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Abstract

In this paper, we introduce new implicit and explicit iteration meth-

ods based on the Krasnoselskii-Mann iteration method and a contraction

for finding a common fixed point of a finite family of strictly pseudocon-

tractive self-mappings of a closed convex subset in real Hilbert spaces.

An extension to the problem of convex optimization is showed.
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1 Introduction and preliminaries

Let C be a nonempty closed and convex subset of a real Hilbert space H

with inner product 〈., .〉 and norm ‖.‖ and let T be a γ̃-strictly pseudocontactive
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and self-mapping of C, i.e.,

||Tx− Ty||2 = ||x− y||2 + γ̃||(I − T )x− (y − Ty)||2

and T : C → C, respectively, for all x, y ∈ C , where γ̃ is a fixed number in

[0, 1). When γ̃ = 0, T is called nonexpansive. Denote the set of fixed points

of T by Fix(T ), i.e., Fix(T ) := {x ∈ C : x = Tx}, and the projection of

x ∈ H onto C by PC(x). Note that in a Banach sapce E, T is a γ̃ -strictly

pseudocontactive, if

〈Tx− Ty, j(x− y)〉 ≤ ||x− y||2 − γ̃||(I − T )x− (y − Ty)||2,

where j(x− y) ∈ J(x− y), and J is the normalized duality mapping of E, i.e.,

J : E → E∗ and satisfies the condition 〈x, J(x)〉 = ||x||2 for all x ∈ E.

Let {Ti}
N
i=1, 1 ≤ N < ∞, be a N γ̃-strictly pseudocontactive and self-

mappings Ti of C. In this paper, we sssume that ∩N
i=1Fi(Ti) 6= ∅ and intro-duce

some new iteration methods for finding an element p∗ ∈ ∩N
i=1Fix(Ti).

The class of strictly pseudocontractive mappings has been studied inten-

sively by several authors (see for example [1]- [18] and references therein).

Clearly this class of mappings includes the class of nonexpansive mappings.

In order to study the fixed point problem for a nonexpansive self-mapping

T of a slosed convex subset C in a real Hilbert space, one recent way is to

construct the iterative scheme, the so-called viscosity iteration method:

xk+1 = λkf(xk) + (1− λk)Txk, k ≥ 0, (1.1)

proposed firstly by Moudafi [19], where λk ∈ (0, 1) and f is a contraction of C

with constant α̃ ∈ [0, 1). In particular, under the conditions:

(L1) limk→∞ λk = 0;

(L2)
∞
∑

k=0

λk = ∞; and

(L3)
∞
∑

k=0

|λk+1 − λk| < ∞; or

(L4) limk→∞

λk+1

λk

= 1,

in papers [20, 32], Xu proved that the sequence {xk} generated by (1.1) con-

verges strongly to a fixed point p∗ of T , which is the unique solution of the

following variational inequality:

〈F (p∗), p∗ − p〉 ≤ 0 ∀p ∈ Fix(T ), (1.2)
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where F = I − f . In 2006, related to a certain optimization problem, Marino

and Xu [5, 21] introduced the following general iterative scheme for the fixed

point problem of a nonexpansive mapping:

xk+1 = λkωf(xk) + (1− λkA)Txk, k ≥ 0, (1.3)

where A is a strongly positive bounded linear operator, λk ∈ (0, 1) and ω > 0.

They proved that the sequence {xk} generated by (1.3) converges strongly

to the unique solution of the variational inequality (1.2) with F = A − ωf.

Further, algorithm (1.3) was extended in 2009 by Cho et al. [9] to the class of

k-strictly pseudocontractive mappings as follows:

Theorem 1.1. Let C be a closed convex subset of a real Hilbert space H such

that C ± C ⊂ C, and T : C → H be a γ−strictly pseudocontractive mapping

with Fix(T ) 6= ∅ for some γ ∈ [0, 1). Let A : C → H be a strongly positive

bounded linear operator with coefficient γ̃ and f is a contraction of C with the

contractive constant α̃ ∈ [0, 1) such that 0 < ω < γ̃/α̃. Let x0 ∈ C and let {xk}

be a sequence in C generated by

xk+1 = λkωf(xk) + (1− λkA)PCSxk, k ≥ 0, (1.4)

where S := γI + (1 − γ)T and PC is the metric projection of H onto C. Let

{λk} with λk ∈ (0, 1) be satisfy conditions (L1), L(2) and (L3). Then {xk}

defined by (1.4) converges strongly to a fixed point p∗ of T , which is the unique

solution of variational inequality (1.2) with F = A− ωf.

In 2010, to remove condition (L3) in [9] and [20] as well in [22], Jung [16]

studied the following composite iterative scheme.

Theorem 1.2. Let C be a closed convex subset of a real Hilbert space H such

that C ± C ⊂ C, and T : C → H be a γ−strictly pseudocontractive mapping

with Fix(T ) 6= ∅ for some γ ∈ [0, 1). Let A : C → H be a strongly positive

bounded linear operator with coefficient γ̃ and f is a contraction of C with the

contractive constant α̃ ∈ [0, 1) such that 0 < ω < γ̃/α̃. Let x0 ∈ C and let

{xk} be a sequence in C generated by

yk = βkxk + (1− βk)PCSxk,

xk+1 = λkωf(xk) + (1− λkA)yk, k ≥ 0,
(1.5)
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where S := γI + (1 − γ)T and PC is the metric projection of H onto C. Let

{λk} with λk ∈ (0, 1) be satisfy conditions (L1) and (L2) and let {βk} be satisfy

the condition 0 < lim infk→∞ γk ≤ lim supk→∞ γk < 1. Then {xk}, defined by

(1.5), converges strongly to a fixed point p∗ of T , which is the unique solution

of variational inequality (1.2) with F = A− ωf.

In 2011, Jung [17] proposed an extension of (1.5) in the combination with

Halpern [22] and Wittmann [23] methods. Note that the results in [9] and [16]

are applicable to find p∗ ∈ ∩N
i=1Fix(Ti) by putting T =

N
∑

i=1

ωiTi where ωi > 0

for all i = 1, ..., N and
N
∑

i=1

ωi = 1 with γ = max{γ̃i : i = 1, ..., N}.

For finding an element p ∈ ∩N
i=1Fix(Ti), when each Ti is a nonexpansive

self-mapping of C, Xu and Ori introduced in [24] the following implicit iteration

process. For x0 ∈ C and {βk}
∞
k=1 ⊂ (0, 1), the sequence {xk} is generated as

follows:
x1 = β1x0 + (1− β1)T1x1,

x2 = β2x1 + (1− β2)T2x2,

...

xN = βNxN−1 + (1− βN)TNxN ,

xN+1 = βN+1xN + (1− βN+1)T1xN+1,

...

The compact expression of the method is the form

xk = βkxk−1 + (1− βk)T[k]xk, k ≥ 1, (1.6)

where T[n] = TnmodN , for integer n ≥ 1, with the mod function taking values

in the set {1, 2, ..., N}. They proved the following result.

Theorem 1.3. Let H be a real Hilbert space and C be a nonempty closed

convex subset of H. Let {Ti}
N
i=1 be N nonexpansive self-mappings of C such

that ∩N
i=1Fix(Ti) 6= ∅, where Fix(Ti) = {x ∈ C : Tix = x}. Let x0 ∈ C and

{βk}
∞
k=1 be a sequence in (0, 1) such that limk→∞ βk = 0. Then, the sequence

{xk} defined implicitly by (1.6) converges weakly to a common fixed point of

the mappings {Ti}
N
i=1.
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Further, Zeng and Yao [25] gave a modification of (1.6) based on an L-

Lipschitz continuous and η−strong monotone mapping F, i.e., F satisfies the

following conditions:

||F (x)− F (y)|| ≤ L||x− y||;

〈F (x)− F (y), x− y〉 ≥ η||x− y||2,

where L and η are fixed positive numbers. For an arbitrary initial point x0 ∈ H,

the sequence {xk}
∞
i=1 is generated as follows:

x1 = β1x0 + (1− β1)[T1x1 − λ1µF (T1x1)],

x2 = β2x1 + (1− β2)[T2x2 − λ2µF (T2x2)],

...

xN = βNxN−1 + (1− βN)[TNxN − λNµF (TNxN)],

xN+1 = βN + 1xN + (1− βN+1)[T1xN+1 − λN+1µF (T1xN+1)],

...

The scheme is written in a compact form as

xk = βkxk−1 + (1− βk)[T[k]xk − λkF (T[k]xk)], k ≥ 1. (1.7)

They proved the following result.

Theorem 1.4. Let H be a real Hilbert space and F : H → H be a map-

ping such that for some constants L, η > 0, F is L-Lipschitz continuous and

η-strongly monotone. Let {Ti}
N
i=1 be N nonexpansive self-mappings of H such

that ∩N
k=1Fix(Ti) 6= ∅, Let µ ∈ (0, 2η/L2), x0 ∈ H, {µk}

∞
k=1 ⊂ [0, 1) and

{βk}
i
k=1nfty ⊂ (0, 1) satisfying the conditions: Σ∞

k=1λk < ∞ and α ≤ βk ≤

β, k ≥ 1 for some α, β ∈ (0, 1). Then, the sequence {xk} defined by (1.7) con-

verges weakly to a common fixed point of the mappings {Ti}
N
i=1. Moreover, the

convergence is strong if and only if lim infk→∞ d(xk,∩
N
i=1Fix(Ti)) = 0 where

d(x,D) = miny∈D ||x− y|| for a closed convex subset D in H.

Next, Zhou and Chang [26] proved the strong convergence of (1.6) in a

Banach space setting under the condition: each Ti is a semicompact nonex-

pansive self-mapping of C. Chidume and Shahzad in [27] proved the above

result under the condition that just one of the mappings is semicompact.
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Very recently, Buong and Anh in [28] introduced the strong convergence

implicit algorithm:

xt = T txt, T
t = T t

0T
tN1...T

t
1,

T t
0 = I − λtµF,

T t
i = (1− βi

t)I + βi
tTi, i = 1, . . . , N.

(1.8)

They proved the following result.

Theorem 1.5. Let H be a real Hilbert space and let F : H → H be a mapping

such that for some constants L, η > 0, F is L-Lipschitz continuous and η-

strongly monotone. Let {Ti}
N
i=1 be N nonexpansive self-mappings of H such

that ∩N
i=1Fix(Ti) 6= ∅. Let µ(0, 2η/L2) and let t ∈ (0, 1), {λt}, {β

i
t} ⊂ (0, 1),

such that λt → 0, as t → 0 and 0 < lim inft→0 β
i
t ≤ lim supt→0 β

i
t < 1, i =

1, ..., N.

Then, the net xt defined by (1.8) converges strongly to the unique element p∗

solving the following variational inequality:

p∗ ∈ ∩N
i=1Fix(Ti) : 〈F (p∗), p ∗ −p〉 ≤ 0 ∀p ∩N

i=1 Fix(Ti). (1.9)

He et al. [29] have proposed the following explixit iteration method

xk+1 = (1− αk)xk + αkTN ...T2T1xk (1.10)

and proved the following result.

Theorem 1.6. Let E be a uniformly convex Banach space with a Frechet

differentiable norm, let C be a nonempty closed convex subset of E and let

{Ti}
N
i=1 be N nonexpansive self-mappings of C such that ∩N

i=1Fix(Ti) 6= ∅,

where Fix(Ti) = {x ∈ C : Tix = x}. Let x0 ∈ C and {αk}
∞
k=1 be a sequence in

(0, 1) such that the following conditions hold:

(i) Σ∞
k=0αk(1− αk) = ∞ and

(ii) Σ∞
k=0αkDρ(TN ...T2T1, Ti) < ∞ for every ρ > 0 and i = 1, ..., N, where

Dρ(TN ..., T2T1) = sup{||TN ...T2T1x− Tix|| : ||x|| ≤ ρ}.

Then, the sequence {xk} generated by (1.10) converges weakly to a point

∩N
i=1 Fix(Ti).
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We want to note that since ak αk ∈ (0, 1), we have 0 < αk(1 − αk) ≤ αk.

So, from condition (i) in Theorem 1.6 it follows that Σ∞
k=0αk = ∞. On the

other hand, we have, from condition (ii) in Theorem 1.6, that if there exists

i0 ∈ 1, ..., N such that Dρ(TN ...T2T1, Ti0) > 0, then Σ∞
k=0αk < ∞,and hence,

we obtain a contradiction. So, in order to have no contradiction, a question is

posed: when Dρ(TN ....T2T1, Ti) = 0 for all i = 1, ..., N , for every ρ > 0.

In the case that Ti is a strictly pseudocontactive self-mapping of C, Osilike [2]

obtained a weak convergence theorem for (1.6). Wang et al. [6] obtained strong

convergence result for a modification of (1.6) to the case with the condition

that one of the strictly pseudocontactive self-mappings {Ti} is demicompact.

They proved the following result.

Theorem 1.7. Let H be a real Hilbert space and C be a nonempty closed

convex subset of H. Let {Ti}
N
i=1 be N strictly pseudocontractive self-mappings

of C such that ∩N
i=1Fix(Ti) 6= ∅, where Fix(Ti) = {x ∈ C : Tix = x}. Let

x0 ∈ C and {uk} be a bounded sequence in C, let {αk}, {βk} and {γk} be three

sequencesin [0, 1] satisfying the following conditions:

(i) αk + βk + γk = 1 for all k ≥ 1;

(ii) βk ∈ (ρ1; ρ2) for some ρ1, ρ2 ∈ (0; 1);

(iii) Σ∞
k=1γk < ∞; and

(iv) there exists i0 ∈ {1, 2, ..., N} such that Ti0 is demicompact.

Then the implicit iterative sequence {xk} defined by

xk = αkxk−1 + βkT[k]xk + γkuk

converges strongly to a common fixed point of the maps {Ti}
N
i=1.

Next, Li et al. [12] gave a modification the algorithm for a Banach space.

Some modifications of Mann iteration method for finding a fixed point of a

compact or demicompact, strictly pseudocontractive self-mapping T of a closed

convex subset in a Banach space were studied in [1], [3], [4, 35] and [18].

Motivated by the above results, in this paper, without the condition that one

of the mappings is semicompact, we develop (1.8) and (1.10) to the case that

each Ti is a γ̃i -strictly pseudocontractive mapping and then introduce two new

explicit iteration methods based on the Krasnoselskii-Mann iteration method

and a contraction self-mapping f of C, for example, f(x) = PC(α̃x) with
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α̃ ∈ [0, 1) for any x ∈ C or f(x) = u, a fixed point u ∈ C, for all x ∈ C. The

implicit algorithm is contructed as follows:

xt = T txt, T
t := T t

0T
t
N ....T

t
1 orT t := T t

N ...T
t
1T

t
0, (1.11)

for t ∈ (0, 1), where T t
i are defined by

T t
0 = (1− λtµ)I + λtµf,

T t
i = (1− βi

t)I + βi
tTi, i = 1, ..., N,

(1.12)

µ ∈ (0, 2(1 − α̃)/(1 + α̃)2), the sequences of real numbers: {λt} ∈ (0, 1) sat-

isfying the following condition t → 0 as t → 0 and {βi
t} ⊂ (α, β) for all

t ∈ (0, 1), 1 ≤ i ≤ N , and some α, β ∈ (0, 1 − γ) with γ = max1≤i≤N γ̃i, The

explicit iteration schemes are generated by:

x1 ∈ C, any element,

xk+1 = (1− γk)xk + γkT
kxk, k ≥ 1,

(1.13)

where T k = T k
N ...T

k
1 T

k
0 or T k = T k

0 T
k
N ...T

k
1 , each T k

i is defined by (1.12) with

t = tk and, for the sake of simplicity, T tk
i , λtk and βi

tk
are replaced by T k

i λk

and βi
k, respectively, the sequence of real numbers {γk} ⊂ (a, b) for some

a, b ∈ (0, 1), and {λk}, {β
i
k} satisfy the conditions

λk → 0,Σk≥1λk = ∞, |βi
k+1 − βi

k| → 0, k → ∞ ∀i = 1, ..., N. (1.14)

We need the following facts to prove strong convergence theorems for (1.11)-

(1.12) and (1.13) with (1.14) in the next section, Section 2, and show an

extension to the problem of convex optimization in Section 3.

Lemma 1.8. [10] (i) ||x+y||2 ≤ ||x||2+2〈y, x+y〉 and for any fixed t ∈ [0, 1]

(ii) ||(1− t)x+ ty||2 = (1− t)||x||2 + t||y||2 − (1− t)t||x− y||2, ∀x, y ∈ H.

Lemma 1.9. [30] ||T λx − T λy|| ≤ (1 − λτ)||x − y|| for a fixed number µ ∈

(0, 2η/L2), λ ∈ (0, 1), where τ = 1−
√

1− µ(2η − µL2) ∈ (0, 1),

T λx = (I − λµF )Tx,

F is L-Lipschitz continuous and η-strongly monotone, and T is a nonexpansive

mapping of H.



Nguyen Duc Lang 29

Lemma 1.10. (Demiclosedness Principle) [8] Assume that T is a strictly

pseu-docontractive self-mapping of a closed convex subset K of a Hibert space

H. If T has a fixed point, then I−T is demiclosed; that is, whenever {xk} is a

sequence in K weakly converging to some x ∈ K and the sequence {(I−T )xk}

strongly converges to some y, it follows that (I − T )x = y.

Lemma 1.11. [31]. Let {xk} and {zk} be bounded sequences in a Banach

space E such that xk+1 = (1−βk)xk+βkzk for k ≥ 1 where {βk} is in [0, 1] such

that 0 < lim infk→∞ βk ≤ lim supk→∞ βk < 1. Assume that lim supk→∞ ||zk+1−

zk|| − ||xk+1 − xk|| ≤ 0. Then limk→∞ ||xk − zk|| = 0.

Lemma 1.12. [20] Let ak be a sequence of nonnegative real numbers satis-

fying the following conditions ak+1 ≤ (1 − bk)ak + bkck, where bk and ck are

sequences of real numbers such that

(i) bk ∈ [0, 1] and Σ∞
k=1bk = ∞

(ii) lim supk→∞ ck ≤ 0.

Then, limk→∞ ak = 0.

2 Main results

Now, we are in a position to prove the following results.

Theorem 2.1. Let C be a nonempty closed convex subset of a real Hilbert

space H and let f : C → C be a contraction with the contractive constant

α̃ ∈ [0, 1). Let {T}Ni=1 be N γ̃-strictly pseudocontractive self-mapping Ti of C

such that ∩N
n=1 Fix(Ti) 6= ∅. Let µ ∈ (0, 2(1 − α̃)/(1 + α̃)2) and let {λt} ∈

(0, 1), {βi
t} ∈ (0, 1 − γ) with γ = max1≤i≤N γ̃i for each t ∈ (0, 1) such that

λt → 0, as t → 0 and 0 < lim inft→0 β
i
t ≤ lim supt→0 β

i
t < 1− γ, i = 1, ..., N.

Then, the net {xt} defined by (1.11)-(1.12) converges strongly to the unique

element p∗ in (1.9) with F = I − f .
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Proof. First, we consider the case that T t := T t
0T

t
N ....T

t
1 . Since Ti and f

are the self-mappings of C, T t is also a self-mapping of C. We note that the

mapping T t
0 can be rewitten as T t

0 = (I − λtµF ) with F = I − f , which is

(1+ α̃)-Lipschitz continuous and (1− α̃)-strongly monotone. We also note that

the mappings T t
i , for {β

i
t} ∈ (0, 1− γ) ⊆ (0, 1− γi), are nonexpansive. Indeed,

by (ii) of Lemma 1.1 and the property of Ti, we have that

||T t
x − T t

i y||
2 = ||(1− βi

t)(x− y) + βi
t(Tix− Tiy)||

2

= (1− βi
t)||x− y||2 + βi

t||Tix− Tiy||
2

− (1− βi
t)β

i
t||x− y − (T t

i x− T t
i y)||

2

≤ (1− βi
t)||x− y||2 + βi

t [||x− y||2

+ γ̃i||x− y − (T t
i x− T t

i y)||
2]

− (1− βi
t)β

i
t||x− y − (T t

i x− T t
i y)||

2

= ||x− y||2 − (1− γ̃i − βi
t)β

i
t ||x− y − (T t

i x− T t
i y)||

2

= ||x− y||2,

because βi
t > 0 and 1− γ̃i − βi

t > 0. So, T t
i is nonexpansive for each t ∈ (0, 1).

By using Lemma 1.2 with T = I, we obtain that

||Ttx− Tty|| ≤ (1− λtτ)||T
t
N ...T

t
1x− T t

N ...T
t
1y||

≤ (1− λtτ)||T
t
i ...T

t
1x− T t

i ...T
t
1y||

≤ (1− λtτ)||T
t
i x− T t

1y|| ≤ (1− λtτ)||x− y||∀x, y ∈ C

So, T t is a contraction of C. By Banach’s Contraction Principle, there exists

a unique element xt ∈ C such that xt = T txt for all t ∈ (0, 1).

Next, we show that {xt} is bounded. Indeed, for a fixed point p ∈ ∩N
i=1Fix(Ti),

we have that T t
i p = p for i = 1, ..., N , and hence

||xt − p|| = ||T txt − p|| = ||T txt − T t
N ...T

t
1p||

= ||(I − λtµF )T t
N ...T

t
1xt − (I − λtµF )T t

N ...T
t
1p− λtµF (p)||

≤ (1− λtτ)||T
t
N ...T

t
1xt − T t

N−1...T
t
1p||+ λtµ||F (p)||

≤ (1− λtτ)||T
t
N−1...T

t
1xt − T t

N−1...T
t
1p||+ λtµ||F (p)||

≤ (1− λtτ)||T
t
i ...T

t
1xt − T t

i ...T
t
1p||+ λtµ||F (p)||

≤ (1− λtτ)||T
t
1...T

t
1p||+ λtµ||F (p)||

≤ (1− λ||xt − p||+ λtµ||F (p)||
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Therefore,

||xt − p|| ≤ µ/τ ||F (p)||

that implies the boundedness of xt. So, are the nets F (yNt ), yit, i = 1, ..., N ,

where we put

y1t := T t
1xt, y

i
t := T t

i y
i−1
t , i = 2, ..., N. (2.15)

Then, from (1.11) with T t = T t
0T

t
N ...T

t
1, it follows that

xt = (I − λtµF )yNi . (2.16)

Moreover,

||xt − p||2 = ||(I − λtµF )yNt − p||2

= ||yNt − p||2 − 2λtµ〈F (yNt ), yNt − p〉+ λ2
tµ

2||F (yNt )||2

≤ ||yN−1
t − p||2 − 2λtµ〈F (yNt ), yNt − p〉+ λ2

tµ
2||F (yNt )||2

· · ·

≤ ||y1t − p||2 − 2λtµ〈F (yNt ), yNt − p〉+ λ2
tµ

2||F (yNt )||2

≤ ||xt − p||2 − 2λtµ〈F (yNt ), yNt − p〉+ λ2
tµ

2||F (yNt )||2

Thus,

(1− α̃)||yNt − p||2 + 〈F (y), yNt − p〉 ≤ λtµ/2||F (yNt )||2 (2.17)

Further, for the sake of simplicity, we put y0t = xt and prove that

||yi−1
t − Tiy

i−1
t || → 0

as t → 0 for i = 1, ..., N .

Let tk ⊂ (0, 1) be an arbitrary sequence converging to zero as k → ∞ and

xk := xtk . We have to prove that ||yi−1
k − Tiy

i−1
k || → 0, where yik are defined

by (2.1) with t = tk and yik = yitk . Let xl be a subsequence of xk and xkj be a

subsequence of xl such that

lim sup ||yi−1
k − Tiy

i−1
k || = lim ||yi−1

l − Tiy
i−1
l ||.

and

lim sup ||xk − p|| = lim ||xkj − p||.
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From (2.2) and Lemma 1.1, it implies that

||xkj − p||2 = ||(I − λkjµF )yNkj − p||2

≤ ||yNkj − p|| − 2λkjµ〈F (yNkj), xkj − p〉

= ||T
kj
N yN−1

kj
− T tkj

N p||2 − 2γkjµ〈F (yNkj), xkj − p||

≤ ||yN−1
kj

− p|| − 2λkjµ〈F (yNkj), xkj − p〉

≤ .... ≤ ||y1kj − p|| − 2λkjµ〈F (yNkj), xkj − p〉

= ||T tkj
1 xkj − T tkj

1 p||2 − 2γkjµ〈F (yNkj), xkj − p〉

≤ ||xkj − p||2 − 2λkjµ〈F (yNkj), xkj − p〉

Hence,

lim ||xk − p|| = lim ||yikj − p||, i = 1, ..., N. (2.18)

By Lemma 1.1 and that T t
j t are nonexpansive for l = i− 1, i− 2, ..., 1,

||yikj − p||2 = (1− βi
kj
)||yikj − p||2 + βi

kj
||Tiy

i−1
kj

− p||2

− βi
kj
(1− βi

kj
)||yi−1

kj
− Tiy

i−1
kj

||2

≤ (1− βi
kj
)||yi−1

kj
− p||2 + βi

kj
||yi−1

kj
− p||2

− βi
kj
(1− βi

kj
)− γ̃i||y

i−1
kj

− Tiy
i−1
kj

||2

= ||yikj − p||2 − βi
kj
(1− βi

kj
)− γ̃i||y

i−1
kj

− Tiy
i−1
kj

||2

≤ ... = ||y0kj − p||2 − βi
kj
(1− βi

kj
)− γ̃i||y

i−1
kj

− Tiy
i−1
kj

||2

= ||xkj − p||2 − βi
kj
(1− βi

kj
)− γ̃i||y

i−1
kj

− Tiy
i−1
kj

||2, i = 1, ..., N

Without loss of generality, we can assume that α ≤ βi
t ≤ β for some α, β ∈

(0, 1− γ). Then, we have

α(1− γ − β)||yi−1
kj

− Tiy
i−1
kj

||2 ≤ ||xkj − p||2 − ||yikj − p||2.

This together with (2.4) implies that

lim
j→∞

||yi−1
kj

− Tiy
i−1
kj

||2 = 0, i = 1, ..., N.

It means that ||yi−1
t − Tiy

i−1
j ||2 → 0 as t → 0 for i = 1, ..., N.

Next, we show that ||xt − Tixt|| → 0 as t → 0. Indeed, in the case that i = 1

we have y0t = xt. So, ||xt − T1xt|| → 0 as t → 0. Further, since

||y1t − T1xt|| = ||y1t − T1y
0
t || = (1− β1

t )||y
0
t − T1y

0
t ||
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and ||y0t − T1y
0
t || → 0, we have that ||y1t − T1xt|| → 0. Therefore, from

||xt − y1t || ≤ ||xt − T1xt||+ ||T1xt − y1t ||

it follows that ||xt − yt1|| → 0 as t → 0. On the other hand, since

||y2t − T2y
1
t || = (1− β2

t )||y
1
t − T2y

1
y|| → 0

and
||y2t − xt|| ≤ (1− β2

t )||y
1
t − xt||+ β2

t ||T2y
1
t − xt||

≤ (1− β2
t )||y

1
t − xt||+ β2

t ||T2y
1
t − yt||+ ||y1t − xt||

we obtain that ||y2t − xt|| → 0 as t → 0. Now, from

||xt − T2xt|| ≤ ||xt − y2t ||+ ||y2t − T2y
1
t ||+ ||T2y

1
t − T2xt||

≤ ||xt − y2t ||+ ||y2t − T2y
1
t ||+ L2||y

1
t − xt||,

where L2 = (1+γ̃2)/(1−γ̃2) (see [4, 35]), and ||xt−y2t ||, ||y
2
t−T2y

1
t ||, ||y

1
t−xt|| →

0, it follows that ||xt − T2xt|| → 0. Similarly, we obtain that ||xt − Tixt|| → 0,

for i, ..., N and ||yNt − xt|| → 0 as t → 0.

Let {xk} be any sequence of {xt} converging weakly to p̃ as k → ∞. Then,

||xk − Tixk|| → 0, for i = 1, ..., N and {yNk } also converges weakly to p̃. By

Lemma 1.3, we have that p̃ ∈ ∩N
i=1Fix(Ti) and from (2.3), it follows that

〈F (p), p− p̃〉 ≥ 0 ∀p ∈ ∩N
i=1Fix(Ti)

Since p, p̃ ∈ ∩N
i=1Fix(Ti), a closed convex subset in H (see [4, 35]), by replacing

p by tp+ (1− t)p̃ in the last inequality, dividing by t and taking t → 0 in the

just obtained inequality, we obtain

〈F (p̃), p− p̃〉 ≥ 0 ∀p ∈ ∩N
i=1Fix(Ti)

The uniqueness of p∗ in (1.4) guarantees that p̃ = p∗. Again, replacing p

in (2.3) by p∗, we obtain the strong convergence for {xt}. The case that

T t = T t
N ...T

t
1T

t
0 is similarly proved. This completes the proof.

Theorem 2.2. Let C be a nonempty closed convex subset of a real Hilbert space

H and let f : C → C be a contraction with the contractive constant α̃ ∈ [0, 1).

Let {T}Ni=1 be N γ̃i-strictly pseudocontractive self-mapping Ti of C such that
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∩N
i=1Fix(Ti) 6= ∅. Assume that µ ∈ (0, 2(1− α̃)/(1+ α̃)2), the sequences of real

numbers {λk} ⊂ (a, b) for some α, β ∈ (0, 1), and {λk} ∈ (0, 1), {βi
k} ∈ (α, β)

for some α, β ∈ (0, 1) satisfy conditions (1.14). Then, the sequences {xk}

defined by (1.13) converge strongly to the unique element p∗ in (1.9) with

F = I − f .

Proof. First, consider the case that T k = T k
N ...T

k
1 T

k
0 . Put

y0k = (1− λkµ)xk + λkµf(xk),

yik = (1− βi
k)y

i−1
k + βi

kTiy
i−1
k , i = 1, ..., N.

Then, from (1.13) it follows that

xk+1 = (1− γk)xk + γky
N
k .

We prove that {xk} is bounded. Since T
k
i := (1−βi

k)I+βi
kTi with βi

k ∈ (0, γ) ⊆

(0, 1 − γi), for k ≥ 1, is a nonexpansive self-mapping of C and T k
i p = p for

each p ∈ ∩N
i=1Fix(Ti), we have that

||yik − p|| = ||T k
i y

i−1
k − Tkp|| ≤ ||yi−1

k − p|| ∀i = 1, ..., N, (2.19)

and
||y1k − p|| = ||T k

1 y
0
k − T k

1 p||

≤ ||y0k − p|| = ||(I − λkµF )xk − p||

≤ (1− λkτ)||xk − p||+ λkµ||F (p)||

(2.20)

for k ≥ 1. Further, we have also from (1.13), (2.5) and (2.6) that

||xk+1 − p|| ≤ (1− γk)||xk − p||+ γk||y
N
k − p||

≤ (1− γk)||xk − p||+ γk||T
k
Ny

N−1
k − T k

Np||

≤ (1− γk)||xk − p||+ γk||y
N−1
k − p||

≤ (1− γk)||xk − p||+ γk||y
0
k − p||

≤ (1− γk)||xk − p||+ γk[(1− λkτ)||xk − p||+ λkµ||F (p)||]

≤ (1− γkλkτ)||xk − p||+ γkλkµ||F (p)||.

PutMp = max{||x1−p||, µ||F (p)||/τ}. Then, ||x1−p|| ≤ Mp. So, if ||xk−p|| =

Mp then ||yik − p|| ≤ Mp for i = 1, ..., N, and hence

||xk+1 − p|| ≤ (1− γkλkτ)Mp + γkλkτMp = Mp.
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Therefore, by induction, the sequence {xk} is bounded. So, are the sequences

{F (xk)}, {y
i
i}, and {Tiy

i−1
k }, i = 1, 2, ..., N . Without loss of generality, we

assume that they are bounded by a positive constant M1.

Next, we have, from (1.13) and the nonexpansive property of T k
i for k ≥ 1,

that

||yNk+1 − yNk+1|| = ||T k+1
N yN−1

k+1 − T k
Ny

N−1
k ||

≤ ||T k+1
N yN−1

k+1 − T k
Ny

N−1
k ||+ ||T k+1

N yN−1
k − T k

Ny
N−1
k ||

≤ ||yk+1
N−1y

N−1
k ||+ 2M1|β

N
k+1 − βN

k |

≤ ||yik+1 − yik||+ 2M1

N
∑

j=i+1

|βj
k+1 − βj

k|

≤ ||y0k+1y
0
k||+ 2M1

N
∑

i=1

|βi
k+1 − βi

k|

≤ ||xk+1 − xk||+M1(λk+1 + λk)µ+ 2M1

N
∑

i=1

|βi
k+1 − βi

k|

So, we obtain that

||yNk+1 − yNk || − ||xk+1 − xk||+M1(λk+1 + λk)µ+ 2M1

N
∑

i=1

|βi
k+1 − βi

k|

This together with λk → 0 and |βi
k+1 − βi

k| → 0 for i = 1, ..., N , implies that

lim sup
k→∞

||yNk+1 − yNk || − ||xk+1 − xk|| ≤ 0.

By Lemma 1.4, ||xk − yNk || → 0 as k → ∞. Therefore, ||xk+1 − xk|| = (1 −

γk)||xk − yNk || → 0.

Further, we shall prove that ||xk − Tixk|| → 0 for i = 1, ..., N . As in the

proof of Theorem 2.1, first, we prove that ||yi−1
k − Tiy

i−1
k || → 0. Let {xl} be a

subsequence of {xk} and let {xkj} be a subsequence of {xl} such that

lim sup
k→∞

||yi−1
k − Tiy

i−1
k || = lim

l→∞
||yi−1

l − Tiy
i−1
l ||,

lim sup
l→∞

||xl − p|| = lim
j→∞

||xkj − p||.

It is clear from (2.5) and (2.6) that

||xkj − p|| ≤ ||xkj − yNkj ||+ ||yNkj − p||

≤ ||xkj − yNkj ||+ ||yikj − p||

≤ ||xkj − yNkj ||+ ||xkj − p||+ λkjM1µ
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Therefore,

lim
j→∞

||xki − p|| = lim
j→∞

||yikj − p||, i = 1, ..., N. (2.21)

Next, again by Lemma 1.1, we obtain that

||yikj − p||2 = (1− βi
kj
)||yi−1

kj
− p||2 + βi

kj
||Tiy

i−1
kj

− p||2

− (1− βi
kj
)βi

kj
||yi−1

kj
− Tiy

i−1
kj

||2

≤ (1− βi
kj
)||yi−1

kj
− p||2 + βi

kj
||yi−1

kj
− p||2

− (1− γ̃i − βi
kj
)βi

kj
||yi−1

kj
− Tiy

i−1
kj

||2

= ||yikj − p||2 − (1− γ̃i − βi
kj
)βi

kj
||yi−1

kj
− Tiy

i−1
kj

||2

≤ ||yi0 − p||2 − (1− γ̃i − βi
kj
)βi

kj
||yi−1

kj
− Tiy

i−1
kj

||2

= ||xkj − p||2 +M1(λk+1 + λk)µ

− (1− γ̃i − βi
kj
)βi

kj
||yi−1

kj
− Tiy

i−1
kj

||2

Hence,

α(1− γ − β)||yi−1
kj

− Tiy
i−1
kj

||2 ≤ ||xkj − p||2 − ||yikj − p||2

which together with (2.7) implies that ||yi−1
kj

−Tiy
i−1
kj

|| → 0 as j → ∞. It means

that ||yi−1
k −Tiy

i−1
k || → 0 for i = 1, ..., N . Now, we prove that ||xk−Tixk|| → 0

as k → ∞ for i = 1, ..., N.

In the case that i = 1 we have that ||y0k − xk|| = λkµ||F (xk)|| ≤ λkµM1 → 0

and hence, by ||Tix−Tiy|| ≤ Li||x−y|| where Li = (1+ γ̃i)/(1− γ̃i), we obtain

that
||xk − T1xk|| ≤ ||xk − y0k||+ ||y0k − T1y

0
k||+ ||T1y

0
k − T1xk||

≤ (1 + L1)||xk − y0k||+ ||y0k − T1y
0
k||

which converges to zero, as k → ∞, because ||xk − y0k|| and ||y0k − T1y
0
k|| tend

to zero. In the case that i = 2, from ||y1k − T2y
1
k|| → 0 and that ||y1k − xk|| ≤

||xk − y0k|| + ||y1k − y0k|| = ||xk − y0k|| + β1
k||y

0
k − T1y

0
k|| → 0, it follows that

||xk − T2xk|| → 0. By the similar argument, we obtain that ||xk − Tixk|| → 0

for i = 1, ..., N .

Next, we show that

lim sup
k→∞

〈F (p∗), p ∗ −xk〉 ≤ 0.

Indeed, let {xkj} be a subsequence of {xk} that converges weakly to p̃ such

that

lim sup
k→∞

〈F (p∗), p ∗ −xk〉 = lim
j→∞

〈F (p∗), p ∗ −xkj〉
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Then, ||xkj − Tixkj || → 0. So, by Lemma 1.3, p̃ ∈ C. Therefore, from (1.4), it

implies (2.8).

Finally, by the convexity of ||.||2, (2.5) and (2.6), we have that

||xk+1 − p ∗ || = ||(1− γk)xk + γky
N
k − p ∗ ||2

≤ (1− γk)||xk − p ∗ ||+ γk||y
N
k − p ∗ ||2

≤ (1− γk)||xk − p ∗ ||+ γk||y
i
k − p ∗ ||2

≤ (1− γk)||xk − p ∗ ||+ γk||y
0
k − p ∗ ||2

≤ (1− γk)||xk − p ∗ ||+ γk||(I − λkµF )xk − p ∗ ||2

≤ (1− γk)||xk − p ∗ ||

+ γk||(I − λkµF )xk − (I − λkµF )p ∗ −λkµF (p∗)||2

≤ (1− γk)||xk − p ∗ ||+ γk(1− λkτ)||xk − p ∗ ||2

− 2λkµ〈F (p∗), xk − p ∗ −λkµF (xk)〉

≤ (1− γkλkµ)||xk − p ∗ ||2

γkλkµ[
2µ

τ
〈F (p∗), xk, p ∗ −xk〉+ λk

2µ

τ
〈||F (p∗)||M1]

Using Lemma 2.5 with ak = ||xk − p ∗ ||, bk = γkλkτ and

ck =
2µ

τ
〈F (p∗), xk, p ∗ −xk〉+ λk

2µ

τ
||F (p∗)||M1

with λk → 0 and (2.8), we obtain that ||xk − p ∗ || → 0.

Note that the strong convergence of algorithm (1.13), when Tk = T k
0 T

k
N ...T

k
1 is

similarly proved as that for (1.11)-(1.12) and (1.13) with Tk = T k
NT

k
1 ...T

k
0 by

putting y0k = xk and yik = T k
i y

i−1
k . Then, xk+1 = (1 − γk)xk + γkT

k
0 y

N
k . This

completes the proof.

3 Extension

Let Ti : H → H, i = 1, ..., N, be N γ̃i -strictly pseudocontractive map-

pings such that ∩N
i=1Fix(Ti) 6= ∅ and let ϕ be a Frechet differentiable convex

function on H with the L-Lipschitz continuous and η-strong monotone deriva-

tive F = ϕ′. The optimization problem is formulated as follows: find an
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element p∗ ∈ ∩N
i=1Fix(Ti) such that

ϕ(p∗) = min
p∈∩N

i=1
Fix(Ti)

ϕ(p). (3.22)

Problem (3.1) was posed and studied firstly in [33] by Deutsch and Yamada,

when each mapping Ti is nonexpansive. It is well-known that (3.1) is equiva-

lent to variational ineqaulity (1.9). In the case that each Ti is nonexpansive,

Yamada [30] proposed the following iterative algorithm

uk+1 = T[k+1]uk − λk+1µF (T[k+1]uk), (3.23)

where µ ∈ (0, 2η/L2) and {λk} ⊂ (0, 1), and proved that under conditions

(L1), (L2) and (L5):
∑

|λk−λk+N | < ∞, the sequence {uk} in (3.2) converges

strongly to p∗ in (1.9). Further, Xu and Kim in [34], by replacing condition

(L5) by (L6): lim(λk − λk+N)/λk+N = 0, proved the following result.

Theorem 3.1. Let H be a real Hilbert space and F : H → H be a mapping

such that for some constants L, η > 0, F is L-Lipschitz continuous and η-

strongly monotone. Let {Ti}
N
i=1 be N nonexpansive self-mappings of H such

that ∩N
i=1Fix(Ti) 6= ∅, µ ∈ (0, 2η/L2) and let conditions (L1), (L2), and (L6)

be satisfied. Assume in addition that

∩N
i=1Fix(Ti) = Fix(T1T2...TN )

= Fix(TNT1T2...TN−1)

= .... = Fix(T2T3...TNT1).

(3.24)

Then, the sequence {uk} defined by (3.2) converges strongly to the unique ele-

ment p∗ in (1.9).

It is not hard to see that (L5) implies (L6), if limλk/λk+N exists. Howerver,

in general, conditions (L5) and (L6) are not comparable: neither of them

implies the other (see [33] for details).

Recently, Zeng et al. [4, 35] proposed the the following iterative scheme:

uk+1 = T[k+1]uk − λk+1ηk+1F (T[k+1]uk) (3.25)

with the variable parameter µk and proved the following result.
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Theorem 3.2. Let H be a real Hilbert space and F : H → H be a mapping

such that for some constants L, η > 0, F is L-Lipschitz continuous and η-

strongly monotone. Let {Ti}
N
i=1 be N nonexpansive self-maps of H such that

∩N
i=1Fix(Ti) 6= ∅ and let µk ∈ (0, 2η/L2). Assume conditions (L1), (L2) and

hold:

(i)
∑

λk = ∞ where {λk} ⊂ (0, 1);

(ii)|µk − η/L2| ≤
√

η2 − cL2/L2, for some c ∈ (0, η2/L2);

(iii) lim(µk+N − (λk/λk+N)µk) = 0;

Assume in addition that (3.3) holds. If

lim sup
k→∞

〈T[k+N ]...T[k+1]uk − uk+N , T[k+N ]...T[k+1]uk − uk〉 ≤ 0, (3.26)

then, the sequence {uk} defined by (3.4) converges strongly to the unique ele-

ment p∗ in (1.9).

They also showed that conditions (L1), (L2) and (L4) are sufficient for uk

to be bounded and

lim
k→∞

||ukT[k+1]...T[k+1]uk|| = 0,

So, (3.5) is satisfied.

Meantimes, Liou et al. [36], following [37], defined, for each k, mappings

Uk1 = αk1T1 + (1− αk1)I,

Uk2 = αk2T2Uk1 + (1− αk1)I,

...

Uk,N−1 = αk,N−1TN−1Uk,N−2 + (1− αk,N−1)I,

Wk := UkN = αkNTNUk,N−1 + (1− αkN)I,

and proved the following result.

Theorem 3.3. Let H be a real Hilbert space and F : H → H be a mapping

such that for some constants L, η > 0, F is L-Lipschitz continuous and η-

strongly monotone. Let {Ti}
N
i−1 be N nonexpansive self-mappings of H such

that ∩N
i=1Fix(Ti) 6= ∅, µ ∈ (0, 2η/L2) and let conditions (L1) and (L2) be

satisfied. Assume that the sequences {αki}
N
i−1 satisfy limk→∞(αki−αk,i−1) = 0

for all i = 1, 2, ..., N . Then, the sequence {xk} defined by

xk+1 = βxk + (1− β)[Wkxk − λkµF (Wkxk)], k ≥ 0,
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for an arbitrary initial point x0 ∈ H , converges strongly to p∗ in (1.9).

When Fx = Ax−u, where A is a self-adjoint bounded linear mapping such

that A is strongly positive, i.e.,

〈Ax, x〉 ≥ η||x||2, ∀x ∈ H

and u is some fixed element in H, Xu introduced in [20, 32] the following

iteration process:

uk+1 = (I − λk+1A)T[k+1]uk + λk+1u, (3.27)

and proved the following result.

Theorem 3.4. Let Conditions (L1), (L2) and (L3) or (L4) be satisfied. As-

sume in addition that (3.3) holds. Then the sequence {uk} generated by al-

gorithm (3.6) converges strongly to the unique solution of (1.9 ) with Fx =

Ax− u.

Clearly, from the proof of Theorem 3.2, we obtain the following result.

Theorem 3.5. Let H be a real Hilbert space and let {T}Ni−1 be N γ̃i -strictly

pseudocontractive self-mapping T i of H such that ∩N
i−1Fix(Ti) 6= ∞. Let

F : H → H be a mapping such that for some constants L, η > 0, F is L-

Lipschitz continuous and η-strongly monotone. Assume that µ ∈ (0, 2η/L2),

the se-quences of real numbers {γk} ⊂ (a, b) for some a, b ∈ (0, 1), and {λk} ∈

(0, 1), {βi
k} ⊂ (α, β) for som (α, β(0, 1) satisfy the conditions (1.14). Then,

the sequences {xk} generated by

x1 ∈ H, any element,

xk+1 = (1− γk)xk + γkTkxk, k ≥ 1,

where T k = T k
N ...T

k
1 T

k
0 or T k = T k

0 T
k
N ...T

k
i , T

t
i , i = 0, 1, ..., N, are defined by

(1.12) with f replaced by I − F , converge strongly to the unique element p∗ in

(1.9).
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