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Abstract 
 

A new generalization of the Topp-Leone Lomax distribution was developed. The 

new distribution is a half logistic transformation of the Topp-Leone Lomax 

distribution. Some important statistical properties of this new distribution were 

explored that include raw moments, moment generating function, probability 

weighted moments, distribution of order statistics, R´enyi entropy, and Shannon 

entropy. The maximum likelihood estimation (mle) technique was used to estimate 

the unknown model parameters estimates. Consistency of the mles was assessed via 

Monte Carlo simulation studies. The mle technique produced consistent estimates 

based on the simulation studies results and applications to real datasets as 

demonstrated by means of log-likelihood profile plots. The usefulness the half 

logistic-Topp Leone Lomax distribution was assessed by means of applications to 

real world datasets. The model was compared to other generalizations of the Lomax 

distribution. The new distribution emerged as a good contender to the other 

generalizations involving the Lomax distribution. 
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1. Introduction  

Statisticians worked hard in the past two decades to introduce methodologies that 

enhance flexibility of classical and existing probability distributions. The 

motivation being to provide an effective data modelling framework. The demand 

for flexible distributions is rising across many fields of research such as medical 

sciences, engineering, environmental science, and finance. Proffered methodologies 

offer remarkable improvements on classical models and some existing models. 

Notable methodologies developed for generalizing distributions are the beta-G 

generator (Eugene et al., 2002), the T-X family (Alzaatreh et al., 2013), the 

exponentiated half logistic-G (EHL-G) (Cordeiro et al., 2014), the Topp-Leone-G 

(TL-G) (Al-Shomrani et al., 2016), the Topp-Leone odd exponential half logistic-G 

(Chipepa and Oluyede, 2021), and A New Power Generalized Weibull-G (Oluyede 

et al., 2020), among others. 

The new distribution is a significant contribution to the field of statistics, since it 

offers more advantages in data modelling compared to the other generalizations of 

the Lomax distribution (Lomax, 1954). Its flexibility in modelling heavily skewed 

data and data with non-monotonic failure rates, gives it a more competitive edge 

compared to some existing models. 

The paper is structured as follows: The new model is introduced in Section 2. Some 

statistical properties are presented in Section 3. Maximum likelihood estimation is 

discussed in Section 4. Section 5 presents simulation studies results. Section 6 

represents applications to real datasets, and conclusions in Section 7. 

 

2. The Model 

In this section, we derive the new distribution by transforming the TLLx distribution 

via the half logistic generator. The Topp-Leone Lomax (TLLx) distribution 

(Oguntunde et al., 2019) has cumulative distribution function (cdf) and probability 

density function (pdf) defined by 

 

𝐹(𝑥; 𝛽, 𝛿, 𝑐) = [1 − (1 + 𝑐𝑥){−2𝛽}]
𝛿

                                            (1)  

 

and 

 

𝑓(𝑥; 𝛽, 𝛿, 𝑐) = 2𝛿𝛽𝑐 (1 + 𝑐𝑥)−2𝛽−1 [1 − (1 + 𝑐𝑥){−2𝛽}]
𝛿−1

                (2) 

 

respectively, for β, δ, c > 0. (Cordeiro et al., 2017) developed the half logistic 

generator whose cdf and pdf are defined by 

 

𝐺(𝑥; 𝜙) =
𝐹(𝑥; 𝜙)

1 + �̅�(𝑥; 𝜙)
 

and 
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𝑔(𝑥; 𝜙) =
2𝑓(𝑥; 𝜙)

(1 + �̅�(𝑥; 𝜙))
2, 

 

where F¯(x; ϕ) = 1−F (x; ϕ) is the survival function of the baseline distribution. The 

Half-Logistic-G transformation modifies any given distribution F(x) to enhance its 

flexibility. We, therefore, use this transformation to derive the new distribution, 

namely, half logistic-Topp-Leone Lomax (HL-TLLx) whose cdf and pdf are 

defined by 

𝐺(𝑥; 𝛽, 𝛿, 𝑐) =
[1−(1+𝑐𝑥)−2𝛽]

𝛿

2−[1−(1+𝑐𝑥)−2𝛽]
𝛿                            (3) 

and 

𝑔(𝑥; 𝛽, 𝛿, 𝑐) =
4𝛿𝛽𝑐(1+𝑐𝑥)−2𝛽−1[1−(1+𝑐𝑥)−2𝛽]

𝛿−1

(2−[1−(1+𝑐𝑥)−2𝛽]
𝛿

)^2
                         (4) 

 

respectively, for β, δ, c > 0. 

 

The HL-TLLx pdf distribution applies to heavily skewed data and data with both 

monotonically increasing and upside bathtub failure rates as shown in Figures 1(a) 

and 1 (b). 

 

 

 

(a)                                   (b) 

Figure 1: Some pdf and hrf plots of the HL-TLLx distribution 
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3. Some Statistical Properties 

We present in this section the quantile function, moments and moment generation 

function, order statistics, R´enyi entropy, and Shannon entropy. 

 

3.1 Quantile Function 

To derive the quantile function QX(u), we set FHLTLLx(x;c,β,) = u. 

⇒ 

. 

Rearranging the equation yields 

 

. 

⇒ 

, 

which further simplifies to 

 

 

Therefore, the quantile function for the HL-TLLx distribution is given by 

 

 

3.2 Moments and Moment Generating Function 

The rth moment is given by 

 

 

Substituting the density function f(x) 
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Let y = (1 + cx)−2β, so 

dy = −2βc(1 + cx)−2β−1 dx, 

and 

. 

The limits of integration transform as follows: when x = 0, y = 1, when x = ∞,  

y = 0. 

 

Substituting these into the integral 

 

 

Changing the variable x → y, the moment becomes 

 

 

Expanding ( using the binomial theorem 

. 

Substituting this expansion 

 

 
 

The integral is a beta function 

. 
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Thus, the final expression for the rth moment is 

. 

The first four moments of the HLTLLx distribution are given by 

First Moment (r = 1) 

 

  

 

Second Moment (r = 2) 

 

 
. 

Third Moment (r = 3) 

 

. 

 

Fourth Moment (r = 4) 

 

. 
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The mean (µ), variance (σ2), coefficient of variation (CV), coefficient of skewness 

(CS), and coefficient of kurtosis (CK) are given by 

 

  

, 

 

and 

 

. 

 

Note that 

. 

The moment generating function MX(t) is 

 

. 

Substituting k for r in E[Xk], we have 

. 
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3.3 Order Statistics 

Order statistics are essential in various fields, providing insights into data 

distributions by identifying key values like minimum, maximum, median, and 

quantiles. They are foundational to descriptive statistics and serve as a basis for non-

parametric statistical methods, including rank tests and confidence intervals, 

enhancing the analysis and interpretation of empirical data. The distribution of the 

ith order statistics of the HL-TLLx distribution is 

 

 . (5) 

Using an alternative representation, 

 

 

which simplifies to 

 

 

Let  ,  then 

. 

Finally, 

          
(6) 

 

where g∗(x; β, c, δ(p + q + i)) is the TLLx distribution with parameters c,β, and δ(p 

+ q + 1) > 0. 
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Thus, the distribution of the ith order statistic from the HL-TLLx distribution is a 

linear combination of the TLLx distribution with parameters c, β, and δ(p + q + 1), 

where 

 

 

are the coefficients. 

 

The rth moment of the ith order statistic is given by 

 

, 

where EGTLLx(Xr) is the rth moment of the TLLx distribution with parameters c,β, and 

δ(p + q + 1) > 0. 

 

3.4 R´enyi Entropy 

R´enyi entropy proposed (R´enyi, 1960) is defined as 

 

. 

The function fv(x) is given by 

 

, 

or alternatively 

 

. 

Expanding fv(x) as a summation 

. 

Let y = (1 + cx)−2β, so that 

dy = −2βc(1 + cx)−2β−1dx, 
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and 

. 

Also, 1 + . 

 

When x = 0, y = 1, and when x → ∞, y = 0. 

Substituting into the integral 

 

 

 

Simplify the expression 

 

 

Using the beta function 

 

, 

we have 

 

Thus, 

 

 

 

Finally, the R´enyi entropy is 
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3.5 Shannon Entropy 

Shannon entropy (Shannon, 1951) is defined as 

H[g(x)] = E[−log(g(x))]. 

Using an expanded representation 

 

 

Note: 

For |x| < 1, using the series expansion 

, 

we have: 

 

 

Substituting q for r in E[Xr], we obtain, 

. 

Let 

. 

 

For E[log{1 − (1 + cx)−2β}], we have 
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Using series expansion 

 

 

 

Substituting t for r in E[Xr], we get 

 

 

For  we have 

 

Expanding further, 

 

. 

Substituting w for r in E[Xr], we have 

 

 

Thus, the Shannon entropy is given by 

 

 

where 
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4. Maximum Likelihood Estimation 

The log-likelihood function, L, for a single observation of the HL-TLLx is given by 

 

 

The partial derivatives of the parameters are 

 

, 

, 

and 

 

Solutions to these equations yields the maximum likelihood estimates of the 

parameters. 

 

5. Simulations 

In this section, we present results of Monte Carlo simulation studies. Sample sizes 

n = 25, 50, 100, 200, 400, 800, and 1600 and N = 3000 were considered. 

Different parameter combinations were considered Set I: β = 1.0, δ = 1.0, c = 1.0, 

Set II: β = 1.0, δ = 0.5, c = 1.5, Set III: β = 1.0, δ = 1.5, c = 1.1, and Set IV: β = 0.9, 

δ = 0.5, c = 0.9. The results are presented in Table 1 and performance of the mle 

method was assessed using average bias (ABias) and root mean square error 

(RMSE). Abias and RMSE are calculated for a parameter, say, β, using the formulae: 

 

  and , 

respectively. The Abias and RMSE decreases towards zero for all parameter values 

indicating consistency of the mle estimates. 
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Table 1: Results of Monte Carlo simulations for the HL-TLLx distribution 

   β = 1.0, δ = 1.0, c = 1.0   β = 1.0, δ = 0.5, c = 1.5  

 n Mean RMSE AvBIAS Mean RMSE AvBIAS 

 25 3.7988 8.9077 2.7988 8.4818 20.3840 7.4818 

 50 1.7385 3.1600 0.7385 3.2314 8.9492 2.2314 

 100 1.2255 1.2268 0.2255 1.5338 3.3850 0.5338 

β 200 1.0647 0.2968 0.0647 1.0495 0.3305 0.0495 

 400 1.0328 0.1673 0.0328 1.0028 0.1902 0.0028 

 800 1.0135 0.1058 0.0135 0.9675 0.1092 -0.0325 

 1600 1.0084 0.0725 0.0084 0.9742 0.0471 -0.0258 

 25 2.4744 1.2650 1.4744 6.9815 4.9099 5.4815 

 50 1.9391 0.8057 0.6391 5.1494 2.5060 4.6494 

 100 1.1010 0.3809 0.1010 0.5638 0.1358 0.0638 

δ 200 1.0537 0.2067 0.0537 0.5470 0.0868 0.0470 

 400 1.0208 0.1353 0.0208 0.5396 0.0656 0.0396 

 800 1.0081 0.0879 0.0081 0.5323 0.0450 0.0323 

 1600 1.0046 0.0600 0.0046 0.5313 0.0356 0.0313 

 25 5.4269 2.4960 1.4269 3.0905 2.6580 2.5905 

 50 3.6596 1.5144 0.4596 2.4742 1.9090 1.9742 

 100 1.2279 0.9973 0.2279 1.9653 1.4991 0.4653 

c 200 1.0888 0.4944 0.0888 1.7760 0.8317 0.2760 

 400 1.0374 0.3343 0.0374 1.7381 0.6374 0.2381 

 800 1.0136 0.2159 0.0136 1.6978 0.3916 0.1978 

 1600 1.0066 0.1454 0.0066 1.6146 0.1146 0.1146 

   β = 1.0, δ = 1.5, c = 1.1   β = 0.9, δ = 0.5, c = 0.9  

 n Mean RMSE AvBIAS Mean RMSE AvBIAS 

 25 3.1564 7.3044 2.1564 6.2263 14.1189 5.2263 

 50 1.4689 2.1183 0.4689 2.9407 6.9743 1.9407 

 100 1.1474 0.6961 0.1474 1.4697 2.6448 0.4697 

β 200 1.0473 0.2366 0.0473 1.0800 0.4741 0.0800 

 400 1.0259 0.1459 0.0259 1.0172 0.1955 0.0172 

 800 1.0116 0.0966 0.0116 0.9948 0.1318 0.0052 

 1600 1.0075 0.0658 0.0075 0.9958 0.1008 0.0042 

 25 4.7094 2.4590 1.6094 3.2838 3.9165 2.7838 

 50 2.0402 1.7781 1.3402 2.2469 48.2416 1.7469 

 100 2.0150 0.9978 0.5150 0.5507 0.1300 0.0507 

δ 200 1.6183 0.4278 0.1183 0.5355 0.0791 0.0355 

 400 1.5436 0.2602 0.0436 0.5293 0.0575 0.0293 

 800 1.5150 0.1600 0.0150 0.5257 0.0417 0.0257 

 1600 1.5076 0.1086 0.0076 0.5250 0.0336 0.0250 

 25 3.7212 2.2270 1.6212 2.4273 6.8590 1.5273 

 50 2.4256 1.6100 0.9326 1.6120 3.0512 0.7120 

 100 1.8296 1.0655 0.7296 1.1272 0.8517 0.2272 

c 200 1.2304 0.6133 0.1304 1.0200 0.4579 0.1200 

 400 1.1516 0.3868 0.0516 1.0032 0.3493 0.1032 

 800 1.1171 0.2425 0.0171 0.9816 0.2320 0.0816 

 1600 1.1073 0.1625 0.0073 0.9544 0.1352 0.0544 
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6. Applications 

We present in these section two demonstrations to illustrate the utility of the HL-

TLLx distribution compared to the other selected generalizations of the Lomax 

distribution. The HL-TLLx is also compared to the TLLx distribution to prove the 

significant effect of the half logistic transformation on the TLLx distribution. The 

half logistic transformation improves the flexibility of the TLLx distribution as 

shown by the results presented in this section. The other selected generalizations of 

the Lomax distribution considered in this paper are the exponentiated Lomax- (Exp-

Lx) distribution (Abdul-Moniem and Abdel-Hameed, 2012), Weibull-Lomax (WLx) 

(Tahir et al., 2015), and power Lomax (PLX) (El-Houssainy et al., 2016). Model 

performance was evaluated using the following goodness-of-fit metrics: -

2loglikelihood (-2log(L)), Bayesian information criterion (BIC), Consistent Akaike 

Information Criterion (CAIC), Cram´er-von Mises (W*), Anderson-Darling (AD), 

and Kolmogorov-Smirnov (K-S) and the corresponding p-value. The model with 

the least values for the goodness-of-fit statistics and bigger p-value for the K-S 

statistic is deemed as the best fitting model. 

Graphical techniques were also employed to demonstrate how flexible our model is 

in data fitting. Fitted pdfs for all the fitted models are considered as well as the 

probability plots showing the sum of squares values (SS). The model with least 

value for the SS statistic is deemed the best in fitting the given data set. Other plots 

considered for the HL-TLLx distribution for each data set are empirical cdf, Kaplan 

Meier (K-M), scaled total time of test (TTT), and hrf plots. To each example, we 

plot the profile log-likelihood plots to demonstrate that the mles represent global 

maxima. 

 

6.1 Carbon Fibers Data 

The first data are measurements for single carbon fibers impregnated at gauge 

lengths of 1, 10, 20 and 50 mm which were tested at gauge lengths of 20, 50, 150 

and 300 mm. A sample of 63 from single fibers of 20 mm is considered with the 

following observations: 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 

2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 

2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 

3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 

3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 

3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020. The data set was first published by 

(Badar and Priest, 1982). 
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Table 2: Parameter estimates and GoF statistics for carbon fibers data 

 

 

 

 

 

 

Statistics 

 

Distribution Estimates -2log(L) AIC CAIC BIC W∗ AD K−S p−value 

HL-TLLx β δ c  

155.05 

 

161.05 

 

161.83 

 

165.72 

 

0.0356 

 

0.2493 

 

0.0831 

 

0.9690 1.4132 1.1541×105 1.9048 

(0.1918) (9.9956×10−4) (11.0180) 

TLLx 1.4296 193.4700 1.4128 155.38 161.38 162.15 166.04 0.0382 0.2644 0.0861 0.9576 

(0.2762) (0.0028) (0.5874) 

Exp-Lx α δ θ  

155.38 

 

161.38 

 

162.15 

 

166.04 

 

0.0382 

 

0.2644 

 

0.0861 

 

0.9577 193.4500 1.4127 2.8592 

(0.0033) (0.5874) (0.5524) 

WLx α α b  

162.19 

 

168.19 

 

168.96 

 

172.85 

 

0.1265 

 

0.8062 

 

0.1329 

 

0.5663 4.2176 0.2548 2.4039 

(2.4859) (0.1825) (5.0122) 

PLx α b δ  

157.51 

 

163.51 

 

164.29 

 

168.18 

 

0.0451 

 

0.3308 

 

0.0866 

 

0.9577 0.4554 5.0969 504.1200 

(0.2101) (0.7883) (0.0019) 
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The parameter estimates and standard errors, together with the goodness-of-fit 

statistics for the various fitted models are presented in Table 2. The estimated 

variance-covariance (var-cov) matrix of the HL-TLLx model on carbon fibers 

dataset is defined as follows: 

 

 

 

 

The var-cov matrix is useful in estimating the 95% asymptotic confidence intervals 

for the model parameters. Results shown in Table 2 confirm that the HL-TLLx 

distribution provides a better fit to the carbon fibers dataset compared to the TLLx 

and the other selected distributions. This is because the HL-TLLx distribution has 

the lowest values for the goodness-of-fit statistics and a bigger p-value for the K-S 

statistic. 

 

 

 

 

              (a)       (b) 

 

 

 

 

 

 

(c) 

 

Figure 2: Profiles plots for first dataset 

 

Figure [2] represents profile plots of the model parameters. The results show that 

we have accurately estimated the model parameters since the loglikelihood reaches 

its maximum value at the estimated parameter value for all the model parameters 

204.5 205.0 203.0 203.5 204.0 
beta 

328.0 328.5 329.0 329.5 330.0 
delta 

0.0050 0.0052 0.0054 0.0056 0.0058 0.0060 
c 
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2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.0 0.2 0.4 0.6

 0.8 1.0 x Observed probability 

 (a) (b) 

Figure 3: Density and probability plots for first dataset 

 

 

 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 1 2 3 4 5 
 x 

 (a) (b) 

Figure 4: Fitted ECDF curve and K-M plots for first dataset 

 

Figure [3] represents the fitted densities and probability plots for all the models in 

Table 2. The HL-TLLx distribution offers a better fit to carbon fibers data compared 

to the other selected models. Furthermore, Figure [4] shows the empirical versus 

theoretical cdf as well as empirical versus theoretical K-M survival curves for 

carbon fibers dataset. The HL-TLLx distribution correspondence with the observed 

data, as the empirical lines run closer to the theoretical lines. 

HL−TLLx 
TLLx 
Exp−Lx 
WLx 
PLx 

HL−TLLx(SS=0.0612) 
TLLx(SS=0.0676) 
Exp−Lx(SS=0.0698) 
WLx(SS=0.1064) 
PLx(SS=0.0768) 

ECDF 
HL−TLLx 

KM 
HL−TLLx 
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 0.0 0.2 0.4 0.6 0.8 1.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
 x x 

 (a) (b) 

Figure 5: Scaled TTT and hrf plots for first dataset 

Figure [5] presents the scaled TTT for the carbon fiber dataset. The scaled TT plot 

suggests an increasing hrf which corresponds to the fitted HL-TLLx hrf for carbon 

fibers data. 

 

6.2 Growth Hormone Data 

The second dataset represent estimated time since growth hormone medication until 

the children reached the target age. The data was analysed by (Alizadeh et al., 2017) 

and (Oluyede et al., 2020). The measurements are: 2.15, 2.20, 2.55, 2.56, 2.63, 2.74, 

2.81, 2.90, 3.05, 3.41, 3.43, 3.43, 3.84, 4.16, 4.18, 4.36, 4.42, 4.51, 4.60, 4.61, 4.75, 

5.03, 5.10, 5.44, 5.90, 5.96, 6.77, 7.82, 8.00, 8.16, 8.21, 8.72, 10.40, 13.20, 13.70. 
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Table 3: Parameter estimates and GoF statistics for growth hormone data 

 

Statistics 

 

Distribution Estimates -2log(L) AIC CAIC BIC W∗ AD K−S p−value 

HL-TLLx β δ c  

112.56 

 

118.56 

 

118.97 

 

124.99 

 

0.0603 

 

0.3210 

 

0.0789 

 

0.8272 204.1200 329.0800 5.5505×10−3 

(3.7458×10−9) (3.6861×10−10) (1.3666×10−4) 

TLLx 168.0200 228.6300 5.8875×10−3  113.07 119.07 119.48 125.50 0.0713 0.3693 0.0885 0.7074 

(5.0964×10−9) (7.0174×10−10) (1.4431×10−4) 

Exp-Lx α δ θ  

113.17 

 

119.17 

 

119.58 

 

125.60 

 

0.0727 

 

0.3767 

 

0.0903 

 

0.6833 258.8200 0.0199 103.2600 

(7.1166×10−9) (4.8845×10−4) (9.7143×10−8) 

WLx α α b  

121.95 

 

127.95 

 

128.36 

 

134.38 

 

0.1121 

 

0.7817 

 

0.0808 

 

0.8055 9.6542 0.2884 3.0414 

(1.8239) (0.0630) (1.7539) 

PLx α b δ  

115.68 

 

121.68 

 

122.09 

 

128.11 

 

0.0868 

 

0.4953 

 

0.0897 

 

0.6913 1.0678 8.4244 1.1305×104 

(0.4759) (0.6797) (9.3435×10−5) 

 



Half Logistic-Topp-Leone Lomax Distribution: Properties and Statistical Inference 21  

The estimated var-cov matrix for the HL-TLLx model of growth hormone is 

 

 

  

 

From the results presented in Table 3, we further conclude that the HL-TLLx model 

is an important alternative to the other generalizations of the Lomax distribution as 

shown by the performance on this second dataset. 

 

 

 

 (a) (b) 

 

 

 

 

 

 

                    (c) 

Figure 6: Profiles plots for second dataset 

 

Figure [6] represents the profile plots for the parameters of the HL-TLLx model on 

growth hormone data. The results confirm that the mles are accurate and the chosen 

model estimation technique is good. 
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Figure 7: Density and probability plots for second dataset 
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Figure 8: Fitted ECDF curve and K-M plots for second dataset 

Figures [8] and 9 demonstrate that the HL-TLLx distribution fit the growth hormone 

data effectively. 
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 (a) (b) 

Figure 9: Scaled TTT and hrf plots for second dataset 

 

7. Conclusions 

A new generalization of the TLLx distribution was developed via the half logistic 

transformation. The half logistic transformation improved the flexibility of the 

TLLx as evidence by the results in the application section. Some important 

statistical properties of the proposed distribution were derived to enhance 

understanding of this model. Maximum likelihood estimation method was used to 

estimate the model parameters and the consistency and efficiency of the mle 

estimates were assessed via Monte Carlo simulation studies. The new model was 

applied to two real datasets in comparison to some selected generalizations of the 

Lomax distribution. The proposed distribution outperformed the other selected 

Lomax generalizations. 
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