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Abstract

A model to value risky cash-flows through discounting at determin-
istic rates is presented. The analysis mainly concerns with the valuation
of project’s levered cash-flows under default risky debt and general tax
shield assumptions. Deterministic unlevered and levered rates as well as
a deterministic Weighted Average Cost of Capital (dWACC) are defined
and the relevant relationships among them are derived. The model al-
lows to account for the risk of cash-flows in a proper way and produce
exact results as in the stochastic discounting method. To illustrate the
model, a numerical example about the evaluation of a two-period in-
vestment project with default risky debt is provided. The proposed
approach is general and represents a first step toward a bridge between
stochastic models for capital budgeting and more traditional capital
budgeting techniques based on discounted cash-flow analysis.
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1 Introduction

Valuing risky cash-flows is a very important task in capital budgeting de-

cisions to determine correctly the market value of a levered firm or a levered

project. Due to its mathematical tractability, the risk-adjusted discount rate

method (Modigliani and Miller, 1963) is a widely applied pricing technique,

especially in the context of the Adjusted Present Value (APV) approach (My-

ers, 1977) or in the Weighted Average Cost of Capital (WACC) method of

valuation (Miles and Ezzel, 1980). In the standard applications of the risk-

adjusted discount rate method, deterministic discount rates are used under

the strong assumption that the risk of the cash-flow does not vary across the

different states of the world (Trigeorgis, 1996). Although in many cases such

an assumption can be accepted, it cannot be assumed in general.

The evaluation of risky cash-flows is a difficult task: it can be accomplished

determining first the level of risk of the cash-flow and then the cost of capital,

i.e. the appropriate discount rate that accounts for the systematic risk of the

cash-flow (Fama, 1977; Miles and Ezzel, 1985). In general, the discount rate

is a random process that must properly track the variability of the cash-flow

risk at any time and in each state of the world. To quote some examples, in

default risky debt the default event modifies the risk profile of the debt and of

the tax-shield in a significant way. Real options provide further examples in

which the cash-flows generated by investment projects exhibit variable risky

profiles (Trigeorgis, 1996). In many practical applications such well recognized

stochasticity is treated within some approximating scheme in which determin-

istic discount rates are used (Koziol, 2014; Molnár and Nyborg, 2013).

This paper provides a general model to evaluate risky cash-flows generated

by levered investment projects (or by levered firms) through deterministic dis-

counting. The proposed approach is not an approximating scheme, it properly

accounts for the risk of cash-flows and produces exact results as in the stochas-

tic discounting method. From this point of view, this paper can be viewed as

a first step toward a bridge between stochastic models for capital budgeting

(Dixit and Pindyck, 1994) and more traditional capital budgeting techniques

based on discounted cash-flow analysis.

The contribution of the paper is twofold. The first one regards stochastic

discounting. Within the context of the risk-adjusted method, a general ap-
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proach to value project’s levered cash-flows under general tax shield assump-

tions is provided. Relationship between levered rates and unlevered rates, as

well as, relationships between the WACC and unlevered rates and between

the WACC and levered rates are derived under general tax shield assump-

tions. Such WACC formulas extend the classical Modigliani-Miller formula

(1963) and the Harrison-Pringle formula (1985). Our result also generalizes

the formula derived by Farber, Gillet and Szafarz (2006).

As a second contribution, a general model to value risky cash-flows gener-

ated by levered investment projects (or by levered firms) through deterministic

discounting is proposed. Deterministic unlevered rates and levered rates (as

well as deterministic cost of debt and of the tax shield) will be defined. Using

deterministic discount rates the valuation process is then provided. It will be

proved that such an approach properly accounts for the level of risk of the

cash-flows and that it produces the same cash-flows present values as those

obtained in the stochastic discounting method.

Three are the main results. The first one provides a formal relationship

between deterministic discount rates and stochastic discount rates. It will

be shown that deterministic rates can be expressed as weighted averages of

stochastic discount rates. A further representation of deterministic rates is

given in terms of cash-flows without involving stochastic rates. Such relations

allow to account for the level of risk of the cash-flow in a proper way. As a

second result, we derive a generalization of Proposition II of the Modigliani-

Miller theorem (Modigliani and Miller, 1958): it provides a relationship be-

tween deterministic unlevered rates and deterministic levered rates, debt rates

and tax shield rates. The third result regards the definition of the determin-

istic Weighted Average Cost of Capital (dWACC). The derivation of general

relationships between dWACC and deterministic unlevered rates and between

dWACC and deterministic levered rates is then provided. Such relations allow

to prove the equivalence between the Adjusted Present Value and the Weighted

Average Cost of Capital approach also in the deterministic discounting model.

The equivalence is general and is valid, of course, also in the case of a growing

leveraged firm (Dempsey, 2013; Massari et al., 2007).

To illustrate the deterministic discounting model, a numerical example of

the evaluation of a two-period investment project is provided. The relevant

cash-flows are defined on a stochastic lattice to simulate levered project in
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presence of default risky debt. The analysis is performed by using both, the

stochastic discounting approach and the deterministic discounting model.

The paper is organized as follows. Section 2 provides a brief review of

the stochastic discounting approach for evaluating risky cash-flows. WACC

formulas are presented under general tax shield assumptions (the derivation

of the main formulas presented in this section is provided in Appendix A).

Section 3 contains the deterministic discounting model (the derivation of the

main formulas presented this section is given in Appendix A). A numerical

example is proposed in Section 4. Some remarks conclude the paper.

2 Stochastic discounting of risky cash-flows

In this Section, after a brief review of some basics results which play a

crucial role in determining present values of risky cash-flows, we provide a

general formula for the WACC under any tax-shield assumption.

Let us denote by {FU
t }m

t=1 a collection of measurable random variables with

respect a given filtration of a given probability space (Duffie, 1998), describing

the unlevered cash-flow, or simply the free cash-flow, generated by a firm (or

by a single investment project) 3. The present value of the cash-flow at time

t, V U
t , i.e. the unlevered value at time t of the firm (or of the investment

project) generating the free cash-flow {FU
t }m

t=1, can be obtained according to

the following recursive relation:

V U
t =

Et[F
U
t+1 + V U

t+1]

1 + rU
t

, (2)

where the discount rate, rU
t , is a t−measurable random variable which accounts

for the risk of the unlevered cash-flow in the interval [t, t + 1], and Et denotes

the expectation operator with respect to the information available at time t.

The discount rate, rU
t , is also named unlevered cost of capital or unlevered

3In general, the free cash-flow can be defined according to

FU
t = Revt − Ct − Tt − It −∆WCt,

obtained by subtracting from revenues Revt, costs Ct, taxes Tt, capital expenditures It, and
time variation of working capital ∆WCt, all referred to the operating year t.
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rate. Let us suppose that the firm (or a given investment project) is partially

financed by (risky) debt. If we denote by {FD
t }m

t=1 the debt repayments, the

outstanding debt at time t, V D
t , is related to the value of the debt at time

t + 1, V D
t+1, by the recursive relation:

V D
t =

Et[F
D
t+1 + V D

t+1]

1 + rD
t

, (3)

where rD
t is a t−measurable random variable accounting for the cost of debt. In

presence of debt, the amount of equity invested in the project is remunerated

by the levered cash-flow (or equity cash-flow), {F S
t }m

t=1, obtained by subtracting

the debt service from the free cash-flow and taking into account the tax shield

for interest payments, {F TS
t }m

t=1,

F S
t = FU

t − FD
t + F TS

t . (4)

The value of the equity at time t, V S
t , can be defined by the following recursive

relation:

V S
t =

Et[F
S
t+1 + V S

t+1]

1 + rS
t

, (5)

where the t−measurable random variable rS
t is the levered cost of capital (cost

of equity). On the same basis, the present value of the tax shield, V TS
t , is

related to {F TS
t }m

t=1 by the following relation:

V TS
t =

Et[F
TS
t+1 + V TS

t+1]

1 + rTS
t

, (6)

where the t−measurable random variable rTS
t accounts for the risk of the tax

shield cash-flow. Equations (2), (3), (5) and (6) show the same algebraic

structure:

V X
t =

Et[F
X
t+1 + V X

t+1]

1 + rX
t

, (7)

where X stands for U (unlevered), D (debt), S (equity) and TS (tax shield).

The cost of capital, rX
t , can be determined using, for example, multi-factor

models as the Arbitrage Pricing Theory (APT) (Ross, 1976) or the Capital

Asset Pricing Model (CAPM) (Sharpe, 1984). Alternatively, the cost of capi-

tal can be obtained within the context of risk-neutral valuation (Harrison and

Kreps, 1979). We recall that, under a risk-neutral probability measure (mar-

tingale measure), the value at time t, V X
t , of the risky cash-flow {FX

t } can be
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expressed as follows:

V X
t =

E∗
t [F

X
t+1 + V X

t+1]

1 + rf
, (8)

where E∗
t denotes the conditional expectation operator under the risk-neutral

measure and rf is the risk-free rate. Comparing Equation (8) with Equation

(7), it is straightforward to obtain the following representation of the cost of

capital:

1 + rX
t = (1 + rf )

Et[F
X
t+1 + V X

t+1]

E∗
t [F

X
t+1 + V X

t+1]
. (9)

Generalizing Proposition II of the Modigliani-Miller Theorem

Equity rates are not independent quantities, but they are related to unlevered

rates, debt rates and tax shield rates by the linear combination:

rS
t = rU

t + (rU
t − rD

t )
V D

t

V S
t

− (rU
t − rTS

t )
V TS

t

V S
t

. (10)

Equation (10) provides a generalization of Proposition II of the Modigliani-

Miller theorem which properly accounts for the increasing risk of equity in a

leveraged firm. It can be obtained, after some algebraic manipulations, by

substituting Equation (4) into Equation (5) and using Proposition I of the

Modigliani-Miller theorem:

Vt ≡ V S
t + V D

t = V U
t + V TS

t . (11)

Appendix A contains a detailed proof of the above result.

The Weighted Average Cost of Capital (WACC)

The present value of a leveraged firm (or a leveraged investment project) can

be also obtained by discounting the free cash-flow at the so called Weighted

Average Cost of Capital (WACC). The WACC rates are defined by the follow-

ing recursive relation:

Vt =
Et[F

U
t+1 + Vt+1]

1 + rW
t

. (12)

WACC rates are not independent quantities, and they are related to unlevered

rates, debt rates and tax shield rates by the linear combination:

rW
t = rU

t − (rU
t − rTS

t )
V TS

t

Vt

−
Et[F

TS
t+1]

Vt

. (13)
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Finally, WACC rates can be also expressed in terms of equity rates and debt

rates,

rW
t =

V S
t

Vt

rS
t +

V D
t

Vt

rD
t −

Et[F
TS
t+1]

Vt

. (14)

Appendix A contains a detailed proof of such a result.

Equation (13) and Equation (14) are general and are valid, for example, also

in presence of default risky debt and under general tax shield assumptions. In

this sense, they extend the classical Modigliani-Miller formula (1963) and the

Harrison-Pringle formula (1985). Since in general Et[F
TS
t+1] 6= Tcr

D
t Dt (Tc is the

corporate tax rate), such relations also extends the formula derived by Farber,

Gillet and Szafarz (2006). A similar reation has been derived by Cooper and

Nyborg (2008) under a constant debt ratio policy.

Valuing present values of risky cash-flows in a multi-period stochastic envi-

ronment is a difficult task. Due to non-zero correlation between stochastic

discount rates and cash-flows, the iterative application of Equations (7) and

(12) by backward induction is not straightforward. It simplifies under deter-

ministic discount rates. As mentioned in the Introduction, in many practical

applications stochastic valuation of risky cash-flows is treated within some ap-

proximating scheme in which deterministic discount rates are used. In the

next section we provide a general model to evaluate risky cash-flows generated

by levered investment projects (or by levered firms) through deterministic dis-

counting. The proposed approach is not an approximating scheme, it properly

accounts for the risk of the cash-flows and produces exact results as in the

stochastic discounting method.

3 Deterministic discounting of risky cash-flows

In this Section we propose a model to value risky cash-flows using deter-

ministic discount rates. Three are the main results that will be presented and

discussed.

The first one provides a formal relationship between deterministic discount

rates and stochastic discount rates. It will be shown that deterministic rates

can be expressed as weighted averages of stochastic discount rates. A further

representation of deterministic rates is given in terms of cash-flows without
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involving stochastic rates. Such relations allow to account for the level of risk

of the cash-flow in a proper way.

As a second result, we derive a generalization of the Proposition II of

the Modigliani-Miller theorem. Taking into account the risk of the levered

cash-flow, it provides a relationship between deterministic unlevered rates and

deterministic levered rates, debt rates and tax shield rates.

The third result regards the definition of the deterministic Weighted Av-

erage Cost of Capital (dWACC). General relationships between dWACC and

deterministic unlevered rates and between dWACC and deterministic levered

rates will be derived.

Let us define the deterministic cost of capital, kX
t , by the following recursive

relation:

E0[V
X
t ] =

E0[F
X
t+1 + V X

t+1]

1 + kX
t

, (15)

where X stands for U (unlevered), D (debt), TS (tax shield) and the symbol E0

denotes the conditional expectation operator under the information available

at the present time (or time 0).

Representing deterministic discount rates

One of the main results of the paper is to provide a characterization of de-

terministic discount rates, kX
t , in terms of a weighted averages of stochastic

discount rates rX
t . Namely, the following representation holds:

kX
t = E0[r

X
t pX

t ], (16)

where pX
t is a t−measurable random variable that can be expresses as:

pX
t =

Vt

E0[Vt]
=

E∗
t [W

X
t+1,m]

E0

[
E∗

t [W
X
t+1,m]

] , (17)

in which

WX
t+1,m =

m∑
k=t+1

FX
k

(1 + rf )k−t
(18)

is the risk-free discounted X−flow. Under a risk-neutral measure, the symbol

E∗
t denotes the conditional expectation with respect to such probability mea-

sure. However, we will show that Equations (16)-(18) hold also in multi-factor

models as APT or in the case of CAPM. In such cases the symbol E∗
t denotes
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the conditional expectation with respect to well defined measures. A detailed

proof of the above results is presented in Appendix B.

We notice that the random variable pX
t satisfies the normalization condition

E0[p
X
t ] = 1 at any time t. Of course, if rX

t is non stochastic, we get rX
t = kX

t .

A further representation of deterministic rates can be specified in terms of the

risk-free discounted X−flow without involving stochastic rates. In fact, the

following relation holds:

kX
t = rf + µX

t , (19)

where the risk premium µX
t is given by:

µX
t = (1 + rf )

E0

[
E∗

t+1[W
X
t+1,m]− E∗

t [W
X
t+1,m]

]
E0

[
E∗

t [W
X
t+1,m]

] . (20)

The proof is provided in Appendix B. The above equation provides an exact

formula to account for the risk of cash-flows in a proper way. Although it looks

quite complicated, in some practical applications it simplifies. For example, if

the stochastic X−flow is constant in time, i.e. FX
t = FX , t = 1, 2, · · · , m,

we get:

kX
t = rf +

rf[
1− (1 + rf )−(m−t)

](
E0[F

X ]

E∗
0[F

X ]
− 1

)
. (21)

Although the X−flow does not depend on time, the discount rate shows an

explicit time dependence. The limit m → ∞ is also interesting. In this case

the discount rate does not depend on time and is given by:

kX = rf E0[F
X ]

E∗
0[F

X ]
. (22)

In the case of constant growing flows at a rate g, we obtain in the limit m →∞:

kX = g + (rf − g)
E0[F

X ]

E∗
0[F

X ]
. (23)

For more complicated situations, Monte Carlo simulations can be used.

Under deterministic discounting, the iterative application of Equation (15) is

straightforward and the expected value at time t of a risky cash-flow can be

expressed by,

E0[V
X
t ] =

E0[F
X
t+1]

1 + kX
t

+
E0[F

X
t+2]

(1 + kX
t )(1 + kX

t+1)
+ · · ·+ E0[F

X
m ]

(1 + kX
t ) · · · (1 + kX

m−1)
. (24)
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Generalizing the Proposition II of the Modigliani-Miller Theorem

Deterministic equity rates are related to (deterministic) unlevered rates, debt

rates and tax shields rates by the linear combination:

kS
t = kU

t + (kU
t − kD

t )
E0[V

D
t ]

E0[V S
t ]
− (kU

t − kTS
t )

E0[V
TS
t ]

E0[V S
t ]

. (25)

Appendix B contains a detailed proof of the above result.

Within this approach, Equation (25) provides a generalization of Proposition

II of the Modigliani-Miller theorem. It accounts for the risk of the levered cash-

flow. The entity of the risk depends on several variables. Among the others,

the ratio between the expected value of the outstanding debt and the expected

equity value is the most important one. Since kU
t ≥ kD

t , deterministic equity

rates show a non decreasing behavior as this ratio rises. Also, the ratio between

the expected value of the tax shield and the expected equity value plays an

important role in determining the risk of the levered cash-flow. Depending

on the sign of the difference between the cost of debt and the cost of the tax

shield, the third term in Equation (25) may increase or decrease the risk of

the levered cash-flow. Section 4 provides a two-period numerical example in

which the cost of debt is greater than the tax shield rate at time t = 1 but it

is lower at time t = 0.

The deterministic Weighted Average Cost of Capital (dWACC)

A deterministic Weighted Average Cost of Capital (dWACC), kW
t , can be also

introduced. It is defined by the following recursive relation:

E0[Vt] =
E0[F

U
t+1 + Vt+1]

1 + kW
t

. (26)

Iterative applications of the above equation provide the expected value of a

leveraged firm (or a leverage project) at time t in term of the present value of

the future unlevered cash-flow,

E0[Vt] =
E0[F

U
t+1]

1 + kW
t

+
E0[F

U
t+2]

(1 + kW
t )(1 + kW

t+1)
+ · · ·+ E0[F

U
m ]

(1 + kW
t ) · · · (1 + kW

m−1)
. (27)

Deterministic WACC rates are related to (deterministic) unlevered rates, debt

rates and tax shield rates by the linear combination:

kW
t = kU

t − (kU
t − kTS

t )
E0[V

TS
t ]

E0[Vt]
−

E0[F
TS
t+1]

E0[Vt]
. (28)
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Finally, dWACC rates can be also expressed in terms of equity rates and debt

rates,

kW
t =

E0[V
S
t ]

E0[Vt]
kS

t +
E0[V

D
t ]

E0[Vt]
kD

t −
E0[F

TS
t+1]

E0[Vt]
. (29)

Appendix B contains a detailed proof of Equations (28) and (29) .

It is to be noted that, at the end of the debt term, unlevered rates, equity rates

and dWACC rates must coincide. This can be easily viewed from Equations

(25) and (28) implying at any time t after the debt term,

kE
t = kW

t = kU
t . (30)

To illustrate the deterministic discounting model, a numerical example on the

valuation of a two-period investment project is provided in the next Section.

The relevant cash-flows are defined on a stochastic lattice to simulate levered

project in presence of default risky debt. The analysis is performed by using

both, the stochastic discounting approach and the deterministic discounting

model.

4 A numerical example

Let us suppose a firm produces the unlevered cash-flow described in the

two-period lattice represented in the left panel of Figure (4). Actually, the firm

has a risky debt with a market value V D
0 = 100 to be repaid by two periodic

payments whose nominal values are respectively 60 and 75.5. The debt is,

therefore, issued at a nominal rate of about 21.92%. The debt structure is

depicted in the right panel of Figure 4.

The tax shield structure is reported in the left panel of Figure 4: it is obtained

multiplying the nominal interest rate for the outstanding debt and then for

the corporate tax rate (Tc = 30%) with the exception of the default event in

which we state that the tax shield is set equal to zero (Koziol, 2014).

The probabilistic structure of the example is depicted in Figure 4 in which we

reported the conditional risk-neutral probabilities (left panel) and the condi-

tional natural probabilities (right panel). The risk-free rate is assumed to be

rf = 5%.
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Although risk-neutral valuation has been used to determine present values of

unlevered and levered cash-flows, as well as present values of the debt and of

the tax shield, it is not a necessary approach. It guarantees that the valuation

is arbitrage-free. Alternatively, we could determine the present value of cash-

flows by defining the cost of capital by using, for example, CAPM or APT

and discounting the relevant cash-flows at the appropriate stochastic rate as
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discussed in Section 1. The cost of capital is determined at each node of the

lattice at time t = 1 (u and d) and at time t = 0 applying Equation (9) and

the obtained results are described in the left panel of Table 1. Levered rates

are computed applying Equation (10). The weighted average cost of capital

can be calculated using Equation (13) or Equation (14). Present values of

cash-flows are calculated at time t = 0 and at time t = 1 in each node and

they are re ported in the right panel of Table 1.

t 0 1 u 1 d

rU
t 15.50% 10.25% 10.25%

rTS
t 26.00% 5.00% 5.00%

rD
t 10.38% 5.00% 10.25%

rS
t 26.00% 18.25% 5.00%

rW
t 13.24% 7.50% 10.25%

t 0 1 u 1 d

V U
t 148.75 114.28 38.09

V TS
t 4.52 2.91 0

V D
t 100.00 71.90 38.09

V S
t 53.27 45.30 0

Vt 153.27 117.20 38.09

Table 1: The cost of capital (left panel); the present value structure (right panel).

Let us notice that the variability of the tax shield discount rate is very pro-

nounced. The default event causes a “jump” in the discount rate at time t = 0

(rTS
0 = 26%). Such a value greatly differs from the value of the unlevered rate

at time t = 0 (rU
0 = 15.5% thus showing that the risk of the tax shield may be

very different from the risk of the firm’s assets (Harris and Pringle, 1985).

Now, we will show that the above valuation can be accomplished within the
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context of a deterministic discounting model. According to the obtained re-

sults, deterministic discount rates are calculated and present values of cash-

flows are determined. In particular kX
t for t = 0, 1 and X = U, TS, D can be

calculated using Equation (16); kS
t using Equation (25); kW

t using indifferently

Equation (28) or Equation (29). Results are presented in the right panel of

Table 2. Averaged present values E0[V
X
t ] for t = 1, 2 and X = U, TS, D, S

are determined according to Equation (24); averaged present value E0[Vt] for

t = 0, 1 are determined according to Equation (27). Results are presented in

the left panel of Table 2.

t 0 1

kU
t 15.50% 10.25%

kTS
t 26.00% 5.00%

kD
t 10.38% 6.37%

kS
t 26.00% 18.25%

kW
t 13.24% 7.99%

t 0 1

E0[V
U
t ] 148.75 83.81

E0[V
TS
t ] 4.52 1.75

E0[V
D
t ] 100.00 58.38

E0[V
S
t ] 53.27 27.18

E0[Vt] 153.27 85.56

Table 2: Deterministic discount rates (left panel); the averaged present value struc-
ture (right panel).

5 Concluding remarks

The developed analysis aimed at putting in some evidence the possibility to

determine present values of risky cash-flows through deterministic discounting.

One of the main result of the paper is to provide an analytic characterization of

deterministic rates in terms of weighted averages of stochastic discount rates.

A further representation of deterministic rates has been provided in terms of

cash-flows without involving stochastic rates. Such relations allow to account

for the level of risk of the cash-flow in a proper way. Although they looks

quite complicated, it has been shown that in some practical applications such

relationships simplify. For more complicated situations, Monte Carlo simula-

tions can be used. Under deterministic discounting, multi-period calculations

of present values simplifies and in this sense the model presented in this pa-

per can represent a first step toward a bridge between stochastic models for
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capital budgeting and more traditional capital budget ing techniques based on

discounted cash-flow analysis.
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A Appendix

This Appendix contains detailed profs of the main results stated in Section 2.

Proof of Equation (10)

Let us rewrite Equations (5), (3), (2) and (6) in the following way:

(1 + rS
t )V S

t = Et[F
S
t+1 + V S

t+1],

(1 + rD
t )V D

t = Et[F
D
t+1 + V D

t+1],

(1 + rU
t )V U

t = Et[F
U
t+1 + V U

t+1],

(1 + rTS
t )V TS

t = Et[F
TS
t+1 + V TS

t+1].

Summing the first and the second equation and then subtracting the third and

the fourth one, after some algebraic manipulations (in which the Modigliani-

Miller theorem and Equation (4) have been used) we easily get:

rS
t V S

t + rD
t V D

t − rU
t V U

t − rTS
t V TS

t = 0.

Since V U
t = Vt − V TS

t , the above equation can be rewritten as follows:

rE
t = rU

t + (rU
t − rD

t )
V D

t

V S
t

− (rU
t − rTS

t )
V TS

t

V S
t

. (A.1)

Proof of Equation (13)

Let us rewrite Equations (12), (2) and (6) in the following way:

(1 + rW
t )Vt = Et[F

U
t+1 + Vt+1],

(1 + rU
t )V U

t = Et[F
U
t+1 + V U

t+1],

(1 + rTS
t )V TS

t = Et[F
TS
t+1 + V TS

t+1].

Subtracting from the first equation the second and the third one, after some

algebraic manipulations (in which Proposition I of the Modigliani-Miller the-

orem has been used) we easily get:

rW
t Vt − rU

t V U
t − rTS

t V TS
t + Et[F

TS
t+1] = 0.

Since V U
t = Vt − V TS

t , the above equation can be rewritten as follows:

rW
t = rU

t − (rU
t − rTS

t )
V TS

t

Vt

−
Et[F

TS
t+1]

Vt

. (A.2)
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Proof of Equation (14)

Let us rewrite Equations (12), (5) and (3) in the following way:

(1 + rW
t )Vt = Et[F

U
t+1 + Vt+1],

(1 + rS
t )V S

t = Et[F
S
t+1 + V S

t+1],

(1 + rD
t )V D

t = Et[F
D
t+1 + V D

t+1].

Subtracting from the first equation the second and the third one, after some

algebraic manipulations (in which the Proposition I of the Modigliani-Miller

theorem and equation (4) have been used) we easily get:

rW
t Vt − rS

t V S
t − rD

t V D
t + Et[F

TS
t+1] = 0.

The above equation can be rewritten, therefore, as follows:

rW
t =

V S
t

Vt

rS
t +

V D
t

Vt

rD
t −

Et[F
TS
t+1]

Vt

. (A.3)
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B Appendix

This Appendix contains detailed profs of the main results stated in Section 3.

Proof of Equation (16)

Let us rewrite Equations (7) for the X−flow in the following way:

(1 + rX
t )V X

t = Et[F
X
t+1 + V X

t+1],

Taking expectation under the natural probability with respect to the informa-

tion available at time 0, we get:

E0[(1 + rX
t )V X

t ] = E0[F
X
t+1 + V X

t+1] = (1 + kX
t )E0[V

X
t ], (B.2)

in which Equation (15) has been used. The above equation can be cast in the

following form:

kX
t = E0[r

X
t pX

t ], (B.3)

where pX
t is a t−measurable random variable given by:

pX
t =

Vt

E0[Vt]
. (B.4)

Under a risk-neutral probability measure the value at time t, V X
t , of the

X−flow can be expressed as:

V X
t =

E∗
t [F

X
t+1 + V X

t+1]

1 + rf
, (B.5)

where E∗
t denotes the conditional expectation operator under the risk-neutral

probability distribution. The previous recursive equation can be expressed in

the following equivalent form:

V X
t = E∗

t [W
X
t+1,m], (B.6)

where

WX
t+1,m =

m∑
k=t+1

FX
k

(1 + rf )k−t
(B.7)

is the risk-free discounted X−flow. In such a case pX
t can be expressed as

follows:

pX
t =

E∗
t [Z

X
t+1,m]

E0

[
E∗

t [Z
X
t+1,m]

] . (B.8)
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Proof of Equation (19)

Let use rewrite Equation (15) in the following way:

1 + kX
t =

E0[F
X
t+1 + V X

t+1]

E0[V X
t ]

=
E0

[
FX

t+1 + E∗
t+1[W

X
t+2,m]

]
E0

[
E∗

t [W
X
t+1,m]

] ,

in which Equation (B.6) has been used. After some algebraic manipulations,

the above expression can be cast as:

kX
t = (1 + rf )

E0

[
E∗

t+1[W
X
t+1,m]

]
E0

[
E∗

t [W
X
t+1,m]

] − 1,

from which

kX
t = rf + µX

t , (B.11)

where µX
t is given by:

µX
t = (1 + rf )

E0

[
E∗

t+1[W
X
t+1,m]− E∗

t [W
X
t+1,m]

]
E0

[
E∗

t [W
X
t+1,m]

] . (B.12)

Deterministic discounting in a multi-period APT and CAPM

We will show that representation (B.3) works also in a multi-period APT as

well as in a multi-period CAPM. To prove this let us pose rX
t = Et[r̃

X
t+1] where

r̃X
t+1 =

FX
t+1 + V X

t+1

V X
t

− 1. (B.13)

In a multi-period APT with n risky factors, the cost of capital, rX
t , can be

expressed as

rX
t = rf +

n∑
j=1

βX
jt

(
Et[r̃

j
t+1]− rf

)
,

where

βX
jt =

covt(r̃
X
t+1, r̃

j
t+1)

σ2
t (r̃

j
t+1)

,

and r̃j
t+1 is the return of the j−th factor portfolio on the time interval [t, t+1].

By using Equation (B.13), βX
jt can be cast in the following useful form:

βX
jt =

1

V X
t

covt(F
X
t+1 + V X

t+1, r̃
j
t+1)

σ2
t (r̃

j
t+1)

. (B.16)
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Since,

V X
t =

Et[F
X
t+1 + V X

t+1]

1 + rX
t

=
Et[F

X
t+1 + V X

t+1]

rf +
∑n

j=1 βX
jt

(
Et[r̃

j
t+1]− rf

) ,

after some algebraic manipulations in which Equation (B.16) has been used,

we get:

V X
t =

Et[F
X
t+1 + V X

t+1]−
∑n

j=1 λjtcovt(F
X
t+1 + V X

t+1, r̃
j
t+1)

1 + rf
, (B.18)

where

λjt =
Et[r̃

j
t+1]− rf

σ2
t (r̃

j
t+1)

. (B.19)

Equation (B.18) can be cast therefore in the following form:

V X
t =

Et

[
Zt+1

(
FX

t+1 + V X
t+1

)]
1 + rf

=
E∗

t

[
FX

t+1 + V X
t+1

]
1 + rf

,

where

Zt+1 = 1−
n∑

j=1

λjt

(
r̃j
t+1 − Et[r̃

j
t+1]) (B.21)

is the “Radon-Nikodym” derivative of the new measure (Neftci, 2000). Fol-

lowing the same line of reasoning of the previous part, Equation (16) and

Equation (19) can be recovered. The CAPM representation can be obtained

as a particular case in which the only risk factor is the market portfolio.

Proof of Equation (25)

Let us explicitly rewrite Equation (15) in the four different specifications as

follows:

(1 + kS
t )E0[V

S
t ] = E0[F

S
t+1 + V S

t+1],

(1 + kD
t )E0[V

D
t ] = E0[F

D
t+1 + Dt+1],

(1 + kU
t )E0[V

U
t ] = E0[F

U
t+1 + V U

t+1],

(1 + kTS
t )E0[V

TS
t ] = E0[F

TS
t+1 + V TS

t+1].

Summing the first and the second equation and then subtracting the third and

the fourth one, after some algebraic manipulations (in which the Proposition I

of the Modigliani-Miller theorem and Equation (4) have been used) we easily

get:

kS
t E0[V

S
t ] + kD

t E0[V
D
t ]− kU

t E0[V
U
t ]− kTS

t E0[V
TS
t ] = 0.
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Since V U
t = Vt − V TS

t , the above equation can be rewritten in the following

way:

kE
t = kU

t + (kU
t − kD

t )
E0[V

D
t ]

E0[V S
t ]
− (kU

t − kTS
t )

E0[V
TS
t ]

E0[V S
t ]

. (B.22)

Proof of Equation (28)

Let us consider the following set of recursive equations:

(1 + kW
t )E0[Vt] = E0[F

U
t+1 + Vt+1],

(1 + kU
t )E0[V

U
t ] = E0[F

U
t+1 + V U

t+1],

(1 + kTS
t )E0[V

TS
t ] = E0[F

TS
t+1 + V TS

t+1].

Subtracting from the first equation the second and the third one, after some

algebraic manipulations (in which Proposition I of the Modigliani-Miller the-

orem has been used) we easily get:

kW
t E0[Vt]− kU

t E0[V
U
t ]− kTS

t E0[V
TS
t ] + E0[F

TS
t+1] = 0.

Since V U
t = Vt − V TS

t , the above equation can be rewritten as follows:

kW
t = kU

t − (kU
t − kTS

t )
E0[V

TS
t ]

E0[Vt]
−

E0[F
TS
t+1]

E0[Vt]
. (B.23)

Proof of Equation (29)

Let us consider the following set of recursive equations:

(1 + kW
t )E0[Vt] = E0[F

U
t+1 + Vt+1],

(1 + kS
t )E0[V

S
t ] = E0[F

S
t+1 + V S

t+1],

(1 + kD
t )E0[V

D
t ] = E0[F

D
t+1 + V D

t+1].

Subtracting from the first equation the second and the third one, after some

algebraic manipulations (in which Proposition I of the Modigliani-Miller the-

orem and Equation (4) have been used) we easily get:

kW
t E0[Vt]− kS

t E0[V
S
t ]− kD

t E0[V
D
t ] + E0[F

TS
t+1] = 0.

The above equation can be rewritten, therefore, as follows:

kW
t =

E0[V
S
t ]

E0[Vt]
kS

t +
E0[V

D
t ]

E0[Vt]
kD

t −
E0[F

TS
t+1]

E0[Vt]
. (B.24)


