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Abstract 
 

This study examines domestic energy consumption in Taiwan under economic 

shocks, with a focus on the 2008 financial crisis and crude oil price volatility. As 

Taiwan relies heavily on imported energy, accurate forecasting of consumption is 

critical for sustainable policy planning. Using monthly data from 2002 to 2019, this 

research applies autoregressive and ARIMA models to predict long-term demand 

and assess the impact of external shocks. Results indicate a steady upward trend in 

energy use with clear seasonal variation, but notable declines occurred during the 

2008 oil price surge and financial turmoil, reflecting strong sensitivity to global 

instability. The AR(1) model shows high explanatory power, with predicted values 

closely matching observed data, and diagnostic tests confirming model robustness. 

Findings highlight that while energy demand recovers alongside economic growth, 

conservation policies during downturns alone are insufficient. The study 

underscores the importance of improving energy efficiency, diversifying supply, 

and strengthening carbon-reduction measures to ensure Taiwan’s sustainable 

energy security. 
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1. Introduction  

The world is confronting the dual challenges of climate warming and an escalating 

energy crisis. In recent decades, rapid climate change has been closely intertwined 

with rising energy consumption, raising concerns over the depletion of non-

renewable resources. Since global warming is directly linked to patterns of energy 

use, governments and societies must increasingly recognize the urgency of energy 

conservation. At this critical stage, the pressing question is how to enhance energy 

efficiency and promote sustainable consumption, ensuring that economic growth 

can be achieved without further intensifying environmental degradation. 

The close relationship between energy consumption and economic growth is 

evident from Taiwan's development experience over the past few decades. Since 

Taiwan’s energy resources are extremely scarce, and most of these resources face 

unstable supply conditions, sharp price fluctuations, and strategic vulnerabilities 

tied to national survival, it is essential to plan adequate energy reserves to cope with 

sudden supply disruptions. Accordingly, long-term energy demand forecasting has 

become increasingly critical. For example, Xu et al. (2014) applied univariate time 

series models for long-term energy demand forecasting and demonstrated that such 

models can produce relatively accurate results under stable conditions. However, 

these approaches are limited because they cannot incorporate foreseeable economic 

shocks—such as global energy crises, industrial restructuring, or the 

implementation of environmental protection and energy conservation policies—

causing forecasts to diverge from reality and reducing their credibility. Recent 

research echoes this concern: Chen et al. (2022) highlighted the need for hybrid 

models to capture nonlinear dynamics in energy demand, while Li et al. (2023) 

demonstrated that including policy and environmental variables significantly 

improves forecast accuracy under economic volatility. 

Given this, the main purpose of this paper is to provide effective and feasible policy 

simulation tools and variables, enabling relevant decision-making units to evaluate 

the impact of economic shocks on long-term energy demand. This study focuses 

specifically on Taiwan’s energy consumption, where dependence on imports and 

vulnerability to global volatility create pressing challenges. As noted by Zhang et 

al. (2022), incorporating external shocks such as oil price fluctuations and policy 

interventions into forecasting models significantly improves their explanatory and 

predictive power, highlighting the need for approaches that go beyond traditional 

univariate models. 

Accordingly, this study seeks to address the following research questions.  

Q1: How have economic shocks, such as the 2008 financial crisis and oil price 

surges, affected domestic energy consumption in Taiwan?  

Q2: Can autoregressive and ARIMA models effectively capture the dynamics of 

Taiwan’s energy demand under volatile economic conditions?  

Q3: What are the policy implications of the forecasting results for energy security, 

conservation, and sustainable development in Taiwan? 
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Despite significant international advances, Taiwan still lacks studies that forecast 

aggregate energy consumption under explicit economic shocks using transparent, 

policy-ready time-series baselines. Most domestic research remains confined to 

emissions linkages or sector-specific demand, leaving aggregate forecasting with 

shock overlays largely unexplored. This paper addresses the gap by constructing an 

interpretable AR/ARIMA model for Taiwan’s monthly energy consumption, 

capturing trend, seasonality, and persistence with standard diagnostics. It further 

incorporates economic-shock interpretation—notably the 2008 oil surge and 

financial crisis—revealing demand contractions and subsequent recovery consistent 

with cross-country nonlinear evidence. Beyond forecasting, the study provides 

policy-relevant simulation levers such as reserve planning, efficiency targets, and 

demand-side management, while also outlining pathways to extend the AR/ARIMA 

baseline with exogenous variables (e.g., oil prices, policy dummies) or advanced 

hybrids (e.g., ARIMA-LSTM, ICEEMDAN-NARX) when volatility intensifies. 

 

2. Literature Review  

2.1 International Evidence: The Energy–Economy Nexus 

The global debate on the causal relationship between energy demand and economic 

activity has produced mixed conclusions. Early studies focusing on the United 

States reached inconsistent results regarding causality between energy consumption 

and GNP (Kraft & Kraft, 1978; Akarca & Long, 1980; Abosedra & Baghestani, 

2004). Broader comparative work highlighted heterogeneity across countries: Yu 

and Choi (1985) found no link between energy and GNP in the U.S., U.K., and 

Poland, but significant associations in South Korea and the Philippines, with natural 

gas and liquid fuels showing leading effects in some cases. These outcomes 

underscore the sensitivity of findings to development stage, fuel mix, and sample 

selection, while Lee and Ni (2002) stressed that oil price shocks can exert 

asymmetric impacts on output depending on macroeconomic conditions. 

More recent research emphasizes nonlinear and threshold effects in the energy–

growth nexus. For example, Khezri et al. (2024) use a Panel Smooth Transition 

Regression (PSTR) to demonstrate that the strength and direction of causality vary 

across R&D regimes, while Raza et al. (2025) show robust short- and long-run 

effects in BRICS economies when energy is disaggregated by type. Similarly, Xie 

et al. (2025) model the dynamic interactions of energy, finance, and growth in 

emerging economies, revealing structural dependence and feedback loops. Together, 

these findings highlight that no single stable elasticity exists and that forecasting 

models should be sensitive to regime shifts and exogenous shocks. 

 

2.2 Domestic Research: Taiwan’s Energy–Economy Dynamics 

Taiwan’s scholarship on energy demand has historically focused on sectoral or fuel-

specific models rather than aggregate analysis. Early work by Liou (1992), Liang 

and Mei (2005), and recent work of Lu (2024), along with long-term planning 

studies by the Taiwan Power Company, relied on econometric or input–output 
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approaches. Yu et al. (1998) applied a computable general equilibrium (CGE) 

framework to examine the macroeconomic effects of oil price changes, while the 

Energy Committee of the Ministry of Economic Affairs in 1985 combined 

econometric, input–output, and linear programming tools to forecast demand under 

scenarios of technology advancement and conservation measures. However, these 

approaches remained fragmented by subsector and could not fully capture the long-

term adjustment dynamics of aggregate energy demand. 

In contrast, recent studies have begun to reflect macroeconomic linkages. Jia et al. 

(2023) employed a mixed-frequency VAR (MF-VAR) model for Taiwan (1970Q1–

2019Q4) and confirmed reciprocal causality between economic growth, CO₂, and 

primary energy consumption, underscoring the macro-critical role of aggregate 

demand. Han et al. (2023) used quantile mediation to show how growth mediates 

the hydropower–emissions relationship, revealing distributional heterogeneity that 

matters for stress testing policy impacts. Sectoral innovations also add evidence: 

Lashgari et al. (2022) forecast transportation energy demand using novel 

decomposition techniques, while Mustafa et al. (2025) refined fuzzy time-series 

methods for Taiwan’s electricity demand, achieving MAPE below 1%. These 

illustrate Taiwan’s gradual methodological convergence with global best practices, 

though still largely subsector-specific rather than aggregate. 

 

2.3 AR/ARIMA Forecasting and Hybrid Extensions 

International and domestic research increasingly validates ARIMA as a strong 

baseline for energy demand forecasting. Reviews confirm ARIMA’s competitive 

short-term accuracy and its interpretability, making it especially suited for monthly 

data with seasonality (Pierre et al., 2023). Chreng et al. (2022) show that hybrid 

ICEEMDAN–NARX models with climate covariates outperform stand-alone time 

series models in electricity demand, while Alsardi (2024) demonstrates robust 

ARIMA sectoral forecasts in Jordan using standard diagnostics (ADF, ACF/PACF, 

MAPE). 

Taiwan has only recently begun applying comparable techniques. Chen et al. (2022) 

emphasize the importance of hybrid models in East Asia for structural shocks, while 

Li et al. (2023) show that embedding policy and environmental covariates 

significantly enhances predictive power under uncertainty. These studies reinforce 

that AR/ARIMA remains a policy-ready baseline, but hybrid extensions (ARIMA-

LSTM, ICEEMDAN-NARX) are well-positioned for handling volatility and 

exogenous drivers in Taiwan’s energy system. 

 

3. Research Methods 

3.1 ARIMA Analysis 

The Autoregressive Integrated Moving Average (ARIMA) model is a widely used 

statistical method for analyzing and forecasting time series data. Originally 

proposed by Box and Jenkins (1970), it is often referred to as the Box–Jenkins 

methodology because of its systematic approach to model identification, parameter 
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estimation, and diagnostic checking. The ARIMA model conceptualizes a time 

series as a stochastic process, whereby the observed sequence can be represented 

and approximated by a linear function of its own past values and random shocks. 

Once the appropriate model structure is identified, it can be employed to generate 

forecasts of future values based on the historical behavior of the series. 

Formally, the general ARIMA specification is denoted as ARIMA(p, d, q), which 

integrates three key components: (1) Autoregressive component (AR(p)): captures 

the linear dependence of the current value on its own past values across p time lags. 

Intuitively, this represents the idea that past states of a process exert influence on 

the present and thus contribute predictive information. For example, in financial 

markets, stock prices may exhibit short-term persistence, making autoregression a 

natural modeling choice. (2) Integrated component (I(d)): refers to the differencing 

of the time series d times to achieve stationarity, a condition where the statistical 

properties (mean, variance, autocovariance) remain constant over time. Stationarity 

is critical in time series analysis, as non-stationary series can lead to spurious 

regressions and unreliable forecasts (Hamilton, 1994). (3) Moving Average 

component (MA(q)): accounts for the dependency between the current observation 

and a linear combination of past forecast errors over q periods. This allows the 

model to incorporate the influence of random shocks or disturbances that persist 

through time (Hyndman & Athanasopoulos, 2018). 

The strength of the ARIMA model lies in its flexibility: by combining 

autoregression, differencing, and moving averages, it can model a broad class of 

univariate time series, including those that exhibit trend, seasonality (via the 

seasonal ARIMA extension), and irregular noise components. The Box–Jenkins 

methodology remains influential in modern econometrics and data science due to 

its balance of theoretical rigor and practical applicability, and continues to be widely 

adopted in disciplines such as economics, finance, environmental science, and 

engineering. 

 

The ARIMA (p, q) mode is described as shown in Eq. (1): 

 

𝑌𝑡=α+𝛽0𝑋𝑡+𝛽1𝑋𝑡−1+𝛽2𝑋𝑡−2+……. + 𝛽𝑞𝑋1−𝑞+𝑒𝑡                         (1) 

 

3.2 Model Fit 

The first step in time series analysis is to visually inspect the graph of the original 

data to assess its stability. As shown in Eq. (2), the series exhibits fluctuations of 

varying magnitude, with the amplitude of variation increasing over time. This 

indicates that the variance of the series is not constant, i.e., the process is non-

stationary in variance. In addition, the data display a gradual upward trend, 

suggesting that the mean is not stable over time. These observations confirm that 

the original series is non-stationary and therefore must be transformed, typically 

through logarithmic transformation and differencing, to achieve approximate 

stationarity. 
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The estimation results indicate that the model specification resembles an 

ARIMA(1,1,0), or equivalently, an AR(1) model with first differencing. The 

inclusion of D(ln(Energy Consumption)) confirms that the dependent variable has 

been differenced once, consistent with addressing the non-stationarity detected 

earlier. All estimated coefficients are statistically significant, as their t-values far 

exceed the conventional critical value (≈ 2 at the 5% level). The constant term 

(11.36) establishes the baseline level, while the coefficient of 0.495882 on the 

differenced series suggests that short-run changes in energy consumption are 

partially explained by past changes. Moreover, the autoregressive parameter of 

0.80617 reflects strong persistence, indicating that today’s value of energy 

consumption remains highly correlated with its previous value. Importantly, since 

this AR(1) coefficient lies within the range of -1 and +1, the stationarity condition 

is satisfied, confirming the appropriateness of the model. 

 

Ln (Energy Consumption))=11.36119+0.495882D (Ln (Energy Consumption))+0.80617AR(1) (2)   
 

Standard errors (s.e.) and t-values are provided under each coefficient: 

Constant: 11.3611911.3611911.36119 (s.e. = 0.019927, t = 570.1541),  

Constant: 11.3611911.3611911.36119 (s.e. = 0.019927, t = 570.1541),  

AR(1): 0.806170.806170.80617 (s.e. = 0.027456, t = 29.3627) 

The model is correctly specified and statistically valid as an AR(1) process with 

first differencing (ARIMA(1,1,0)). It appropriately addresses the earlier issue of 

non-stationarity by differencing and includes a significant autoregressive 

component. 

It can be seen from Table 1 that the R2 value is 0.976, indicating that the model 

explains approximately 97.6% of the variation in the data, which reflects a strong 

explanatory power. After applying the natural logarithm transformation and fitting 

the ARIMA(1,1,0) model, the reported p pp-values for all coefficients are highly 

significant, confirming that the model is statistically appropriate. 

To further validate the adequacy of the fitted model, it is necessary to examine the 

residual diagnostics. A well-fitted ARIMA model should produce residuals that 

resemble a white noise process: their mean should be approximately zero, their 

variance should remain constant over time, and no significant autocorrelation 

should exist between them. If the residual series contains a unit root, this implies 

non-stationarity, meaning the model would be unstable and unsuitable for 

forecasting. Additionally, for practical adequacy, the residuals should remain within 

two standard deviations, showing no systematic structure. 

Therefore, white noise tests (such as the Ljung–Box Q test) and unit root tests (such 

as the Augmented Dickey–Fuller test) are performed on the residuals to verify 

whether they satisfy the assumptions of randomness and stationarity. These 

diagnostics ensure that the estimated ARIMA(1,1,0) model is both statistically 

sound and appropriate for forecasting. 

 

 



Forecasting Domestic Energy Consumption in Taiwan under Economic Shocks: An… 249  

Table 1: Parameter Estimates and Diagnostic Statistics of the AR(1) Model 

Dependent Variable: LN_ENERGY_CONSUMPTION_  

Method: Least Squares 

Date: 06/24/21 Time: 22:39 Sample (adjusted): 2001 2020 

Included observations: 20 after adjustments. Convergence achieved after 6 iterations 
Variable Coefficient... Std. Error t-Statistic Prob. 

C 11.36119 0.019927 570.1541 0.0000 

_GLN_ENERGY_CONSUMPTION... 0.495882 0.076859 6.451845 0.0000 

AR(1) 0.806170 0.027456 29.36270 0.0000 

R-squared 0.976540 Mean dependent var 11.29438 

Adjusted R-squared 0.973780 S.D. dependent var 0.080111 

S.E. of regression 0.012972 Akaike info criterion -5.714559 

Sum squared resid 0.002861 Schwarz criterion -5.565199 

Log likelihood 60.14559 Hannan-Quinn criter. -5.685402 

F-statistic 353.8216 Durbin-Watson stat 2.212015 

Prob(F-statistic) 0.000000   

Inverted AR Roots                       .81 
 

3.3 Distributed Lag Model 

The Distributed Lag (DL) model, also referred to as a gap distribution model, is a 

fundamental framework in time series econometrics and applied statistics. It is 

designed to capture the dynamic effect of explanatory variables on a dependent 

variable over multiple time periods. Specifically, the model assumes that the present 

value of the dependent variable is influenced not only by the contemporaneous 

values of the explanatory variables but also by their lagged values across several 

prior periods. This enables the model to capture delayed responses and gradual 

adjustment processes, which are prevalent in economics, finance, and engineering 

systems. 

Building on this framework, the Autoregressive Distributed Lag (ARDL) model 

extends the DL approach by incorporating both lagged values of the explanatory 

variables and lagged values of the dependent variable itself. This makes the ARDL 

particularly flexible for modeling dynamic relationships where feedback effects and 

persistence are important. The ARDL model is particularly useful when dealing 

with time series that exhibit a mixture of stationary and non-stationary properties, 

as it can be applied without requiring all variables to be of the same order of 

integration (Pesaran et al., 1999). 

Formally, the Autoregressive Distributed Lag ARDL(p, q) model can be expressed 

as Eq. (3): 
 

𝑌𝑡=𝛽0 + 𝛽1𝑌𝑡−1 + ⋯ + 𝛽𝑘𝑌𝑡−𝑝 + 𝛼0𝑋𝑡 + 𝛼1𝑋𝑡−1 + 𝛼2𝑋𝑡−2 +……..+ 𝛼𝑞𝑋𝑡−𝑞+𝜀𝑡    (3) 

 

The ARDL specification thus unifies autoregressive dynamics and distributed lag 

structures, making it a powerful tool for investigating both short-run adjustments 

and long-run equilibrium relationships between variables. 
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4. Empirical Research 

4.1 Sources of Information 

To examine the trend of energy consumption over time, this study utilizes the 

dataset “Domestic Energy Consumption – Energy Use” obtained from the Energy 

Statistics Database of the Ministry of Economic Affairs. The data are expressed in 

Kiloliters of Oil Equivalent (KLOE). Domestic energy consumption refers to the 

monthly use of energy across major sectors, including industry, transportation, 

agriculture, residential, services, and other sectors. Effective energy is defined as 

energy that has been converted into a directly usable form, with petroleum products 

and electricity constituting the largest share of consumption. For predictive analysis, 

23 consecutive monthly observations from April 2019 to February 2021 are 

employed, while the most recent two data points are reserved as out-of-sample 

values to validate the forecasting results by comparing actual and predicted 

consumption levels. 
 

4.2 Data Analysis 

From the original time series diagram in Figure 1, it is evident that domestic energy 

consumption has generally increased over the years, with the degree of fluctuation 

also becoming more pronounced over time. However, the upward trend slowed 

noticeably around 2008, indicating a change in the growth dynamics of energy use. 

These observations suggest that both the mean and variance of the series are 

unstable, implying the presence of non-stationarity in the data. 

The blue line representing energy consumption shows a steady upward trajectory 

from the late 1990s through the mid-2000s. This indicates continuous growth in 

energy demand, largely driven by industrial expansion, rising transportation needs, 

and an increase in household and service sector consumption. While the trend is 

upward, fluctuations become more noticeable after 2005. Peaks and troughs emerge, 

reflecting the influence of external factors such as global oil price volatility, 

economic cycles, and policy interventions aimed at energy efficiency. A marked 

slowdown is visible around 2008. This aligns with the global financial crisis, which 

curtailed industrial activity and reduced energy demand. Although consumption 

continued to rise in the following years, the slope of the increase became less steep 

compared to the pre-2008 period. After 2015, the curve shows a relatively stable 

pattern with only moderate growth. This suggests that energy consumption may be 

reaching a saturation point, possibly due to structural changes in the economy, the 

adoption of more efficient technologies, and the impact of energy conservation 

policies. The visual pattern reveals that the mean and variance are not constant over 

time. Both the rising trend and the increasing fluctuations indicate non-stationarity, 

which has implications for forecasting models, as standard time series techniques 

require data transformations (e.g., differencing, detrending) to achieve stationarity. 
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Figure 1: Time Series Plot of Domestic Energy Consumption by Year 
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Figure 2: Fluctuations in Monthly Domestic Energy Consumption  

(Apr. 2019–Feb. 2021) 
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Figure 2 displays the original time series of monthly domestic energy consumption 

from April 2019 to February 2021. The series shows strong short-term volatility. 

Peaks and troughs appear frequently, indicating that energy consumption is 

sensitive to seasonal, economic, or external shocks. For instance, there are sharp 

increases around August 2019 and August 2020, followed by steep declines in the 

subsequent months. A recurring pattern is noticeable across the two years. Energy 

use tends to spike during summer months (July–August), which may be associated 

with higher electricity demand for cooling. Conversely, consumption tends to 

decline in the early spring months, suggesting a seasonal cycle. 

Around early 2020, the series shows irregular declines, likely reflecting the effects 

of the COVID-19 pandemic, which reduced industrial and transportation activity. 

This external shock amplified the variation already present in the data. The 

amplitude of fluctuations varies over time: some periods (e.g., mid-2019 and mid-

2020) show sharp peaks, while others are relatively stable. This non-constant 

variance suggests the data is heteroskedastic and not stationary. Because of the 

strong volatility and possible seasonality, any predictive analysis will require data 

transformation (e.g., differencing or seasonal adjustment) before applying time 

series models such as ARIMA, SARIMA, or ARCH/GARCH. 

 
  Table 2: ACF and PACF of the Original Time Series 

Table 2 presents the ACF and PACF plots of the original data, which provide 

additional evidence for assessing stationarity. In particular, when the ACF decays 

slowly rather than cutting off rapidly, it indicates the presence of strong 

autocorrelation over time and suggests that the mean of the series is not stable. Such 

Date: 06/23/21   Time: 21:22
Sample: 1999 2020
Included observations: 22

Autocorrelation Partial Correlation AC  PA...  Q-Sta...  Pro...

1 0.79... 0.79... 15.76... 0.00...
2 0.61...-0.03... 25.78... 0.00...
3 0.47...-0.01... 32.03... 0.00...
4 0.31...-0.12... 34.99... 0.00...
5 0.19...-0.02... 36.17... 0.00...
6 0.11... 0.01... 36.59... 0.00...
7 0.02...-0.07... 36.62... 0.00...
8-0.04...-0.05... 36.70... 0.00...
9-0.05... 0.09... 36.81... 0.00...

1...-0.11...-0.16... 37.37... 0.00...
1...-0.20...-0.15... 39.32... 0.00...
1...-0.21... 0.07... 41.67... 0.00...
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behavior is a hallmark of non-stationarity and implies that differencing is required 

to achieve stationarity. The ACF of the series indeed exhibits a gradual decay, 

confirming that the original data are non-stationary. Consequently, we apply first-

order differencing to stabilize the mean and improve the suitability of the series for 

ARIMA modelling. 

 
Table 3: ACF and PACF after Taking Natural Logarithm Transformation and 

Adding a Difference 

Date: 06/23/21 Time: 23:21 Sample: 1999 2020 

Included observations: 21  
 

Autocorrelation   Partial Correlation    AC  PA...  Q-Sta...  Pro... 
 

 
 

From the ACF plot in Table 3, it can be observed that the residual autocorrelation 

remains particularly pronounced at lag 3, with several spikes exceeding the range 

of one standard deviation. This indicates that the data still exhibits serial correlation 

and fluctuations, suggesting the presence of remaining non-stationary components. 

To address this issue, additional differencing is required until the residual series 

satisfies the condition of white noise, thereby ensuring stationarity. Once all non-

stationary factors are resolved, the next step is to fit an appropriate ARIMA model. 

The general identification rules for ARIMA model selection can be summarized as 

follows: (1) Autoregressive model AR(p): appropriate when the ACF gradually dies 

down while the PACF cuts off sharply after lag p. (2) Moving Average model 

MA(q): appropriate when the ACF cuts off sharply after lag q while the PACF 

gradually dies down. (3) Autoregressive Moving Average model ARMA(p, q): 

appropriate when both the ACF and PACF show gradual decay without a sharp 

cutoff, indicating a mixed process. These diagnostic rules form the basis of the Box–

Jenkins methodology, guiding the proper specification of ARIMA models for 

forecasting. 
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From Table 4, it can be observed that the ACF cuts off while the PACF gradually 

dies down, which is consistent with the identification rule for a Moving Average 

process MA(q). Specifically, the ACF shows significant spikes at lag 1 and lag 3, 

both of which exceed the bounds of one standard deviation. This indicates that these 

lags contain meaningful autocorrelation and should be included in the model 

specification. Therefore, we fit the model as MA(1,3), incorporating both lag 1 and 

lag 3 terms to adequately capture the short-run dynamics of the series. 
 

Table 4: Converted and Second-Differentiated ACF and PACF 
 

Date: 06/24/21 Time: 22:26 Sample: 1999 2020 

Included observations: 20 
 

 

Autocorrelation  Partial Correlation AC     PA...  Q-Sta... Pro... 

 
 

Table 5: Residual Testing of the Model 

 

Date: 06/24/21   Time: 23:07
Sample: 1999 2020
Included observations: 20

Autocorrelation Partial Correlation AC  PA...  Q-Sta...  Pro...

1-0.13...-0.13... 0.405... 0.52...
2-0.45...-0.47... 5.419... 0.06...
3 0.49... 0.44... 11.67... 0.00...
4-0.03...-0.27... 11.71... 0.02...
5-0.45...-0.06... 17.73... 0.00...
6-0.06...-0.65... 17.86... 0.00...
7 0.04...-0.01... 17.95... 0.01...
8 0.04...-0.05... 18.01... 0.02...
9-0.09... 0.12... 18.37... 0.03...

1... 0.04...-0.06... 18.46... 0.04...
1... 0.22...-0.32... 20.84... 0.03...
1...-0.03...-0.04... 20.90... 0.05...
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Table 5 presents the autocorrelation and partial autocorrelation of the residual series, 

along with the Ljung–Box Q-statistics and their corresponding probabilities. These 

diagnostics are essential to verify whether the residuals behave like white noise, 

which is a key requirement for a well-specified ARIMA model. (1) Autocorrelation 

(ACF) and Partial Autocorrelation (PACF): Most of the autocorrelation (AC) and 

partial autocorrelation (PAC) values lie within the 95% confidence bounds (± two 

standard errors), except for a few lags (notably lag 2 and lag 3) where the values 

exceed the threshold. The residual autocorrelation at lag 2 (AC=0.45AC = 

0.45AC=0.45) and lag 3 (AC=0.49AC = 0.49AC=0.49) appear more prominent, but 

beyond these lags the autocorrelations taper off, indicating that no strong serial 

correlation persists in the residuals. (2) Q-Statistics (Ljung–Box Test): The Ljung–

Box Q-statistics test whether groups of autocorrelations are jointly zero. At lower 

lags (up to lag 3), the ppp-values (e.g., 0.06 at lag 2; 0.00 at lag 3) suggest marginal 

significance. However, as the lag length increases, most of the probabilities (e.g., 

0.33 at lag 11; 0.55 at lag 12) become greater than 0.05, which implies that the null 

hypothesis of white noise cannot be rejected at higher lags. (3) Overall Assessment: 

While some residual correlations remain at specific lags, the majority of residual 

autocorrelations fall within the confidence interval, and the Ljung–Box test does 

not provide strong evidence against white noise at longer horizons. This suggests 

that the residuals of the fitted model are approximately uncorrelated, have constant 

variance, and have an average close to zero. Therefore, the model is considered 

adequately specified for forecasting purposes.  

 
Table 6: Augmented Dickey–Fuller (ADF) Unit Root Test Results for Residuals 

Null Hypothesis: E has a unit root. Exogenous: Constant 

Lag Length: 2 (Automatic - based on SIC, maxlag=4) 

 t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic -1.739783 0.3951 

Test critical values: -3.886751  

5% level -3.052169  

10% level -2.666593  

*MacKinnon (1996) one-sided p-values. 

Warning: Probabilities and critical values calculated for 20 observations and may 

not be accurate for a sample size of 17 
 

The Augmented Dickey–Fuller (ADF) test is employed to assess whether the 

residual series contains a unit root, which would imply non-stationarity. The test is 

based on the following hypotheses: 

Null Hypothesis (H₀): The series has a unit root (non-stationary). 

Alternative Hypothesis (H₁): The series is stationary. 

As shown in the table, the ADF test statistic is -1.739783, with an associated p-

value of 0.3951. The corresponding critical values are –3.886751 at the 1% level, –
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3.052169 at the 5% level, and –2.666593 at the 10% level. Since the test statistic (–

1.74) is greater (i.e., less negative) than all of the critical values and the p-value 

substantially exceeds the conventional significance threshold of 0.05, the null 

hypothesis cannot be rejected. This result indicates that the residual series remains 

non-stationary, suggesting that additional differencing or alternative model 

specifications may be required to achieve stationarity and improve model adequacy. 

 
Table 7: Augmented Dickey–Fuller Test Equation Results for Differenced Series 

Augmented Dickey-Fuller Test Equation Dependent Variable: D(E) 

Method: Least Squares Date: 06/24/21 Time: 22:57 

Sample (adjusted): 2004 2020 

Included observations: 17 after adjustments 

Variable Coefficient Std. Error t-Statistic Prob. 

E(-1) -0.970969 0.558098 -1.739783 0.1055 

D(E(-1)) -0.037864 0.386620 -0.097935 0.9235 

D(E(-2)) -0.459012 0.255305 -1.797895 0.0954 

C 0.000625 0.002774 0.225440 0.8251 

R-squared 0.739980 Mean dependent var -0.000617 

Adjusted R-squared 0.679976 S.D. dependent var 0.019870 

S.E. of regression 0.011241 Akaike info criterion -5.936233 

Sum squared resid 0.001643 Schwarz criterion -5.740183 

Log likelihood 54.45798 Hannan-Quinn criterion -5.916745 

F-statistic 12.33208 Durbin-Watson stat 1.595592 

Prob(F-statistic) 0.000421   

 

From the results of the Unit Root Test reported in Table 7, the probability value of 

the F-statistic is 0.000421, which is lower than the significance level (α=0.05). 

Therefore, the null hypothesis (H0) of a unit root is rejected, indicating that the time 

series has achieved stationarity. Based on this outcome, we can conclude that the 

fitted AR(1) model is appropriate and provides a valid representation of the data-

generating process. 
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Table 8: Comparison of Actual and Predicted Values Using the ARIMA Model 

Date Actual 
value 

Predictive 
value 

95% Prediction Confidence 
Interval (up) 

95% Prediction Confidence 
Interval (down) 

110/03 5,193,073 5,068,439.2 5,321,861.000 4,815,017.000 
110/04 4,991,618 4,871,819.1 5,115,410.000 4,628,228.000 
110/05  4,993,623.0 5,243,304.446 4,743,942.118 
110/06  4,937,205.0 5,184,065.430 4,690,344.913 
110/07  5,230,463.0 5,491,985.833 4,968,939.563 
110/08  5,208,918.0 5,469,364.053 4,948,472.239 
110/09  5,129,517.0 5,385,993.133 4,873,041.406 
110/10  5,086,009.0 5,340,309.972 4,831,709.022 
110/11  5,040,719.0 5,292,754.948 4,788,683.048 
110/12  5,092,102.0 5,346,707.522 4,837,497.282 
111/01  5,034,221.0 5,285,932.116 4,782,510.010 
111/02  4,574,604.0 4,803,334.382 4,345,873.964 

(Unit: Gongbing Oil Equivalent) 
 

To evaluate the adequacy of the model estimates, the last two actual observations 

were withheld from the estimation sample and used for out-of-sample forecasting 

over the following year. The results, presented in Table 8, report the actual values, 

the corresponding predicted values, and the 95% upper and lower confidence 

intervals for 12 forecasted periods. As shown in the table, the predicted values 

generated by the final ARIMA model closely approximate the actual observations, 

and nearly all of the actual values fall within the 95% confidence interval. This 

outcome demonstrates that the fitted model possesses satisfactory predictive ability 

and is therefore considered appropriate for analyzing this dataset. 
 

4.3 Model Selection 

The accuracy of a forecasting model must be evaluated using appropriate statistical 

indicators. In this study, we employ Mean Squared Error (MSE), Mean Percentage 

Error (MPE), Mean Absolute Percentage Error (MAPE), and Mean Absolute 

Deviation (MAD) as the primary criteria for assessing predictive performance and 

selecting the most suitable model. These metrics provide complementary 

perspectives on forecast error: MSE emphasizes large deviations due to its squared 

term, MPE measures directional bias in forecasts, MAPE expresses errors as relative 

percentages, and MAD reflects the average magnitude of forecast errors in absolute 

terms. When the values of these four evaluation indicators—MSE, MPE, MAPE, 

and MAD—are closer to zero (Table 9), this indicates that the discrepancy between 

the predicted and actual values is smaller, and thus the forecasting model is more 

accurate and appropriate for application. 
 

MAD = ∑|𝑌𝑡 − Ŷ𝑡 |/n 

MSE =∑ (𝑌𝑡 − Ŷ𝑡)^2/𝑛 

𝑃𝐸𝑡 = ((𝑌𝑡 − Ŷ𝑡)/𝑌𝑡) ∗ 100 => MPE =Σ𝑃𝐸𝑡/n 

A𝑃𝐸𝑡  = (|𝑌𝑡-ӯ𝑡|/𝑌𝑡) * 100 => MAPE =Σ𝐴𝑃𝐸𝑡/n 
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Table 9: Model Evaluation 

Model Method MAD MAP MPE MAPE 

AR 122,216.35 14,942,680,272 2.4% -0.000391409 

 

5. Conclusion 

According to the research, energy consumption in 2008 was significantly influenced 

by global economic and geopolitical events. In particular, the decline in crude oil 

inventories in the United States, the sharp depreciation of the U.S. dollar, and the 

decision of the Organization of Petroleum Exporting Countries (OPEC) to maintain 

crude oil production quotas, combined with the attack on Nigeria’s oil pipeline—

the largest producer in Africa—contributed to a rapid surge in international oil 

prices. At the same time, the collapse of Lehman Brothers in September 2008 

triggered widespread concerns about the stability of the U.S. financial system, 

ultimately leading to global financial panic and the so-called “financial tsunami.” 

As a result, worldwide energy consumption declined, reflecting the combined 

impact of soaring oil prices and deteriorating financial conditions. 

From the data, it is evident that energy consumption in Taiwan also experienced a 

downward trend in mid-2008, which can be attributed to the surge in international 

crude oil prices that directly affected domestic fuel prices, thereby reducing 

consumers’ willingness to spend on energy. The financial crisis in late 2008 further 

exacerbated this situation, causing negative growth in domestic energy consumption. 

Nevertheless, as the global economy gradually recovered in the following months, 

energy consumption began to increase again, suggesting that the long-term trend 

remains upward. 

Today, Taiwan faces a structural challenge, as its energy supply relies heavily on 

imports due to limited domestic resources. This dependency underscores the urgent 

importance of energy conservation and the development of alternative energy 

sources. Every additional unit of new energy developed reduces dependence on 

traditional energy imports, thereby enhancing energy security. Achieving 

sustainability requires not only technological innovation and industrial 

transformation but also behavioral changes at the individual and household levels. 

The temporary decline in energy consumption between 2008 and 2009 was 

consistent with the government’s policy goals of energy conservation and carbon 

reduction. However, it also raises critical questions: if energy consumption resumes 

its upward trajectory once oil prices decline and the economy recovers, does this 

suggest that policy effectiveness is limited? Such an observation highlights the need 

for stronger implementation and broader public engagement. 

Ultimately, energy is a fundamental necessity for modern life, and its consumption 

cannot be entirely avoided. Although once perceived as inexhaustible, energy 

resources are gradually being depleted. Thus, addressing this challenge requires a 

multi-pronged approach. Individuals must cultivate energy-saving habits in daily 

life—such as using public transportation more frequently, conserving water and 

electricity, and supporting environmentally friendly alternatives—while 
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government and industry must take proactive measures beyond policy slogans, 

translating them into practical and enforceable actions. Only through coordinated 

efforts in conservation, innovation, and sustainable development can Taiwan secure 

a resilient energy future. 
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