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Abstract

This study examines domestic energy consumption in Taiwan under economic
shocks, with a focus on the 2008 financial crisis and crude oil price volatility. As
Taiwan relies heavily on imported energy, accurate forecasting of consumption is
critical for sustainable policy planning. Using monthly data from 2002 to 2019, this
research applies autoregressive and ARIMA models to predict long-term demand
and assess the impact of external shocks. Results indicate a steady upward trend in
energy use with clear seasonal variation, but notable declines occurred during the
2008 oil price surge and financial turmoil, reflecting strong sensitivity to global
instability. The AR(1) model shows high explanatory power, with predicted values
closely matching observed data, and diagnostic tests confirming model robustness.
Findings highlight that while energy demand recovers alongside economic growth,
conservation policies during downturns alone are insufficient. The study
underscores the importance of improving energy efficiency, diversifying supply,
and strengthening carbon-reduction measures to ensure Taiwan’s sustainable
energy security.
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1. Introduction

The world is confronting the dual challenges of climate warming and an escalating
energy crisis. In recent decades, rapid climate change has been closely intertwined
with rising energy consumption, raising concerns over the depletion of non-
renewable resources. Since global warming is directly linked to patterns of energy
use, governments and societies must increasingly recognize the urgency of energy
conservation. At this critical stage, the pressing question is how to enhance energy
efficiency and promote sustainable consumption, ensuring that economic growth
can be achieved without further intensifying environmental degradation.

The close relationship between energy consumption and economic growth is
evident from Taiwan's development experience over the past few decades. Since
Taiwan’s energy resources are extremely scarce, and most of these resources face
unstable supply conditions, sharp price fluctuations, and strategic vulnerabilities
tied to national survival, it is essential to plan adequate energy reserves to cope with
sudden supply disruptions. Accordingly, long-term energy demand forecasting has
become increasingly critical. For example, Xu et al. (2014) applied univariate time
series models for long-term energy demand forecasting and demonstrated that such
models can produce relatively accurate results under stable conditions. However,
these approaches are limited because they cannot incorporate foreseeable economic
shocks—such as global energy crises, industrial restructuring, or the
implementation of environmental protection and energy conservation policies—
causing forecasts to diverge from reality and reducing their credibility. Recent
research echoes this concern: Chen et al. (2022) highlighted the need for hybrid
models to capture nonlinear dynamics in energy demand, while Li et al. (2023)
demonstrated that including policy and environmental variables significantly
improves forecast accuracy under economic volatility.

Given this, the main purpose of this paper is to provide effective and feasible policy
simulation tools and variables, enabling relevant decision-making units to evaluate
the impact of economic shocks on long-term energy demand. This study focuses
specifically on Taiwan’s energy consumption, where dependence on imports and
vulnerability to global volatility create pressing challenges. As noted by Zhang et
al. (2022), incorporating external shocks such as oil price fluctuations and policy
interventions into forecasting models significantly improves their explanatory and
predictive power, highlighting the need for approaches that go beyond traditional
univariate models.

Accordingly, this study seeks to address the following research questions.

Q1: How have economic shocks, such as the 2008 financial crisis and oil price
surges, affected domestic energy consumption in Taiwan?

Q2: Can autoregressive and ARIMA models effectively capture the dynamics of
Taiwan’s energy demand under volatile economic conditions?

Q3: What are the policy implications of the forecasting results for energy security,
conservation, and sustainable development in Taiwan?
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Despite significant international advances, Taiwan still lacks studies that forecast
aggregate energy consumption under explicit economic shocks using transparent,
policy-ready time-series baselines. Most domestic research remains confined to
emissions linkages or sector-specific demand, leaving aggregate forecasting with
shock overlays largely unexplored. This paper addresses the gap by constructing an
interpretable AR/ARIMA model for Taiwan’s monthly energy consumption,
capturing trend, seasonality, and persistence with standard diagnostics. It further
incorporates economic-shock interpretation—notably the 2008 oil surge and
financial crisis—revealing demand contractions and subsequent recovery consistent
with cross-country nonlinear evidence. Beyond forecasting, the study provides
policy-relevant simulation levers such as reserve planning, efficiency targets, and
demand-side management, while also outlining pathways to extend the AR’/ARIMA
baseline with exogenous variables (e.g., oil prices, policy dummies) or advanced
hybrids (e.g., ARIMA-LSTM, ICEEMDAN-NARX) when volatility intensifies.

2. Literature Review

2.1 International Evidence: The Energy—Economy Nexus

The global debate on the causal relationship between energy demand and economic
activity has produced mixed conclusions. Early studies focusing on the United
States reached inconsistent results regarding causality between energy consumption
and GNP (Kraft & Kraft, 1978; Akarca & Long, 1980; Abosedra & Baghestani,
2004). Broader comparative work highlighted heterogeneity across countries: Yu
and Choi (1985) found no link between energy and GNP in the U.S., U.K., and
Poland, but significant associations in South Korea and the Philippines, with natural
gas and liquid fuels showing leading effects in some cases. These outcomes
underscore the sensitivity of findings to development stage, fuel mix, and sample
selection, while Lee and Ni (2002) stressed that oil price shocks can exert
asymmetric impacts on output depending on macroeconomic conditions.

More recent research emphasizes nonlinear and threshold effects in the energy—
growth nexus. For example, Khezri et al. (2024) use a Panel Smooth Transition
Regression (PSTR) to demonstrate that the strength and direction of causality vary
across R&D regimes, while Raza et al. (2025) show robust short- and long-run
effects in BRICS economies when energy is disaggregated by type. Similarly, Xie
et al. (2025) model the dynamic interactions of energy, finance, and growth in
emerging economies, revealing structural dependence and feedback loops. Together,
these findings highlight that no single stable elasticity exists and that forecasting
models should be sensitive to regime shifts and exogenous shocks.

2.2 Domestic Research: Taiwan’s Energy—Economy Dynamics

Taiwan’s scholarship on energy demand has historically focused on sectoral or fuel-
specific models rather than aggregate analysis. Early work by Liou (1992), Liang
and Mei (2005), and recent work of Lu (2024), along with long-term planning
studies by the Taiwan Power Company, relied on econometric or input—output
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approaches. Yu et al. (1998) applied a computable general equilibrium (CGE)
framework to examine the macroeconomic effects of oil price changes, while the
Energy Committee of the Ministry of Economic Affairs in 1985 combined
econometric, input—output, and linear programming tools to forecast demand under
scenarios of technology advancement and conservation measures. However, these
approaches remained fragmented by subsector and could not fully capture the long-
term adjustment dynamics of aggregate energy demand.

In contrast, recent studies have begun to reflect macroeconomic linkages. Jia et al.
(2023) employed a mixed-frequency VAR (MF-VAR) model for Taiwan (1970Q1—
2019Q4) and confirmed reciprocal causality between economic growth, CO-, and
primary energy consumption, underscoring the macro-critical role of aggregate
demand. Han et al. (2023) used quantile mediation to show how growth mediates
the hydropower—emissions relationship, revealing distributional heterogeneity that
matters for stress testing policy impacts. Sectoral innovations also add evidence:
Lashgari et al. (2022) forecast transportation energy demand using novel
decomposition techniques, while Mustafa et al. (2025) refined fuzzy time-series
methods for Taiwan’s electricity demand, achieving MAPE below 1%. These
illustrate Taiwan’s gradual methodological convergence with global best practices,
though still largely subsector-specific rather than aggregate.

23 AR/ARIMA Forecasting and Hybrid Extensions

International and domestic research increasingly validates ARIMA as a strong
baseline for energy demand forecasting. Reviews confirm ARIMA’s competitive
short-term accuracy and its interpretability, making it especially suited for monthly
data with seasonality (Pierre et al., 2023). Chreng et al. (2022) show that hybrid
ICEEMDAN-NARX models with climate covariates outperform stand-alone time
series models in electricity demand, while Alsardi (2024) demonstrates robust
ARIMA sectoral forecasts in Jordan using standard diagnostics (ADF, ACF/PACF,
MAPE).

Taiwan has only recently begun applying comparable techniques. Chen et al. (2022)
emphasize the importance of hybrid models in East Asia for structural shocks, while
Li et al. (2023) show that embedding policy and environmental covariates
significantly enhances predictive power under uncertainty. These studies reinforce
that AR/ARIMA remains a policy-ready baseline, but hybrid extensions (ARIMA-
LSTM, ICEEMDAN-NARX) are well-positioned for handling volatility and
exogenous drivers in Taiwan’s energy system.

3. Research Methods

3.1 ARIMA Analysis

The Autoregressive Integrated Moving Average (ARIMA) model is a widely used
statistical method for analyzing and forecasting time series data. Originally
proposed by Box and Jenkins (1970), it is often referred to as the Box—Jenkins
methodology because of its systematic approach to model identification, parameter
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estimation, and diagnostic checking. The ARIMA model conceptualizes a time
series as a stochastic process, whereby the observed sequence can be represented
and approximated by a linear function of its own past values and random shocks.
Once the appropriate model structure is identified, it can be employed to generate
forecasts of future values based on the historical behavior of the series.

Formally, the general ARIMA specification is denoted as ARIMA(p, d, q), which
integrates three key components: (1) Autoregressive component (AR(p)): captures
the linear dependence of the current value on its own past values across p time lags.
Intuitively, this represents the idea that past states of a process exert influence on
the present and thus contribute predictive information. For example, in financial
markets, stock prices may exhibit short-term persistence, making autoregression a
natural modeling choice. (2) Integrated component (I(d)): refers to the differencing
of the time series d times to achieve stationarity, a condition where the statistical
properties (mean, variance, autocovariance) remain constant over time. Stationarity
is critical in time series analysis, as non-stationary series can lead to spurious
regressions and unreliable forecasts (Hamilton, 1994). (3) Moving Average
component (MA(q)): accounts for the dependency between the current observation
and a linear combination of past forecast errors over ¢ periods. This allows the
model to incorporate the influence of random shocks or disturbances that persist
through time (Hyndman & Athanasopoulos, 2018).

The strength of the ARIMA model lies in its flexibility: by combining
autoregression, differencing, and moving averages, it can model a broad class of
univariate time series, including those that exhibit trend, seasonality (via the
seasonal ARIMA extension), and irregular noise components. The Box—Jenkins
methodology remains influential in modern econometrics and data science due to
its balance of theoretical rigor and practical applicability, and continues to be widely
adopted in disciplines such as economics, finance, environmental science, and
engineering.

The ARIMA (p, q) mode is described as shown in Eq. (1):
Yt=a+ﬂ0Xt+ﬂ1Xt_1+ﬁ2Xt_2+ ....... + ﬁle_q+et (1)

3.2 Model Fit

The first step in time series analysis is to visually inspect the graph of the original
data to assess its stability. As shown in Eq. (2), the series exhibits fluctuations of
varying magnitude, with the amplitude of variation increasing over time. This
indicates that the variance of the series is not constant, i.e., the process is non-
stationary in variance. In addition, the data display a gradual upward trend,
suggesting that the mean is not stable over time. These observations confirm that
the original series is non-stationary and therefore must be transformed, typically
through logarithmic transformation and differencing, to achieve approximate
stationarity.
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The estimation results indicate that the model specification resembles an
ARIMA(1,1,0), or equivalently, an AR(1) model with first differencing. The
inclusion of D(In(Energy Consumption)) confirms that the dependent variable has
been differenced once, consistent with addressing the non-stationarity detected
earlier. All estimated coefficients are statistically significant, as their t-values far
exceed the conventional critical value (= 2 at the 5% level). The constant term
(11.36) establishes the baseline level, while the coefficient of 0.495882 on the
differenced series suggests that short-run changes in energy consumption are
partially explained by past changes. Moreover, the autoregressive parameter of
0.80617 reflects strong persistence, indicating that today’s value of energy
consumption remains highly correlated with its previous value. Importantly, since
this AR(1) coefficient lies within the range of -1 and +1, the stationarity condition
is satisfied, confirming the appropriateness of the model.

Ln (Energy Consumption))=11.36119+0.495882D (Ln (Energy Consumption))+0.806174R(1) (2)

Standard errors (s.e.) and t-values are provided under each coefficient:
Constant: 11.3611911.3611911.36119 (s.e. = 0.019927, t = 570.1541),
Constant: 11.3611911.3611911.36119 (s.e. =0.019927, t = 570.1541),
AR(1): 0.806170.806170.80617 (s.e. = 0.027456, t =29.3627)

The model is correctly specified and statistically valid as an AR(1) process with
first differencing (ARIMA(1,1,0)). It appropriately addresses the earlier issue of
non-stationarity by differencing and includes a significant autoregressive
component.

It can be seen from Table 1 that the R? value is 0.976, indicating that the model
explains approximately 97.6% of the variation in the data, which reflects a strong
explanatory power. After applying the natural logarithm transformation and fitting
the ARIMA(1,1,0) model, the reported p pp-values for all coefficients are highly
significant, confirming that the model is statistically appropriate.

To further validate the adequacy of the fitted model, it is necessary to examine the
residual diagnostics. A well-fitted ARIMA model should produce residuals that
resemble a white noise process: their mean should be approximately zero, their
variance should remain constant over time, and no significant autocorrelation
should exist between them. If the residual series contains a unit root, this implies
non-stationarity, meaning the model would be unstable and unsuitable for
forecasting. Additionally, for practical adequacy, the residuals should remain within
two standard deviations, showing no systematic structure.

Therefore, white noise tests (such as the Ljung—Box Q test) and unit root tests (such
as the Augmented Dickey—Fuller test) are performed on the residuals to verify
whether they satisfy the assumptions of randomness and stationarity. These
diagnostics ensure that the estimated ARIMA(1,1,0) model is both statistically
sound and appropriate for forecasting.
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Table 1: Parameter Estimates and Diagnostic Statistics of the AR(1) Model

Dependent Variable: LN ENERGY CONSUMPTION _

Method: Least Squares

Date: 06/24/21 Time: 22:39 Sample (adjusted): 2001 2020

Included observations: 20 after adjustments.

Convergence achieved after 6 iterations

Variable Coefficient... | Std. Error | t-Statistic | Prob.
C 11.36119 0.019927 570.1541 0.0000

GLN _ENERGY CONSUMPTION... 0.495882 0.076859 6.451845 0.0000
AR(1) 0.806170 0.027456 29.36270 0.0000
R-squared 0.976540 Mean dependent var 11.29438
Adjusted R-squared 0.973780 S.D. dependent var 0.080111
S.E. of regression 0.012972 Akaike info criterion -5.714559
Sum squared resid 0.002861 Schwarz criterion -5.565199
Log likelihood 60.14559 Hannan-Quinn criter. -5.685402
F-statistic 353.8216 Durbin-Watson stat 2.212015
Prob(F-statistic) 0.000000
Inverted AR Roots 81

33 Distributed Lag Model

The Distributed Lag (DL) model, also referred to as a gap distribution model, is a
fundamental framework in time series econometrics and applied statistics. It is
designed to capture the dynamic effect of explanatory variables on a dependent
variable over multiple time periods. Specifically, the model assumes that the present
value of the dependent variable is influenced not only by the contemporaneous
values of the explanatory variables but also by their lagged values across several
prior periods. This enables the model to capture delayed responses and gradual
adjustment processes, which are prevalent in economics, finance, and engineering
systems.

Building on this framework, the Autoregressive Distributed Lag (ARDL) model
extends the DL approach by incorporating both lagged values of the explanatory
variables and lagged values of the dependent variable itself. This makes the ARDL
particularly flexible for modeling dynamic relationships where feedback effects and
persistence are important. The ARDL model is particularly useful when dealing
with time series that exhibit a mixture of stationary and non-stationary properties,
as it can be applied without requiring all variables to be of the same order of
integration (Pesaran et al., 1999).

Formally, the Autoregressive Distributed Lag ARDL(p, ¢) model can be expressed
as Eq. 3):

Ye=Bo + B1Ye—1 + -+ BiYep + @o Xt + a1 X q + X5 +.oni tagXi_qter 3)
The ARDL specification thus unifies autoregressive dynamics and distributed lag
structures, making it a powerful tool for investigating both short-run adjustments
and long-run equilibrium relationships between variables.
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4. Empirical Research
4.1 Sources of Information

To examine the trend of energy consumption over time, this study utilizes the
dataset “Domestic Energy Consumption — Energy Use” obtained from the Energy
Statistics Database of the Ministry of Economic Affairs. The data are expressed in
Kiloliters of Oil Equivalent (KLOE). Domestic energy consumption refers to the
monthly use of energy across major sectors, including industry, transportation,
agriculture, residential, services, and other sectors. Effective energy is defined as
energy that has been converted into a directly usable form, with petroleum products
and electricity constituting the largest share of consumption. For predictive analysis,
23 consecutive monthly observations from April 2019 to February 2021 are
employed, while the most recent two data points are reserved as out-of-sample
values to validate the forecasting results by comparing actual and predicted
consumption levels.

4.2  Data Analysis

From the original time series diagram in Figure 1, it is evident that domestic energy
consumption has generally increased over the years, with the degree of fluctuation
also becoming more pronounced over time. However, the upward trend slowed
noticeably around 2008, indicating a change in the growth dynamics of energy use.
These observations suggest that both the mean and variance of the series are
unstable, implying the presence of non-stationarity in the data.

The blue line representing energy consumption shows a steady upward trajectory
from the late 1990s through the mid-2000s. This indicates continuous growth in
energy demand, largely driven by industrial expansion, rising transportation needs,
and an increase in household and service sector consumption. While the trend is
upward, fluctuations become more noticeable after 2005. Peaks and troughs emerge,
reflecting the influence of external factors such as global oil price volatility,
economic cycles, and policy interventions aimed at energy efficiency. A marked
slowdown is visible around 2008. This aligns with the global financial crisis, which
curtailed industrial activity and reduced energy demand. Although consumption
continued to rise in the following years, the slope of the increase became less steep
compared to the pre-2008 period. After 2015, the curve shows a relatively stable
pattern with only moderate growth. This suggests that energy consumption may be
reaching a saturation point, possibly due to structural changes in the economy, the
adoption of more efficient technologies, and the impact of energy conservation
policies. The visual pattern reveals that the mean and variance are not constant over
time. Both the rising trend and the increasing fluctuations indicate non-stationarity,
which has implications for forecasting models, as standard time series techniques
require data transformations (e.g., differencing, detrending) to achieve stationarity.
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Figure 1: Time Series Plot of Domestic Energy Consumption by Year
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Figure 2: Fluctuations in Monthly Domestic Energy Consumption
(Apr. 2019-Feb. 2021)
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Figure 2 displays the original time series of monthly domestic energy consumption
from April 2019 to February 2021. The series shows strong short-term volatility.
Peaks and troughs appear frequently, indicating that energy consumption is
sensitive to seasonal, economic, or external shocks. For instance, there are sharp
increases around August 2019 and August 2020, followed by steep declines in the
subsequent months. A recurring pattern is noticeable across the two years. Energy
use tends to spike during summer months (July—August), which may be associated
with higher electricity demand for cooling. Conversely, consumption tends to
decline in the early spring months, suggesting a seasonal cycle.

Around early 2020, the series shows irregular declines, likely reflecting the effects
of the COVID-19 pandemic, which reduced industrial and transportation activity.
This external shock amplified the variation already present in the data. The
amplitude of fluctuations varies over time: some periods (e.g., mid-2019 and mid-
2020) show sharp peaks, while others are relatively stable. This non-constant
variance suggests the data is heteroskedastic and not stationary. Because of the
strong volatility and possible seasonality, any predictive analysis will require data
transformation (e.g., differencing or seasonal adjustment) before applying time
series models such as ARIMA, SARIMA, or ARCH/GARCH.

Table 2: ACF and PACEF of the Original Time Series
Date: 06/23/21 Time: 21:22

Sample: 1999 2020
Included observations: 22

Autocorrelation  Partial Correlation AC PA... Q-Sta... Pro...

| 1 0.79... 0.79... 15.76... 0.00...
! 2 0.61...-0.03... 25.78... 0.00...
! 3 0.47...-0.01... 32.03... 0.00...
! 4 0.31...-0.12... 34.99... 0.00...
! 5 0.19...-0.02... 36.17... 0.00...
! 6 0.11... 0.01... 36.59... 0.00...
! 7 0.02...-0.07... 36.62... 0.00...
|
|
|
|
|

8-0.04...-0.05... 36.70... 0.00...
9-0.05... 0.09... 36.81... 0.00...
I1...-0.11...-0.16... 37.37... 0.00...
1...-0.20...-0.15... 39.32... 0.00...
1...-0.21... 0.07... 41.67... 0.00...

Table 2 presents the ACF and PACF plots of the original data, which provide
additional evidence for assessing stationarity. In particular, when the ACF decays
slowly rather than cutting off rapidly, it indicates the presence of strong
autocorrelation over time and suggests that the mean of the series is not stable. Such
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behavior is a hallmark of non-stationarity and implies that differencing is required
to achieve stationarity. The ACF of the series indeed exhibits a gradual decay,
confirming that the original data are non-stationary. Consequently, we apply first-
order differencing to stabilize the mean and improve the suitability of the series for
ARIMA modelling.

Table 3: ACF and PACEF after Taking Natural Logarithm Transformation and
Adding a Difference

Date: 06/23/21 Time: 23:21 Sample: 1999 2020
Included observations: 21

Autocorrelation Pa}*tial Correlation AC PA.. Q-Sta.. Pro..
| o 1 0.11... 0.11... 0.343... 0.55...

| I 2 0.05... 0.04... 0.427... 0.80...

— 3 0.51... 0.50... 7.437... 0.05...

! 4 0.02...-0.11... 7.453... O0.11...
! 5-0.12...-0.18... 7.889... 0.16...
! 6 0.11...-0.15... 8.333... 0.21...
! 7-0.06...-0.02... 8.463... 0.29...
. 8-0.08... 0.12... 8.709... 0.36...
| 9-0.00...-0.00... 8.713... 0.46...
! 1...-0.04...-0.01... 8.806... 0.55...
! l... 0.00... 0.01... 8.810... 0.63...
! 1...-0.09...-0.13... 9.287... 0.67...

From the ACF plot in Table 3, it can be observed that the residual autocorrelation
remains particularly pronounced at lag 3, with several spikes exceeding the range
of one standard deviation. This indicates that the data still exhibits serial correlation
and fluctuations, suggesting the presence of remaining non-stationary components.
To address this issue, additional differencing is required until the residual series
satisfies the condition of white noise, thereby ensuring stationarity. Once all non-
stationary factors are resolved, the next step is to fit an appropriate ARIMA model.
The general identification rules for ARIMA model selection can be summarized as
follows: (1) Autoregressive model AR(p): appropriate when the ACF gradually dies
down while the PACF cuts off sharply after lag p. (2) Moving Average model
MA(q): appropriate when the ACF cuts off sharply after lag ¢ while the PACF
gradually dies down. (3) Autoregressive Moving Average model ARMA(p, ¢q):
appropriate when both the ACF and PACF show gradual decay without a sharp
cutoff, indicating a mixed process. These diagnostic rules form the basis of the Box—
Jenkins methodology, guiding the proper specification of ARIMA models for
forecasting.
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From Table 4, it can be observed that the ACF cuts off while the PACF gradually
dies down, which is consistent with the identification rule for a Moving Average
process MA(q). Specifically, the ACF shows significant spikes at lag 1 and lag 3,
both of which exceed the bounds of one standard deviation. This indicates that these
lags contain meaningful autocorrelation and should be included in the model
specification. Therefore, we fit the model as MA(1,3), incorporating both lag 1 and
lag 3 terms to adequately capture the short-run dynamics of the series.

Table 4: Converted and Second-Differentiated ACF and PACF

Date: 06/24/21 Time: 22:26 Sample: 1999 2020
Included observations: 20

Autocorrelation Partial Correlation AC PA.. Q-Sta... Pro...

B o — [ — [-0.53..-0.53... 6.531.. 0.0L.
! ! 0 2-0.25...-0.74... 8.096... 0.01...
! I 3 0.53...-0.29... 15.57... 0.00...
! ! ! ! 4-0.19... 0.02... 16.63... 0.00..!
! ! ! ! 5-0.20... 0.19... 17.81... 0.00...
! ! ! ! 6 0.25... 0.17... 19.90... 0.00...
I N o 7-0.14...-0.29... 20.65... 0.00...
! ! I 1 8 0.05...-0.21... 20.77... 0.00...
! ! I | 9 0.00...-0.08... 20.77... 0.01...
! ! ! ! 1...-0.10... 0.02... 21.27... 0.01...
! ! ! ! 1... 0.18... 0.21... 22.90... 0.01...
! ! ! ! 1...-0.14...-0.07... 24.00... 0.02...

Table 5: Residual Testing of the Model

Date: 06/24/21 Time: 23:07

Sample: 1999 2020

Included observations: 20

Autocorrelation  Partial Correlation AC PA... O-Sta... Pro...

- I B 1-0.13...-0.13... 0.405... 0.52...
o [ I 2-0.45...-0.47... 5.419... 0.06...
L (. I | 3 0.49... 0.44... 11.67... 0.00...
N I 4-0.03...-0.27... 11.71... 0.02...
[ I B 5-0.45...-0.06... 17.73... 0.00...
o [ 6-0.06...-0.65... 17.86... 0.00...
oo I 7 0.04...-0.01... 17.95... 0.01...
I I 8 0.04...-0.05... 18.01... 0.02...
I Coomo 9-0.09... 0.12... 18.37... 0.03...
Coon I 1... 0.04...-0.06... 18.46... 0.04...
I s 1... 0.22...-0.32... 20.84... 0.03...
I I 1...-0.03...-0.04... 20.90... 0.05...
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Table 5 presents the autocorrelation and partial autocorrelation of the residual series,
along with the Ljung—Box Q-statistics and their corresponding probabilities. These
diagnostics are essential to verify whether the residuals behave like white noise,
which is a key requirement for a well-specified ARIMA model. (1) Autocorrelation
(ACF) and Partial Autocorrelation (PACF): Most of the autocorrelation (AC) and
partial autocorrelation (PAC) values lie within the 95% confidence bounds (+ two
standard errors), except for a few lags (notably lag 2 and lag 3) where the values
exceed the threshold. The residual autocorrelation at lag 2 (AC=0.45AC =
0.45AC=0.45) and lag 3 (AC=0.49AC = 0.49AC=0.49) appear more prominent, but
beyond these lags the autocorrelations taper off, indicating that no strong serial
correlation persists in the residuals. (2) Q-Statistics (Ljung—Box Test): The Ljung—
Box Q-statistics test whether groups of autocorrelations are jointly zero. At lower
lags (up to lag 3), the ppp-values (e.g., 0.06 at lag 2; 0.00 at lag 3) suggest marginal
significance. However, as the lag length increases, most of the probabilities (e.g.,
0.33 atlag 11; 0.55 at lag 12) become greater than 0.05, which implies that the null
hypothesis of white noise cannot be rejected at higher lags. (3) Overall Assessment:
While some residual correlations remain at specific lags, the majority of residual
autocorrelations fall within the confidence interval, and the Ljung—Box test does
not provide strong evidence against white noise at longer horizons. This suggests
that the residuals of the fitted model are approximately uncorrelated, have constant
variance, and have an average close to zero. Therefore, the model is considered
adequately specified for forecasting purposes.

Table 6: Augmented Dickey—Fuller (ADF) Unit Root Test Results for Residuals

Null Hypothesis: E has a unit root. Exogenous: Constant
Lag Length: 2 (Automatic - based on SIC, maxlag=4)

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic -1.739783 0.3951
Test critical values: -3.886751
5% level -3.052169
10% level -2.666593
*MacKinnon (1996) one-sided p-values.
Warning: Probabilities and critical values calculated for 20 observations and may|
not be accurate for a sample size of 17

The Augmented Dickey—Fuller (ADF) test is employed to assess whether the
residual series contains a unit root, which would imply non-stationarity. The test is
based on the following hypotheses:

Null Hypothesis (Ho): The series has a unit root (non-stationary).

Alternative Hypothesis (H:): The series is stationary.

As shown in the table, the ADF test statistic is -1.739783, with an associated p-
value of 0.3951. The corresponding critical values are —3.886751 at the 1% level, —
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3.0521609 at the 5% level, and —2.666593 at the 10% level. Since the test statistic (—
1.74) is greater (i.e., less negative) than all of the critical values and the p-value
substantially exceeds the conventional significance threshold of 0.05, the null
hypothesis cannot be rejected. This result indicates that the residual series remains
non-stationary, suggesting that additional differencing or alternative model
specifications may be required to achieve stationarity and improve model adequacy.

Table 7: Augmented Dickey—Fuller Test Equation Results for Differenced Series

Augmented Dickey-Fuller Test Equation Dependent Variable: D(E)
Method: Least Squares Date: 06/24/21 Time: 22:57
Sample (adjusted): 2004 2020
Included observations: 17 after adjustments

Variable Coefficient | Std. Error | t-Statistic Prob.

E(-1) -0.970969 0.558098 -1.739783 | 0.1055

D(E(-1)) -0.037864 0.386620 -0.097935 | 0.9235

D(E(-2)) -0.459012 0.255305 -1.797895 | 0.0954

C 0.000625 0.002774 0.225440 0.8251
R-squared 0.739980 Mean dependent var  |-0.000617
Adjusted R-squared 0.679976 S.D. dependent var 0.019870
S.E. of regression 0.011241 Akaike info criterion |-5.936233
Sum squared resid 0.001643 Schwarz criterion -5.740183
Log likelihood 54.45798 Hannan-Quinn criterion |-5.916745
F-statistic 12.33208 Durbin-Watson stat 1.595592

Prob(F-statistic) 0.000421

From the results of the Unit Root Test reported in Table 7, the probability value of

the F-statistic is 0.000421, which is lower than the significance level (a=0.05).
Therefore, the null hypothesis (Ho) of a unit root is rejected, indicating that the time
series has achieved stationarity. Based on this outcome, we can conclude that the
fitted AR(1) model is appropriate and provides a valid representation of the data-

generating process.
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Table 8: Comparison of Actual and Predicted Values Using the ARIMA Model

Date Actual Predictive | 95% Prediction Confidence | 95% Prediction Confidence

value value Interval (up) Interval (down)
110/03 | 5,193,073 | 5,068,439.2 5,321,861.000 4,815,017.000
110/04 | 4,991,618 | 4,871,819.1 5,115,410.000 4,628,228.000
110/05 4,993,623.0 5,243,304.446 4,743,942.118
110/06 4,937,205.0 5,184,065.430 4,690,344.913
110/07 5,230,463.0 5,491,985.833 4,968,939.563
110/08 5,208,918.0 5,469,364.053 4,948.472.239
110/09 5,129,517.0 5,385,993.133 4,873,041.406
110/10 5,086,009.0 5,340,309.972 4,831,709.022
110/11 5,040,719.0 5,292,754.948 4,788,683.048
110/12 5,092,102.0 5,346,707.522 4,837,497.282
111/01 5,034,221.0 5,285,932.116 4,782,510.010
111/02 4,574,604.0 4,803,334.382 4,345,873.964

(Unit: Gongbing Oil Equivalent)

To evaluate the adequacy of the model estimates, the last two actual observations
were withheld from the estimation sample and used for out-of-sample forecasting
over the following year. The results, presented in Table 8, report the actual values,
the corresponding predicted values, and the 95% upper and lower confidence
intervals for 12 forecasted periods. As shown in the table, the predicted values
generated by the final ARIMA model closely approximate the actual observations,
and nearly all of the actual values fall within the 95% confidence interval. This
outcome demonstrates that the fitted model possesses satisfactory predictive ability
and is therefore considered appropriate for analyzing this dataset.

4.3 Model Selection

The accuracy of a forecasting model must be evaluated using appropriate statistical
indicators. In this study, we employ Mean Squared Error (MSE), Mean Percentage
Error (MPE), Mean Absolute Percentage Error (MAPE), and Mean Absolute
Deviation (MAD) as the primary criteria for assessing predictive performance and
selecting the most suitable model. These metrics provide complementary
perspectives on forecast error: MSE emphasizes large deviations due to its squared
term, MPE measures directional bias in forecasts, MAPE expresses errors as relative
percentages, and MAD reflects the average magnitude of forecast errors in absolute
terms. When the values of these four evaluation indicators—MSE, MPE, MAPE,
and MAD—are closer to zero (Table 9), this indicates that the discrepancy between
the predicted and actual values is smaller, and thus the forecasting model is more
accurate and appropriate for application.

MAD =YY, — Y,|/n

MSE =% (Y; — Y)*2/n

PE, = ((Y; — Yy /Y;) * 100 => MPE =XPE;/n
APE, = (|Y;-¥¢|/Y;) * 100 => MAPE =XAPE,/n
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Table 9: Model Evaluation
Model Method MAD MAP MPE MAPE
AR 122,216.35 14,942,680,272 2.4% -0.000391409

5. Conclusion

According to the research, energy consumption in 2008 was significantly influenced
by global economic and geopolitical events. In particular, the decline in crude oil
inventories in the United States, the sharp depreciation of the U.S. dollar, and the
decision of the Organization of Petroleum Exporting Countries (OPEC) to maintain
crude oil production quotas, combined with the attack on Nigeria’s oil pipeline—
the largest producer in Africa—contributed to a rapid surge in international oil
prices. At the same time, the collapse of Lehman Brothers in September 2008
triggered widespread concerns about the stability of the U.S. financial system,
ultimately leading to global financial panic and the so-called “financial tsunami.”
As a result, worldwide energy consumption declined, reflecting the combined
impact of soaring oil prices and deteriorating financial conditions.

From the data, it is evident that energy consumption in Taiwan also experienced a
downward trend in mid-2008, which can be attributed to the surge in international
crude oil prices that directly affected domestic fuel prices, thereby reducing
consumers’ willingness to spend on energy. The financial crisis in late 2008 further
exacerbated this situation, causing negative growth in domestic energy consumption.
Nevertheless, as the global economy gradually recovered in the following months,
energy consumption began to increase again, suggesting that the long-term trend
remains upward.

Today, Taiwan faces a structural challenge, as its energy supply relies heavily on
imports due to limited domestic resources. This dependency underscores the urgent
importance of energy conservation and the development of alternative energy
sources. Every additional unit of new energy developed reduces dependence on
traditional energy imports, thereby enhancing energy security. Achieving
sustainability requires not only technological innovation and industrial
transformation but also behavioral changes at the individual and household levels.
The temporary decline in energy consumption between 2008 and 2009 was
consistent with the government’s policy goals of energy conservation and carbon
reduction. However, it also raises critical questions: if energy consumption resumes
its upward trajectory once oil prices decline and the economy recovers, does this
suggest that policy effectiveness is limited? Such an observation highlights the need
for stronger implementation and broader public engagement.

Ultimately, energy is a fundamental necessity for modern life, and its consumption
cannot be entirely avoided. Although once perceived as inexhaustible, energy
resources are gradually being depleted. Thus, addressing this challenge requires a
multi-pronged approach. Individuals must cultivate energy-saving habits in daily
life—such as using public transportation more frequently, conserving water and
electricity, and supporting environmentally friendly alternatives—while
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government and industry must take proactive measures beyond policy slogans,
translating them into practical and enforceable actions. Only through coordinated
efforts in conservation, innovation, and sustainable development can Taiwan secure
a resilient energy future.
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