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Abstract

The main purpose of this paper is to study the vector groupoids.

Several properties of them are established.

Mathematics Subject Classification: 20L13, 20L99

Keywords: Groupoid, Vector groupoid

1 Introduction

A groupoid is an algebraic structure introduced by H. Brandt (Math. Ann.,

96 (1926), 360–366). A groupoid can be thought as a set with a partially

defined multiplication, for which the usual properties of a group hold whenever

they make sense. C. Ehresmann (Oèuvres complètes. Dunod, Paris, 1950)

added further structures (topological and differentiable as well as algebraic) to

groupoids. Groupoids and its generalizations (topological and Lie groupoids,

sympectic groupoids etc.) are mathematical structures that have proved to be

useful in many areas of science [topology ([2]), analysis ([10], [9]), geometry ([3],
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[12]), algebraic and geometric combinatorics ([7], [11]), dynamics of networks

([5])].

In this paper we define the concept of vector groupoid. This is an algebraic

structure which combines the concepts of groupoid and vector space such that

these are compatible. The motivation for defining the vector groupoid comes

from the important properties possessed by a vector space on which it exists a

compatible structure of groupoid. Specifically, the set of units of the groupoid

is a vector subspace and the structure functions are linear maps. A vector

groupoid has all the properties of the groupoids and those of the vector spaces,

but it has its characteristic properties, too. The new concept of vector groupoid

has applications in geometry and other areas.

In Section 2 we discuss the groupoids and useful properties of them are

presented. The study of vector groupoids is realized in Section 3.

2 Groupoids

We recall the minimal necessary backgrounds on groupoids for our devel-

opments (see [1], [4], [6], [8] and references therein for more details).

Definition 2.1. ([3]) A groupoid G over G0 is a pair (G,G0) of nonempty

sets such that G0 ⊆ G endowed with two surjective maps α, β : G → G0,

a partially binary operation m : G(2) := {(x, y) ∈ G×G | β (x) = α (y)} →

G, (x, y) 7−→ m (x, y) := x · y, where G(2) is the set of composable pairs and

a map i : G → G, x 7−→ i(x) := x−1, which verify the following conditions:

(G1) (associativity): (x · y) · z = x · (y · z), when the products (x · y) · z

and x · (y · z) are defined;

(G2) (units): for each x ∈ G ⇒ (α(x), x), (x, β(x)) ∈ G(2) and we have

α(x) · x = x · β(x) = x;

(G3) (inverses): for each x ∈ G ⇒ (x, x−1), (x−1, x) ∈ G(2) and we have

x−1 · x = β(x), x · x−1 = α(x).

A groupoid G over G0 with the structure functions α (source), β (target),

m (multiplication), i (inversion) is denoted by (G,α, β,m, i, G0) or (G,G0).

G0 is called the unit set of G. The map (α, β) defined by:

(α, β) : G → G0 ×G0, (α, β)(x) := (α(x), β(x)), x ∈ G,
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is called the anchor map of G. For each u ∈ G0, the set α−1(u) (resp.

β−1(u) ) is called α−fibre ( resp. β−fibre ) of G at u ∈ G0.

A groupoid (G,G0) is said to be transitive, if its anchor map is surjective.

We write sometimes xy for m(x, y) , if (x, y) ∈ G(2).

In the following proposition we summarize some basic rules of algebraic

calculation in a groupoid obtained directly from definitions.

Proposition 2.2. ([6]) Let (G,α, β,m, i, G0) be a groupoid. Then:

(i) α(u) = β(u) = u, u · u = u and i(u) = u, ∀u ∈ G0;

(ii) α (x · y) = α (x) and β (x · y) = β (y) , ∀ (x, y) ∈ G(2);

(iii) α (x−1) = β (x) , β (x−1) = α (x) and (x−1)−1 = x, ∀x ∈ G;

(iv) (cancellation law) If (x, yi), (yi, z) ∈ G(2), i = 1, 2, then:

(a) x · y1 = x · y2 ⇒ y1 = y2; (b) y1 · z = y2 · z ⇒ y1 = y2.

(v) If (x, y) ∈ G(2), then (y−1, x−1) ∈ G(2) and (x · y)−1 = y−1 · x−1.

For any u ∈ G0, the set

G(u) := α−1(u) ∩ β−1(u) = {x ∈ G | α(x) = β(x) = u }

is a group under the restriction of the multiplication m to G(u), called the

isotropy group at u of G.

Proposition 2.3. ([6]) Let (G,α, β,m, i, G0) be a groupoid. Then:

(i) α ◦ i = β, β ◦ i = α and i ◦ i = IdG.

(ii) ϕ : G(α(x)) → G(β(x)), ϕ(z) := x−1zx is an isomorphism of groups.

(iii) If (G,G0) is transitive, then all isotropy groups are isomorphic.

Example 2.4. (i) Any group G having e as unity, is a groupoid over

G0 = {e} with the structure functions α, β,m, i given by α(x) = β(x) =

e, i(x) = x−1 for all x ∈ G and m(x, y) = xy for all x, y ∈ G.

(ii) Any set X can be endowed with a null groupoid structure. For this

we take: α = β = i = IdX and we define x · x = x, ∀x ∈ X.

(iii) The Cartesian product G := X×X has a structure of groupoid over

∆X = {(x, x) ∈ X ×X | x ∈ X} by taking the structure functions as follows:
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α̃(x, y) := (x, x), β̃(x, y) := (y, y); the elements (x, y) and (y′, z) are

composable in G := X ×X iff y′ = y and we define (x, y) · (y, z) = (x, z)

and the inverse of (x, y) is defined by (x, y)−1 := (y, x). This is called the

pair groupoid. Its unit set is G0 := ∆X .

Example 2.5. The symmetry groupoid SG(X). Let X 6= ∅ be a set.

Consider

G := SG(A,X) = {f : A → A | ∅ 6= A ⊆ X, f is bijective } and

G0 := {IdA | ∅ 6= A ⊆ X}, where IdA is the identity map on A.

Let G(2) := {(f, g) ∈ G×G|D(f) = D(g)}, whereD(f) denotes the domain

of f . The structure functions α, β : G → G0, i : G → G and m : G(2) → G

are given by α(f) := IdD(f), β(f) := IdD(f), i(f) := f−1 and m(f, g) := f◦g.

Then (G,G0) is a groupoid, called the groupoid of bijective functions from

the subsets A of X onto A or the symmetry groupoid of the set X.

The isotropy group G(u) at u = IdA is the symmetry group of the set A.

In particular, the symmetry groupoid of X = {x1, x2, . . . , xn}, is called

the symmetry groupoid of degree n and is denoted by SGn. Its unit set is

SGn,0 = {IdA | ∅ 6= A ⊆ X}}. The cardinals of these finite sets are given by:

| SGn | =
n∑

k=1

k!
(
n

k

)
, | SGn,0 | = 2n − 1.

Definition 2.6. ([3]) By morphism of groupoids or groupoid morphism be-

tween the groupoids (G,α, β,m, i, G0) and (G′, α′, β′,m′, i′, G′

0), we mean a

map f : G → G′ which verifies the following conditions:

(i) ∀ (x, y) ∈ G(2) =⇒ (f(x), f(y)) ∈ G′

(2);

(ii) f(m(x, y)) = m′(f(x), f(y)), ∀ (x, y) ∈ G(2).

Proposition 2.7. If f : G −→ G′ is a morphism of groupoids, then:

(a) f (u) ∈ G′

0, ∀ u ∈ G0; (b) f
(
x−1
)
= (f (x))−1

, ∀ x ∈ G.

From Proposition 2.7(a) follows that a groupoid morphism f : G → G′

induces a map f0 : G0 → G′

0 taking f0(u) := f(u), (∀)u ∈ G0, i.e. the map

f0 is the restriction of f to G0. We say that (f, f0) : (G,G0) → (G′, G′

0) is a

morphism of groupoids.
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A groupoid morphism (f, f0) is said to be isomorphism of groupoids or

groupoid isomorphism, if f and f0 are bijective maps.

Proposition 2.8. ([6]) The pair (f, f0) : (G,α, β,G0) −→ (G′, α′, β′, G′

0)

where f : G −→ G′ and f0 : G0 −→ G′

0, is a groupoid morphism if and only if

the following conditions are verified:

(i) α′ ◦ f = f0 ◦ α and β′ ◦ f = f0 ◦ β;

(ii) f (m (x, y)) = m′ (f (x) , f (y)) , ∀ (x, y) ∈ G(2).

Definition 2.9. ([6]) A groupoid morphism (f, f0) : (G,G0) −→ (G′, G′

0)

satisfying the following condition:

∀ x, y ∈ G such that (f(x), f(y)) ∈ G′

(2) ⇒ (x, y) ∈ G(2) (1)

will be called homomorphism of groupoids.

Example 2.10. Let be the symmetry groupoid SGn and the multiplicative

group {+1,−1} (regarded as groupoid over {+1}). We define the map

sgn] : SGn → {+1,−1}, f ∈ SGn 7−→ sgn](f) := sgn(f),

where sgn(f) is the signature of the permutation f of degree k = |D(f)|.

We have that sgn] : SGn → {+1,−1} is a groupoid morphism.

Indeed, let f, g ∈ G(2), where G = SG(A,X) such that D(f) = D(g) :=

Ak := {xj1 , . . . , xjk} ⊆ X, 1 ≤ k ≤ n. Then f and g are permutations of

Ak and f ◦ g is also a permutation of Ak. Also, we have sgn(f ◦ g) =

sgn(f) · sgn(g). Hence sgn](m(f, g)) = sgn](f) · sgn](g). Therefore the

conditions from Definition 2.6 hold.

The map sgn] : SGn → {+1,−1} is not a groupoid homomorphism. In-

deed, for X = {x1, x2, x3, x4} consider

f =

(
x1 x2 x3

x2 x3 x1

)
and g =

(
x1 x3 x4

x4 x3 x1

)
.

Then sgn](f) = +1, sgn](g) = −1 and (sgn](f), sgn](g)) ∈ {+1,−1} ×

{+1,−1}. But f and g are not composable in SG4, since D(f) 6= D(g).
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3 Vector groupoids

Let V be a vector space over a field K.

Definition 3.1. In what follows, by vector groupoid, we mean a V0 groupoid

(V, α, β, i,m, V0) which verifies the following conditions:

(3.1.1) V0 is a vector subspace of V ;

(3.1.2) α, β : V → V0 are linear maps;

(3.1.3) i : V −→ V is a linear map such that x+ i(x) = α(x)+β(x), ∀x ∈

V ;

(3.1.4) The multiplication m : V(2) = {(x, y) ∈ V ×V | α(y) = β(x)} −→ V,

(x, y) � m(x, y) := xy, satisfies the following conditions:

1. x(y+z−β(x)) = xy+xz−x, ∀x, y, z ∈ V such that α(y) = β(x) = α(z);

2. x(ky+(1−k)β(x)) = k(xy)+(1−k)x, ∀x, y ∈ V such that α(y) = β(x);

3. (y+z−α(x))x = yx+zx−x, ∀x, y, z ∈ V such that α(x) = β(y) = β(z);

4. (ky+(1−k)α(x))x = k(yx)+(1−k)x, ∀x, y ∈ V such that α(x) = β(y).

From Definition 3.1 follows the following corollary.

Corollary 3.2. Let (V, α, β,m, i, V0) be a vector groupoid. Then:

(i) The source and target α, β : V → V0 are linear epimorphisms.

(ii) The inversion i : V → V is a linear automorphism.

(iii) The fibres α−1(0) and β−1(0) and the isotropy group

V (0) := α−1(0) ∩ β−1(0) are vector subspaces of the vector space V .

Example 3.3. Let V be a vector space. If we define α0, β0, i0 : V −→

V, α0(x) = β0(x) = 0, i0(x) = −x, and the multiplication m0(x, y) = x + y,

then (V, α0, β0,m0, i0, V0 = {0}) is a vector groupoid called vector groupoid

with a single unit. We will denote this vector groupoid by (V,+). Therefore,

each vector space V can be regarded as vector groupoid over V0 = {0}.
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Example 3.4. A vector space V has a structure of null groupoid over V

(see Example 2.4(ii)). In this case the structure functions are α = β = i = IdV

and x · x = x for all x ∈ V . We have that V0 = V and the maps α, β, i are

linear. Since x + i(x) = x + x and α(x) + β(x) = x + x imply that (3.1.3)

holds. It is easy to verify the conditions (3.1.4) from Definition 3.1. Then V

is a vector groupoid, called the null vector groupoid associated to V .

Example 3.5. Let V be a vector space over a field K. We consider the

pair groupoid (V × V, α̃, β̃, m̃, ĩ,∆V ) associated to V (see Example 2.4(iii)).

We have that V × V is a vector space over K and the source α̃ and target β̃

are linear maps. Also, the inversion ĩ : V × V → V × V is a linear map and

(x, y) + ĩ(x, y) = α̃(x, y) + β̃(x, y). By a direct computation we verify that the

relations 3.1.4(1) - 3.1.4(4) from Definition 3.1 hold. Hence V × V is a vector

groupoid called the pair vector groupoid associated to V .

Example 3.6. The vector groupoid V 2(p, q). Let V be a vector space

over a field K and let p, q ∈ K such that pq = 1. The maps α, β, i : V 2 −→ V 2,

α(x, y) := (x, px), β(x, y) := (qy, y), i(x, y) := (qy, px) together with the

multiplication map given on V 2
(2) := {((x, y), (qy, z)) | x, y, z ∈ V } ⊂ V 2 × V 2,

by (x, y) ·(qy, z) := (x, z) determine on V 2 a structure of vector groupoid. This

is called the pair vector groupoid of type (p, q) and it is denoted by V 2(p, q).

If p = q = 1, then the vector groupoid V 2(1, 1) coincides with the pair

vector groupoid V × V .

If n is a prime number and p, q ∈ Zn, such that pq = 1, then Z
2
n(p, q) is

called the modular or cryptographic vector groupoid.

Example 3.7. Let V be vector space. One consider α, β, i : V 3 → V 3 and

m : V 3
(2) = {((x1, x2, x3), (x2, y2, y3))|xi, yj ∈ V, i = 1, 2, 3, j = 2, 3} → V 3

defined as follows:

α(x1, x2, x3) := (x1, x1, 0), β(x1, x2, x3) := (x2, x2, 0),

i(x1, x2, x3) := (x2, x1,−x3),

(x1, x2, x3) · (x2, y2, y3) := (x1, y2, x3 + y3) and V 3
0 = {(x, x, 0) | x ∈ V }.

Then (V 3, α, β,m, i, V 3
0 ) is a vector groupoid.
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In the following proposition, we give, in addition to those in Proposition

2.2, other rules of algebraic calculation in a vector groupoid.

Proposition 3.8. Let (V, α, β,m, i, V0) be a vector groupoid. Then:

(i) 0 · x = x, ∀ x ∈ α−1(0) and x · 0 = x, ∀ x ∈ β−1(0);

(ii) For all x, y ∈ β−1(0), we have x− α(x) = y − α(y) =⇒ x = y;

(iii) For all x, y ∈ α−1(0), we have x− β(x) = y − β(y) =⇒ x = y.

Proof. (i) If x ∈ α−1(0), then α(x) = 0 = β(0). So (0, x) ∈ V(2) and, using

the condition (G2) from Definition 2.1, one obtains that 0 · x = α(x) · x = x.

(iii) Let x, y ∈ α−1(0) such that x−β(x) = y−β(y). Then α(x) = α(y) = 0

and x−y = β(x)−β(y). Since α is linear map and applying Proposition 2.2(i),

one obtains that

0 = α(x)− α(y) = α(x− y) = α(β(x)− β(y)) = β(x)− β(y) = x− y,

and so x = y. Similarly, we prove that the assertions (ii) hold.

Proposition 3.9. Let (V, α, β,m, i, V0) be a vector groupoid. Then:

(i) tβ : α−1(0) −→ β−1(0), tβ(x) := β(x)− x is a linear isomorphism.

(ii) tα : β−1(0) −→ α−1(0), tα(x) := α(x)− x is a linear isomorphism.

Proof. (i) For x1, x2 ∈ V and k1, k2 ∈ K we have

tβ(k1x1 + k2x2) = β(k1x1 + k2x2)− (k1x1 + k2x2) =

= k1(β(x1)− x1) + k2(β(x2)− x2) = k1tβ(x1) + k2tβ(x2).

Hence tβ is a linear map. Let now x, y ∈ α−1(0) such that tβ(x) = tβ(y).

Applying Proposition 3.8(iii), one obtains x = y, and so tβ is injective. For

any y ∈ β−1(0) we take x = α(y)− y. Clearly x ∈ α−1(0). We have

tβ(x) = β(α(y)− y)− (α(y)− y) = α(y)− β(y)− α(y) + y = y,

since β(y) = 0. Hence tβ is surjective. Therefore tβ is a linear isomorphism.

(ii) Similarly we prove that tα is a linear isomorphism.

Definition 3.10. Assume that (V1, V1,0) and (V2, V2,0) are vector groupoids.

A groupoid morphism (resp. groupoid homomorphism) f : V1 → V2 with prop-

erty that f is a linear map, is called vector groupoid morphism (resp. vector

groupoid homomorphism).
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A vector groupoid morphism f : V1 → V2 with property that f is a

bijective linear map is an isomorphism of vector groupoids.

In the following theorem we give a procedure for to introduce a structure of

vector groupoid with a single unit on the isotropy group of a vector groupoid.

Theorem 3.11. Let (V, α, β,m, i, V0) be a vector groupoid and u ∈ V0 any

unit of V . The following assertions hold.

(i) V (u) endowed with the operations ⊕u : V (u) × V (u) → V (u) and

⊗u : K × V (u) → V (u) given by:

x⊕u y = x+ y − u, ∀ x, y ∈ V (u) (2)

k ⊗u x = kx+ (1− k)u, ∀ k ∈ K, x ∈ V (u), (3)

has a structure of vector space over K.

(ii) The vector space (V (u),⊕u,⊗u) together with the restrictions of maps

α, β, i to V (u) and the multiplication �u : V (u)(2) = V (u) × V (u) → V (u)

given by:

x�u y = (x− u) · (y − u) + u, ∀ x, y ∈ V (u) (4)

has a structure of vector groupoid with a single unit.

(iii) (ϕ, ϕ0) : (V (0), {0}) → (V (u), {u}), where ϕ and ϕ0 are given by

ϕ(x) = x+ u, ∀x ∈ V (0) and ϕ0(0) = u (5)

is an isomorphism of vector groupoids with a single unit.

Proof. (i) Using the linearity of the maps α and β we verify that the

operations ⊕u and ⊗u given by (2) and (3) are well-defined. For instance, for

x, y ∈ V (u) we have α(x⊕u y) = α(x+ y− u) = α(x)+α(y)−α(u) = u, since

α(x) = α(y) = α(u) = u. Similarly, β(x⊕u y) = u. Hence x⊕u y ∈ V (u). It is

easy to verify that (V (u),⊕u) is a commutative group. Its null vector is the

element u ∈ V (u). The opposite 	u x of x ∈ V (u) is 	u x = 2u− x.

For x, y ∈ V (u) and k, k1, k2 ∈ K, the operation ⊗u verify the relations:

(a) k⊗u(x⊕uy) = (k⊗ux)⊕u(k⊕uy); (b) (k1+k2)⊗ux = (k1⊗ux)⊕u(k2⊗ux);

(c) k1 ⊗u (k2 ⊗u x) = (k1k2)⊗u x; (d) 1⊗u x = x ( here 1 is the unit of K).
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Indeed, we have k⊗u (x⊕u y) = k(x⊕u y)+(1−k)u = k(x+y)+(1−2k)u

and (k ⊗u x)⊕u (k ⊕u y) = (k ⊗u x) + (k ⊕u y)− u = k(x+ y) + (1− 2k)u .

Hence the equality (a) holds. In the same manner we prove that the equalities

(b)− (d) hold. Therefore (V,⊕u,⊗u) is a vector space.

(ii) From (i) follows that the condition (3.1.1) from Definition 3.1 is sat-

isfied. The restrictions of the linear maps α, β and i to V (u) are linear maps.

Also, for any x ∈ V (u) we have x⊕u i(x) = x+ i(x)− u = α(x) + β(x)− u =

α(x)⊕uβ(x), since x+ i(x) = α(x)+β(x). Therefore, (3.1.2) and (3.1.3) from

Definition 3.1 hold.

Let x, y ∈ V (u). The operation �u given by (4) is well-defined. Indeed,

applying the linearity of maps α and β we have

α(x �u y) = α((x − u) � (y − u) + u) = α((x − u) � (y − u)) + α(u) =

α(x − u) + α(u) = α(x) = u. Similarly, we have β(x �u y) = u and so

x�u y ∈ V (u).

If x, y, z ∈ V (u) then the following equality holds:

(e) x�u (y ⊕u z ⊕u (	uβ(x))) = (x�u y)⊕u (x�u z)⊕u (	ux)).

Indeed, since β(x) = u and 	ux = 2u− x, we have

(e.1) x�u (y⊕u z⊕u (	uβ(x))) = x�u (y⊕u z⊕u (	uu)) = x�u (y⊕u z⊕uu) =

= x�u (y⊕u z) = (x−u)� (y⊕u z−u)+u = (x−u)� ((y−u)+ (z−u))+u.

Replacing in the equality (3.1.4)(1) the elements x, y, z ∈ V (u) respectively

with x− u, y − u, z − u ∈ V (u), we obtain the following equality

(f) (x−u)� ((y−u)+(z−u)) = (x−u)� (y−u)+(x−u)� (z−u)− (x−u),

since β(x− u) = 0.

Using the relation (f), the equality (e.1) becomes

(e.2) x�u (y⊕u z⊕u (	uβ(x))) = (x−u)� (y−u)+(x−u)� (z−u)+2u−x.

On the other hand we have

(e.3) (x�u y)⊕u (x�u z)⊕u (	ux)) = ((x�u y)⊕u (x�u z))⊕u (2u− x) =

= (x�u y + x�u z − u)⊕u (2u− x) = x�u y + x�u z − x =

= (x− u)� (y − u) + (x− u)� (z − u) + 2u− x.

Using (e.2) and (e.3) we obtain the equality (e). Hence, the relation

(3.1.4)(1) from Definition 3.1 holds. In the same manner we can prove that

the relations (3.1.4)(2)− (3.1.4)(4) from Definition 3.1 are verified.
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(iii) Taking u = 0 in the relations (2)−(4) we obtains that (V (0),⊕0,⊗0) is

a vector space and (V (0), α, β,�0, i, {0}) is a vector groupoid with a single unit,

where x⊕0y = x+y, k⊗0x = kx, x�0y = x ·y, = forallx, y ∈ V (0), k ∈ K.

The map ϕ : V (0) → V (u) is bijective. For each x ∈ V (0) we have

(α ◦ ϕ)(x) = α(x+ u) = α(x) + α(u) = u = ϕ0(0) = ϕ0(α(x)) = (ϕ0 ◦ α)(x),

that is α ◦ ϕ = ϕ0 ◦ α. Similarly, we have β ◦ ϕ = ϕ0 ◦ β.

Also, for all x, y ∈ V (0) we have

ϕ(x�0 y) = (x�0 y) + u = x · y + u = (x+ u)�u (y + u) = ϕ(x)�u ϕ(y).

Hence, the conditions (i) and (ii) from Definition 2.6 are satisfied. It is

easy to verify that ϕ is linear. Then, ϕ is a vector groupoid isomorphism.

We call (V (u), α, β,�u, i, V0(u) = {u}) the isotropy vector groupoid at u ∈

V0 associated to vector space (V (u),⊕u,⊗u).

Example 3.12. The anchor map (α, β) : V → V0 × V0 is a vector groupoid

homomorphism between the vector groupoid (V, α, β,m, i, V0) and the pair vec-

tor groupoid (V0 × V0, α̃, β̃, m̃, ĩ,∆V0
).

Indeed, if we denote (α, β) := f and consider x, y ∈ G such that (f(x), f(y))

∈ (V0 × V0)(2), then β̃(f(x)) = α̃(f(y)) and we have

β̃(α(x), β(x)) = α̃(α(y), β(y)) ⇒ (β(x), β(x)) = (α(y), α(y)) ⇒

β(x)) = α(y), i.e. (x, y) ∈ V(2).

For (x, y) ∈ V(2) we have f(m(x, y)) = f(xy) = (α(xy), β(xy)) = (α(x), β(y))

and m̃(f(x), f(y)) = m̃((α(x), β(x)), (α(y), β(y))) = (α(x), β(y)). Hence, the

conditions (i) and (ii) from Definition 2.6 are verified.

Let now x, y ∈ V such that (f(x), f(y)) ∈ (V0 × V0)(2). Then β̃(f(x)) =

α̃(f(y)). Since f(x) = (α(x), β(x)) and f(y) = (α(y), β(y)) we deduce that

(β(x), β(x)) = (α(y), α(y)). Hence β(x) = α(y) and (x, y) ∈ V(2). Therefore

the condition (4) is satisfied and f is a groupoid homomorphism. Using the

linearity of α and β, it is easy to verify that f is linear. Hence, f is a vector

groupoid homomorphism.
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