

from qi1, go, - - -, q3j—2. After k steps of construction, we can obtain ¢qi, ¢z, - - -,

¢3k+1 such that

AQu1ky = Qeusk—1)Haask—1,1:8), BQe k) = Q:,1:3%) Hp(1:3k,1:8)
CQ(:,I:k) = Q(:,1:3k+1)Hc(1:3k+1,1:k)-

Figure 1 shows the computed parts of H,, H, and H, when k = 6, and the
entries marked by unfilled circles are not computed yet.

From the computed entries, the projections of A, B and C' onto span{Q.1.x)}
can be obtained. The entries marked by unfilled circles in Figure 1 are com-

puted by
ha,ij = Q;ACIJ‘; hb,ij = C];BCIJ‘; hc,ij = QfCQja

for1 <i<3k+1and k+1 < j < 3k+ 1, which give the projections on
span{Q . 1:3k4+1) }. In above analysis, it is assumed that hg3j_1; 7# 0, hys;; 7 0,
hesjvr; 7 0. When h, ;5 = 0 or hy;; = 0 or he;; = 0, the process can be
continued by continuing the next step directly, although there is no new g-

vector can be generated.
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0 oo

0000000000000
0000000000000
0000000000000
0000000000000
0000000000000

0000000000000
+00000000000000
+41 8083030003030

+00000000000000
++ 3300030003038
3000000000000

H 8833300300000
0000000000000
0000000000000

10

Figure 1: The sparsity of the matrix H,, H, and H,

According to the above mentioned analysis, the new g-vectors can be gen-
erated as the following steps. Let N be the number of g-vectors already gener-
ated, and N =1 at the beginning of the process. At the first step, the matrix
A is applied to ¢, and if a new g-vector is generated, N = N + 1, otherwise,
N is invariant. Then, the matrix B is applied to ¢;, and if a new g-vector is
generated, N = N + 1, otherwise, NV is invariant. In sequence, the matrix C' is
applied to ¢, and if a new g-vector is generated, N = N + 1, otherwise, NV is
invariant. After the above steps, if N = 1, the process can be terminated since
the subspace span{q;} is the invariant subspace about the matrices A, B and
C, otherwise, the matrices A, B and C should be applied to ¢, in the same
way. In general, at the jth step, let qi,q2,---,qy be the N g-vectors have
been generated, and ¢i,¢2, -+ ,q;—1 been the j — 1 g-vectors have applied by
the matrices A, B and C, and if N = j—1, the process can be terminated since
the subspace span{qi, qa, -+ ,qn} is the invariant subspace about the matrices
A, B and C, otherwise, the matrices A, B and C should be applied to ¢; in the
same way. The process continues until N = j —1 or a preselected £ number of
steps is completed, in which N must satisfy N < 3k41. In order to utilize fully
the information presented by the generated subspace span{Q(:,1 : N)}, the
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fully projected matrices Hoyq.n,1:n5), Hp:nv:n) and Hegni.y) are computed
in our later numerical examples. Based on the above analysis, we have the
following algorithm:

Algorithm 1: New Arnoldi-type process

1. Given ¢; with ||¢1]]2 =1

2. N=1

3. Forj=1,2,--- k do

4. If 5 > N, break

6. For:=1,2,--- N do

7. ha;ij - qz*Cja qA - qA - Qiha;ij
8 End do

9. haniry = |4l

10. If ha;N+1’j >0

11. N:N—l—l,qN:cj/ha;Nj
12.  Endif

14. Fori=1,2,---,N do

15. hoi; = G; @5 @ = q — qihwyj
16. End do

17, hpviry = |l
18.  If hpwy1; >0

19.  N=N+1,qyv=q/hsn;
20. End if

2. ¢=0Cg;

22. Fori=1,2,---,N do

23. heij = 630 4 = G — Gihesj
24.  End do

25 hgnrs = [ldll2

26.  If henyr; >0

27. N=N+1, qv =q/hen;j

28. End if

29. End do

In the practical numerical computation, the following statements should

be made for Algorithm 1. In practical implement of line 10 to line 26, an
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appropriate error, e.g., hony1,; > nel|Alle, hpnii,; > ne||Blle, heniij >
nel|Cl|2 can be permitted, where ¢ is the machine roundoff unit.

Denote a; = value of NV at line 12 at step j, 3; = value of N at line 20 at
step j, 7; = value of N at line 28 at step j with oy = Sy = 7o = 1. Then,

@ Bj j
Aq] - Z ha;ijqia BQJ = Z hb;ijqia CQ] = Z hc,z]qz
i=1 i=1 i=1
Thus, when the above process is completed, we have

AQ(:,I:k) = Q(:,l:ak)Ha(lzak,l:k)
BQ(:,I:k) = Q(:,l:,@k)Hb(lz,Bk,lzk) (6)
CQ(:,lzk) - Q(:,l:'yk)Hc(lz'yk,l:k)

However, if the j-loop BREAK out at line 4, an invariant subspace of A, B

and C' is obtained as follows

AQ(:,I:N) = Q(:,I:N)Ha(I:N,I:N)
BQ(:,I:N) = Q(:,I:N)Hb(I:N,I:N)
C162(:,1:N) - Q(:,I:N)HC(I:N,I:N)

Moreover, the nonzero entries of the jth column of H,, H, and H, is con-
tained in the first «;, 8; and «; entries respectively. «;, 3; and v, can increase
at most by 3 at each step.

When A, B and C are Hermitian, H,, Hy,, H. are also Hermitian. In this
case, their upper triangular parts need not be fully computed. Obviously, the

following simple recurrences holds:

ha;aj,anj = Ag — Z hasij i,

1<i<ay,a;>j

hog 95, = Baj— Y hid
1<i<B;,8:>]

hep it = Cgj = Z hesijgi-
1<i<y;,727
Similar to Algorithm 1, we have the following Algorithm:
Algorithm 2: Symmetric Lanczos-type process
1. Given ¢, with ||¢1||2 = 1;
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2 N=l,ag=16=,m=4L1L,=1,1L=1;1.=1;
3. Forj=1,2,--- k do

4.

© X N o o

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

If 7 > N, break
q = Agj;
if 7 > oy, then [, =1, + 1;
For¢:=1,,---,N do

ha;ij - qz*Cja qA - qA - Qiha;ij;
End do

ha;NJrl,j = ||Q||27

If ha;N—I—l,j >0

N=N+1, gv = ¢/hanj, j = N;

End if

q = Byj;

if j >Blb then [, = [, + 1;
Fori=1,,---,N do

hov i1 = [1G]]2;

If hb;NJrLj >0

N=N+1, qv = ¢/hpnj, B = N;

End if

q = Cqj;

if 7 >, then I, =1.+1;
Fori=1.---,N do
End do

hC;N+1,j = ||qA||2’

If hC;N+1’j >0

N=N+1,qv =¢/henj, v = N;

End if

32. End do
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3 Analysis of residual upper bound of the al-
gorithm for (\2A+ AB+ C)z =0

From above discussions, we know that the solution of the QEP (1) can be

approximated by the solution of
()‘QHa(hN,I:N) + )‘Hb(I:N,I:N) + Hc(1:N,1:N))QT:17 =0,

where Q(:,I:N)a Ha(l:N,l:N)a Hb(l:N,l:N) and HC(I:N,I:N) can be pI'OdllCGd by AlgO—
rithms 1 or 2.

That is, if (0;,1;) is an eigenvalue and right eigenvector of
()\ZHa(I:N,I:N) + AHy1:n1:3) + Heen,i:vy)v = 0,

then the eigenvalue and eigenvector of the QEP (1) can be approximated by
eigenpairs (0;, z;), where z; = Q. 1.n)Vi.

The above analysis points that an original quadratic eigenvalue problem
can be approximated by a projection quadratic eigenvalue problem, and the
accuracy can be calculated by the residual error. Therefore, in the following,
the residual upper bound for symmetric Lanczos-type process are derived. Cor-
responding results for the new Arnoldi-type process can be derived similarly,

the details were omitted here.

Theorem 3.1. If the Ritz value and Ritz vector are obtained by Algorithm
2, then the following inequality
1(0?A + BO; + C)xi|2
< QU210 Hav+ i w2 + |03l o4 185 i) 12 (7)
I Hev 41 i) [2) IVigpiv) |2

holds, where p is the smallest integer such that v, > N and is equal to the
value of l. at step N + 1.

Proof. According to (6), we have

AQ(:,I:N) = Q(:,I:N)Ha(I:N,I:N) + Q(:,N+1:aN)Ha(N+1:aN,1:N);
BQ(:,I:N) = Q(:,I:N)Hb(l:N,l:N) + Q(:,N+1:[3N)Hb(N+1:BN,I:N)7
CQ(:,I:N) = Q(:,I:N)HC(I:N,I:N) + Q(:,N—l—l:’yN)Hc(N—i—l:’yN,l:N)-
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Then, we have

(07A+0,B+C)z; = (07AQ(1:n) + 0:BQ 1.y + CQpin)) Vi
= Q(:,I:N)(ggHa(l:N,l:N) + 0; Hy.n0:8) + He(i:n,1:8)) Vi
+(91'2Q(:,N+1:QN)H(L(N+1:0¢N,1:N) + 0;Q ., N11:8x) Ho(N41:8x,1:N)
FQ,N4+1:9w) He(N41ym,1:N) ) Vi
= (2Q¢ N+1am)Ha(N+1:0x ) T 0iQ e N11:8x) Hy(N+1:8 p:N)

+Q(:,N+1:7N)Hc(N-i—l:’yN,p:N))Vi(p:N) .

Since the first p—1 columns of Hoyn11:ay,1:8), Hyn41:8y,1:8) and He(n1:yy,1:3)
are zeros, (7) can be obtained by taking the norm of above formula. O

From (7), it is easy to see that the eigenpairs (6;, z;) is good approximation

to original problem when v;(p : N) is small.

4 Analysis of refined algorithm for (\’A+\B+
Cz =0

As [7] defines, for each #, the refined process is to seek an unit vector
f€ gK({A, B,C}, q) satisfies

1(6A+ 6B + C)jil|, = min [(0*A+ 0B + Clullz,  (8)

negK({A,B,Clan),[lplla=1

and 1 is called a refined eigenvector.

Since @, is an orthogonal basis of ¢K,({A, B,C},¢1), (8) is equivalent to
seek an unit vector 7 € C such that ji = Q.7 satisfies

F=arg min |[[(0*A+ 0B+ O)Quz|».
2€CH[|2l2=1

It is easy to see that Z is the right singular vector of #2AQ, + 0BQ, +
CQ, associated with o, (02AQ, + BQy + CQy). Based on Algorithm 1 and
refined idea in [7], the following restarted refined Arnoldi-type algorithm can

be presented:



Juan Song 23

Algorithm 3: New restarted refined Arnoldi-type algorithm

1. Given m required eigenpairs, an unit initial vector ¢; and a tolerance
tol.

2. Run the Arnoldi-type process to generate an orthogonal basis @, of
gKf({Aa B, C}a QI)'

3. Compute Wy = AQ,, Wy = BQ,, W3 = CQ,.

4. Compute A, = Q;W1, By = Q;Ws, Cy = Q; W3, and the eigenpairs of
the projection problem

(912Ag + giBg + CE)ZZ =0.

Then, select m Ritz values as approximations to the m desired eigenvalues
O;,0=1,2,---,m.

5. For each 6;, i = 1,2,---,m, based on SVD, 0, (0?AQ, + 0; BQ, + CQy)
and eigenvector z; associated with its smallest singular value can be obtained.
Then, the refined eigenvector is fi; = Q¢z;.

6. Compute the relative residual error by

(07 A+ 6; B+ C)jii |
10: 12| Afuill2 + |0:]|| Bl |2 + [|Cfisl 2’

i=1,2,--+,m.

If they are all below tol, then stop, else continue.
7. Construct a new initial vector ¢; from f;,t =1,2,---,m, and return to

step 2. Here, ¢; can be obtained as the following combinations:

5 Numerical examples

In order to show the efficiency of Algorithms 1 and 2, some numerical
examples are indicated in this section, the process is realized by Matlab 7.8 on
Pentium(R) Dual-Core CPU. In the following example, if [8, Algorithm 2.1] is
used, it means that we transform the QEP (1) into (N I+AA™'B+A~'C)x = 0,

where it is assumed that A is nonsingular. In the numerical examples, the
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relative residual norm for an approximate eignpairs (6}, z;) are defined by
L1031 Az; |l + 1051 Bl + [|Csla”

Example 5.1. In this example, taking n = 10, k = 2.

0.3667  0.8872  —0.0975 —0.0782  0.1205 —0.0637  0.0635 0.1858  —0.0751 —0.0000
0.3786 —0.0977  0.5776  —0.0956  0.0446  —0.0399  0.1546  —0.2211 —0.2664  0.5975
0.1048 —0.0270 —0.3103 —0.0251  0.1232 0.9065 0.05610  —0.0729 —0.0879  0.1971

_ 0.2096 —0.0541 —0.1274  0.8489  —0.0655 —0.0627  0.4561 0.0000 0.0000 0.0000
Q o 0.3977 —0.1026  0.5516 0.0701 0.0228 0.3065  —0.1258  0.2486 0.2253  —0.5470
0.4525 —0.1449 —0.2844 —0.2552 —0.7873 —0.0495 0.0506 0.0369 0.0456 0.0000
0.4120 —0.3608 —0.3342 —0.2781  0.5652  —0.2356  0.2410 0.1756 0.2173 0.0000
0.1572 —0.0406 —0.0956 —0.0867  0.1080 —0.0605 0.0648  —0.5558 —0.5927 —0.5266
0.0810  0.1715 0.0140  —0.0062  0.0177 0.0064 0.0021  —0.7104 0.6774 0.0000
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Figure 2: Residual errors of computed eigenvalues

Let p=(1,1,1,1,1,1,1,1,1,1) 7, k = 2 and take initial vector ¢ = p/||p||2,
the projection quadratic eigenvalue problem can be obtained by Algorithm 2.
By using the polyeig function, the modulo largest eigenvalue is —6.9702 x 107,
and the termination criterion is 1E-6, the residual error is 8.2930x 10~ 7. Figure
2 plots the relative residual norms for the solving method. However, by [8,
Algorithm 2.1] and by polyeig function, the modulo largest eigenvalue is Inf or
spill over. By polyeig(C, B, A), the modula largest eigenvalue is —6.9700 x 107.

From the example, it is indicated that when the condition number of matrix
A is very large, the solution may spill over by [8, Algorithm 2.1]. In this case,

we can try to utilize Algorithm 2.
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Example 5.2. n = 50, Ay = rand(n), Amin(44 Ag) = 3.3015 x 1076, A =
AJ Ag — 3.3014 x 107°1,,, cond(A) = 5.1352 x 102, B = round(80 * rand(n)),
C = round(80 * rand(n)).

Let p = ones(50, 1), taking initial vector ¢ = p/||p||2 and & = 3, by utiliz-
ing Algorithm 1, the lower-dimensional quadratic eigenvalue problem can be
obtained. By polyeig function, the modulo largest eigenvalue is 3.4187 x 10!,
and the termination criterion is 1E-5, the residual error is 9.1972 x 1075, Fig-
ure 3 plots the relative residual norms for this solving method. However, by
[8, Algorithm 2.1] and or polyeig function, the modulo largest eigenvalue is Inf
or spill over. Furthermore, by polyeig(C, B, A), the modula largest eigenvalue
is 3.4188 x 10'*. Although the polyeig is convenient, it cannot solve large scale

eigenvalue problem.

Residual errors
"
5

| *,=3.4187 x10%*
F o

Figure 3: Residual errors of computed eigenvalues

Example 5.3. n = 100, 4y = rand(n), Amin(44 Ap) = 2.2805 x 1075,
A= AJAy—2.28x107°1,, cond(A) = 4.9641 x 10'*, B = round(160*rand(n)),
C = round(160 % rand(n)).

Let p = ones(100, 1), taking initial vector ¢ = p/||p||2 and k = 3, by uti-
lizing Algorithm 1, the lower-dimensional quadratic eigenvalue problem can
be obtained. By polyeig function, the modulo largest eigenvalue is 2.3796 x

10° — 12.764i, and the termination criterion is 1E-5, the residual error is
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9.7534 x 107%. Figure 4 plots the relative residual norms for this solving
method. However, by [8, Algorithm 2.1] or polyeig function, the modulo largest
eigenvalue is Inf or spill over. Furthermore, by polyeig(C, B, A), the modula
largest eigenvalue is 2.3796 x 10°.

Residual errors
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10°F+ o

Figure 4: Residual errors of computed eigenvalues

Example 5.4. n = 300, Ay = rand(n), A = AjA; — 9.45 x 107°1,,
cond(A) = 2.4070 x 10", A\nin(Ag Ag) = 9.4594 x 107°, B = round(500 x
rand(n)), C = round(500 x rand(n)).

Let p = ones(300, 1), taking initial vector ¢ = p/||p||2 and k = 5, by
utilizing Algorithm 1, the lower-dimensional quadratic eigenvalue problem can
be given. By polyeig function, the modulo largest eigenvalue is —1.1874 x 10° 4
5.829i, and the termination criterion is 1E-5, the residual error is 9.9988 x 10 6.
Figure 5 plots the relative residual norms for this solving method. However,
by [8, Algorithm 2.1] or polyeig function, the modulo largest eigenvalue is Inf
or spill over. Furthermore, by polyeig(C, B, A), the obtained modula largest
eigenvalue is —1.1874 x 10°.

Example 5.5. n = 500, 4y = rand(n), Amin(Ag Ag) = 3.9457 x 1075,
A= AJAy—3.9%107°I,, cond(A) = 1.3698 x 10!, B = round(800 xrand(n)),
C' = round(800 % rand(n)).
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Figure 5: Residual errors of computed eigenvalues

Let p = ones(500, 1), taking initial vector ¢ = p/||p||2 and k = 8, by uti-
lizing Algorithm 1, the lower-dimensional quadratic eigenvalue problem can
be obtained. By polyeig function, the modulo largest eigenvalue is 6.0500 x
10% + 72.832i, and the termination criterion is 1E-5, the residual error is
9.8699 x 107%. Figure 6 plots the relative residual norms for this solving
method. However, by [8, Algorithm 2.1] or polyeig function, the modulo
largest eigenvalue is Inf or spill over. Meanwhile, by polyeig(C, B, A), the

modula largest eigenvalue is 6.0500 x 10%.

Example 5.6. n = 1000, Ay = rand(n), Amn(Agj Ao) = 3.8766 x 1075,
A= AJAy—3.1x107°1,, cond(A) = 3.2212x10'°, B = round(1500%rand(n)),
C = round(1500 % rand(n)).

Let p = ones(1000,1), taking initial vector ¢ = p/||p|l2 and k& = 15,
by utilizing Algorithm 1, the lower-dimensional quadratic eigenvalue prob-
lem can be obtained. By polyeig function, the modulo largest eigenvalue is
—3.9828 x 10" — 91.527i, and the termination criterion is 1E-5, the residual
error is 9.9989 x 1075, Figure 7 plots the relative residual norms for this solv-
ing method. However, by [8, Algorithm 2.1] or polyeig function, the modulo
largest eigenvalue is Inf or spill over. By polyeig(C, B, A), the obtained modula
largest eigenvalue is —3.9828 x 107.
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Figure 7: Residual errors of computed eigenvalues
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