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Abstract 

 

This paper aims to identify an innovative procedure to assess the model risk of a 

derivative financial product. More precisely, the authors, after briefly discussing the 

role of banking supervision, present a framework to estimate the model risk at the 

current time of a bond and they distinguish its systematic component. This model, 

consisting of two different expressions of the security price, is based on the 

hypothesis that the underlying interest rate is a swap rate that may be represented 

also as an AR(1)-GARCH(1,1) process. Moreover, the authors show that their 

model can be used for forecasting purposes. 

In reality, the aim of this study is to investigate the link between pricing models of 

financial derivatives and model risk and to highlight that this latter depends on the 

volatility of the security and on the price distribution. 

 

JEL classification numbers: C02, C60, G17, G20. 
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1. Introduction  

The innovations introduced in recent years, promoted by large foreign banks, have 

certainly created new opportunities for international financial intermediaries, but, at 

the same time, have opened the way for new problems; among these, the difficulties 

relating to the pricing of increasingly complex and articulated financial products. 

For the evaluation of these different financial products, or rather for the 

determination of their price, different theoretical models can be applied, the use of 

which can, however, generate non-homogeneous prices, generating serious 
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problems, especially in relation to the capital endowment that the issuing 

institutions must meet in order to comply with the regulations introduced with the 

Basel II agreement. 

In other words, due to the difficulties associated with the pricing of increasingly 

complex and articulated financial products, the use of different theoretical models, 

each of which can be attributed a different degree of reliability (where reliability 

means the ability to generate a price compatible with that of the market), can give 

rise to evaluations that are also very different from each other and, therefore, only 

after having carefully analyzed the characteristics and limits of the model to be 

adopted it is possible to establish a realistic price for the product to be evaluated. 

So, whatever the model chosen for pricing, the risk of incurring in an evaluation 

error, due to the wrong choice of the pricing model used or to a choice of a model 

that is not very consistent with the valuations, can be very high; if, on the other hand, 

one of the models used has a higher reliability margin than the others, the risk of 

incurring an evaluation error, due to an incorrect choice of the pricing model used, 

can be significantly reduced and, in some cases, it can be reduced so far as to cancel 

itself and of being almost certain that the model chosen is the right one for 

implementing the pricing procedure. 

Following these considerations, the problem of quantifying the uncertainty arises, 

the uncertainty connected with the choice of the model to be adopted for the 

evaluation, that is, the problem of quantifying the so-called Model Risk. Indeed, in 

parallel with the creation of more diversified financial products and the 

development of new markets for these products, pricing models and risk 

measurement models, used as risk management tools, have also become 

increasingly complex. However, several major financial institutions have often 

reported losses deriving from the use of these models and this has drawn attention 

to the resulting risk, the model risk, which can lead to a capital endowment lower 

than that necessary to face the risks actually incurred by the bank or could lead to 

allocative choices not based on a prudent management. 

In conclusion, for the evaluation of financial securities are used mathematical 

models whose use can give rise to the model risk that arises, mainly for two reasons: 

a) the model may have been built as intended, but may have fundamental errors in 

its design and implementation and produce inaccurate results with respect to the 

design objective and intended use. 

b) the model could be used incorrectly or inappropriately. 

To all this is also added the inability, from the corporate bodies, to understand the 

limitations underlying each model, even if, it should be noted, there are no 

explanatory and forecast models suitable for each type of evaluation of a financial 

product or, more precisely, there are no models that can be determined in advance, 

because the adequacy of the model and the tools to be used must be chosen based 

on the structural characteristics of the product. 

Therefore, only after having carefully analyzed the characteristics and the limits of 

the model to be adopted, it is possible to establish a realistic price for the product to 

be evaluated, namely it is possible to attribute to one of the models in question a 
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weight, in probabilistic terms, the most as high as possible. 

Correctly estimating the model risk associated with a particular portfolio or security 

is essential for a sound assessment of the operational risk in compliance with the 

rules imposed by the Basel committee. The authors' contribution, as well specified 

in Section 2 below, aims to fill a gap existing in the current literature by introducing 

a new model for calculating the model risk associated with a portfolio of Reverse 

Floater bonds. 

 

2. Research aims 

As already mentioned, the model risk is represented by the possibility that the price 

of a financial instrument is materially sensitive to the choice of the evaluation 

methodology. In the case of complex financial instruments, for which there is no 

standard evaluation methodology on the market, or in particular periods in which 

new evaluation methodologies are established on the market, it is possible that 

different methodologies, although they evaluate the financial instruments 

consistently, provide different price values, especially for derivative instruments. In 

other words, for the pricing of increasingly complex and articulated financial 

products, different theoretical models can be used and their use may carry out very 

different evaluations, and, consequently, the problem of quantifying the 

phenomenon of the model risk emerges and namely the problem of quantifying the 

uncertainty connected with the choice of the model to be adopted for the purposes 

of the assessment. 

This paper intends to highlight the critical issues underlying the valuation 

procedures of a financial product with significant income potential which, however, 

incorporates high degrees of complexity such as to prevent the identification of a 

robust and unambiguous calculation process. 

In reality, the paper aims to identify an innovative procedure for assessing the model 

risk of a derivative financial product, or rather, the aim of this study is to investigate 

the link between pricing models of financial derivatives and model risk. 

More precisely, the authors' aim is to draw, on the model risk, some considerations 

that can be extended to any pricing procedure of financial instruments for which the 

methods of price determination are not unique. In other words, the paper presents 

some general considerations on the model risk, considerations according to which 

the only way to decisively reduce it is a careful analysis of the financial instrument 

and identification, with the highest possible safety margin of the model that best 

suits the specific situation. 

In the paper, in particular, the authors deal with a specific type of bonds, the Reverse 

Floater that fall within the broader class of so-called structured bonds; their purpose 

is to offer a model risk estimation and forecasting procedure for these particular 

financial instruments using two different expressions of the price built on the 

assumption that the underlying interest rate is a swap rate and that this swap rate is 

an AR (1) - GARCH (1,1) process. The topic of this manuscript is important because 

in the literature there are few contributions (many of them outdated) in which the 
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pricing models of the Reverse Floaters are presented and in which the model risk 

associated with these particular security is studied. 

The paper is organized as follows. Section I offers a brief introduction to the concept 

of model risk. In section 2 are exposed the research aims, the method and the results 

of this manuscript. Section 3 discusses the importance of quantifying the model risk 

for the purpose of complying with the capital requirements established by 

supervisory regulations. Section 4 offers an examination of the pricing models of 

derivative instruments, with particular reference to Reverse Floater bonds. In 

paragraph 5, in order to estimate and predict the model risk of a Reverse Floater, 

two different expressions of the price of the latter are presented.  

In the same Section, is also proposed a minimization strategy of the Model risk of 

a reverse floater portfolio. 

Section 6 validates the assumptions on which the two different expressions of the 

price used to estimate the model risk of the Reverse Floater were built. Finally, 

section 7 summarizes the results obtained by the authors. 

 

3. The model risk and the role of the banking supervision 

The model risk phenomenon is a kind of risk contemplated by the "Supervisory 

Instructions for Banks" introduced by the Bank of Italy; in fact, consistently with 

the supervisory guidelines expressed internationally, banking intermediaries are 

required to comply with capital requirements, aimed at dealing with the losses that 

may arise from trading on the markets. 

In other words, the capital requirements envisaged constitute a prudential 

prescription: compliance with prudential rules must be accompanied by procedures 

and control systems that ensure sound and prudent management of this type of risk. 

The prudential discipline for banks and banking groups, organically revised 

following the changes in the international regulations, takes into account the 

evolution in risk management methods by financial intermediaries. The structure of 

the prudential regulation is based on "three pillars". The first introduces a capital 

requirement to face the typical risks of banking and financial activities (credit, 

counterparty, market and operational); and for this reason, alternative methods for 

calculating capital requirements are provided for, characterized by different levels 

of complexity in risks measurement and in organizational and control requirements.  

The second pillar requires banks to have a strategy and a process for controlling 

capital adequacy, both current and prospective, leaving the Supervisory Authority 

with the task of verifying the reliability and consistency of the related results and of 

adopting, where the situation requires it, the appropriate corrective measures. 

Finally, the third pillar introduces disclosure obligations to the public regarding 

capital adequacy, exposure to risks and the general characteristics of the related 

management and control systems. 

This regulatory framework, based on a renewed system of rules and incentives, 

allows the objectives of prudential regulation to be pursued more effectively. In 

fact, it ensures an accurate measurement of a wider range of risks and a capital 
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endowment more closely commensurate with the actual degree of risk exposure of 

each financial intermediary; stimulates banks to improve management practices and 

risk measurement techniques, also in consideration of possible capital savings; it 

favors competitive parity, through a greater extension of the activities and 

techniques subject to harmonization. In other words, in line with the supervisory 

guidelines expressed internationally, the obligation is imposed for banks to comply 

with capital requirements, aimed at coping with the losses that may derive from 

operations on the markets regarding financial instruments, currencies and goods. 

The capital requirements provided for in these provisions fall within the scope of 

the so-called "First pillar" (minimum capital requirements) and therefore constitute 

a minimum prudential requirement: compliance with prudential rules must be 

accompanied by procedures and control systems that ensure sound and prudent 

management of this type of risk. 

The calculation of the minimum endowment of assets can be carried out using a 

standard methodology or using a methodology based on internal models, subject to 

compliance with organizational and quantitative requirements and subject to 

authorization by the Supervisory Authority. 

The standard method to compute the minimum capital requirements is based on the 

so-called building block approach, according to which separate capital requirements 

are identified for the different types of risk. 

As an alternative to the standardized methodology, there is a methodology based on 

internal models: it is a method that, based on statistical procedures, leads to the 

calculation of the "value at risk" (VaR). In other words, banks can calculate capital 

requirements based on their own internal models, provided that these meet certain 

conditions and are explicitly recognized by the National Supervisory Authority 

The number of intermediaries that use internal models to calculate the requirement 

is limited but the majority of them have made investments in recent years to equip 

themselves with VaR-type models, used for management purposes and not strictly 

for supervisory purposes. The use of these models can, however, give rise to model 

risk phenomenon that could lead to a capital endowment lower than that necessary 

for the risks actually borne by banks, or induce allocative choices not based on 

prudent management. In this regard, the Supervisory regulations provide for 

quantitative and qualitative requirements to deal with this form of risk and in 

particular the principle according to which mere compliance with statistical 

requirements is not a sufficient condition to protect the bank from market risks is 

consolidated. 

In this context, therefore, the phenomenon of the model risk takes on particular 

importance, a form of risk contemplated by the European Banking Authority, 

deriving from the models that the financial institution uses to evaluate derivatives. 

Toshinao and Toshiyasu (2000) analyze the model risk separately in pricing models 

and risk measurement models. In pricing models, the model risk is defined as "the 

risk arising from the use of a model which cannot accurately evaluate market prices, 

or which is not a mainstream model in the market." In risk measurement models, 

the model risk is defined as "the risk of not accurately estimating the probability of 
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future losses." 

Derman (1996), one of the most authoritative authors in this field of research, states 

that the origin of the model risk should be sought in the impossibility of determining 

with certainty the trend of a stock index or of an interest rate, and that there is no 

procedure able both to cancel the model risk and to provide an exact value for each 

assessment. He also says that only a deep knowledge of the subject allows a correct 

implementation of the model to be used and the achievement of results close to 

reality. In short, after having quantified the model risk of some theoretical pricing 

models, it is compared with the market price and critical insights are drawn. 

Rebonato (2002) defines model risk as "the risk that there will be a significant 

difference between the mark-to-model value of a complex and / or illiquid 

instrument and the price at which the same instrument is revealed to have been 

traded on the market". 

 

4. The pricing of particular derivative financial instruments: the Reverse 

Floater bonds 

In recent years there has been an explosive growth in financial derivatives and, in 

particular, in structured bonds, financial products that simultaneously present 

characteristics typical of bonds and standard or exotic financial options and, 

therefore may be linked to the performance of equities, indices, funds or may be 

written on interest rates or bonds with and without coupons. Structured bonds are 

so called because the subscriber, with a single contract, defines his investment by 

taking on multiple financial instruments. 

This paper deals with a specific type of structured bonds: the Reverse Floater, 

structured bonds with guaranteed capital and variable yield with periodic coupons 

and very high maturities. Reverse Floaters owe their name to the fact that they are 

characterized by a pay-off structure inversely linked to the trend of the interest rate 

taken as a reference; namely they have a particular indexing mechanism through 

which their market value is determined: as the level of interest rates decreases, their 

value increases according to a law of inverse proportionality. For this reason, they 

show a strong commercial attractiveness and become the preferred tools by banks 

and other financial institutions to raise capital. In fact, in  periods in which interest 

rates are at particularly low values, they show extraordinary levels of growth in 

transaction volumes. 

The Reverse Floaters are characterized by a long maturity (15-20 years) and by the 

payment of fixed initial coupons which provide return rates significantly higher than 

the yields offered by the stock market at the time of the issue. During the first years 

of life of the bond, the holder periodically receives a predetermined coupon which 

usually stands at levels markedly above the current interest rate (to compensate for 

the risk associated with variable coupons and to make the loan more attractive to 

the public); the subsequent coupons, on the other hand, are indexed at a short-term 

interest rate, generally represented by the Libor o Euribor rate on 6 or 12 month 

basis. The coupon rate is calculated as the difference between a constant rate fixed 



A Mathematical Model for the Pricing of Derivative Financial… 37  

at the issue and a variable reference rate calculated at the time of detachment of the 

coupon. 

Therefore, they move from fixed coupons to variable coupons and from the opposite 

trend with respect to short-term interest rates. The term “reverse” then indicates the 

inversely proportional ratio of the coupon in the second period, in the sense that the 

higher the reference rate is, the lower the coupon is (reverse indexation). In 

summary, the return of the Reverse Floaters is nothing more than the payment of a 

premium for the assumption of a risk by the purchaser of the bond, a risk constituted 

by the future trend of market rates and in particular by their increase which, for of 

the mechanism of the difference between the fixed rate and the variable rate, would 

lead the subscriber to receive an effective coupon lower than the market one and, at 

the limit, not to receive any coupon in the event that the variable rate is equal to or 

higher than the fixed rate initially established. In other words, the subscriber would 

collect a lower price than that paid initially and, therefore, would be subject to a 

capital loss. 

The evaluation of the price of the Reverse Floaters is particularly complex because 

the underlying is represented by an interest rate and the pricing is linked to the 

complexity of the stochastic processes used to describe the dynamics of the 

reference rate. These processes determine the value of the elementary components 

that make up the Reverse Floater and consequently affect the determination of the 

price of the security itself (Gobbo et al., 2002). 

For the valuation of Reverse Floater, the Building Block approach is used, although, 

in the financial world, another methodology is often used, namely the Full 

Evaluation approach. 

The Building Block approach assumes that the financial product in question can be 

broken down into elementary components for which the calculation of the price 

determination is simple; the price of the complex financial product is, in fact, 

obtained as the algebraic sum of the prices of the individual components. 

Obviously, the breakdown should be done so that the pay-off of the original 

financial structure can be replicated through the combination of several elementary 

financial instruments or replicated by the synthesis of several simple elementary 

instruments; consequently the replication portfolio and the original structured 

product must have the same price. Once the structure of the elementary components 

has been identified, it is possible to proceed with a pricing analysis through the use 

of standard evaluation formulas. 

Ultimately, the Building Block approach presupposes: 

a) the breakdown of the structured product into its elementary components; 

b) the enhancement of the individual elementary components; 

c) the recomposition of the values of the individual elementary components into a 

single price called the price of structured product. 

The main pricing model of financial options that exploits the building block 

approach is precisely that of Black-Schols (Alsaedi and Tularam, 2018). In other 

words, as a pricing tool, many market players continue to use the Black-Schols 

model with full knowledge of its limitations. Indeed, the Black-Scholes model 
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(1972; 1973), which is a standard pricing model for options, assumes that the prices 

of the underlying assets fluctuate according to a lognormal process, while the 

fluctuations in actual market prices do not follow necessarily this process. 

In the literature, in addition to the previous model, that by Cox, Ingersoll and Ross 

(1985) is also well known. 

Scholars have also proposed numerous extensions of the Black-Scholes model 

generalizing it to a broad class of stochastic processes (Bouchaud and Sornette, 

1994; Achdou and Tchou, 2002; Benth et al., 2003; Liang et al., 2010). Among 

these, the one-factor stochastic model of Black, Derman and Toy (1990) is 

particularly interesting and it is based on the hypothesis that a single short-term 

interest rate determines the future trend of all other rates. An extension of the Black, 

Derman and Toy model is the one-factor Black and Karasinsky model (1991). The 

importance of the latter is due to the fact that it can be used to price not only options 

but also zero coupon bonds. 

The models of Merton (1973), of Merton, Scholes and Gladstein (1978; 1982), of 

Health, Jarrow and Morton (1990) and of Nelson and Ramaswamy (1990) also 

deserve to be cited by virtue of their relevance. 

 

5. The model risk of the Reverse Floater bonds with two expressions of the 

price 

In this paragraph, to estimate and to predict the model risk of a Reverse Floater, the 

authors present a theoretical model consisting of two different expressions of the 

price of the security. 

The model in question is written considering that, in general, the model risk at the 

current time depends on the volatility of the security and on the distribution of the 

prices. 

The authors initially present the expression of the model risk associated with any 

security, at the current time with 𝐽 expressions of the price. The model risk at the 

valuation date 𝑚 , with 𝑚 = 1,…𝑇 , given 𝑗  different pricing models, with 𝑗 =
1, … , 𝐽, can be calculated as follows: 

 

𝑀𝑅𝑚 = ∑ ∑𝑝𝑗

𝐽

𝑗=1

𝑇

𝑚=1

𝑃𝑗,𝑚
2 − ∑ ∑(𝑝𝑗𝑃𝑗,𝑚)

2

𝐽

𝑗=1

𝑇

𝑚=1

 

 

where 𝑝𝑗 is the relative probability of the price obtained with the 𝑗-th expression 

of the price of the security and 𝑃𝑗,𝑚  is the security price calculated with the 𝑗-th 

expression of the price of the security at time 𝑚. 

The probability 𝑝𝑗 can be estimated using the appropriate Kernel techniques (cfr. 

Appendix Section I). 

Subsequently, however, the authors present two expressions of the price of the 

security used to calculate the model risk associated with the Reverse Floater at 

current time 𝑚. 
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5.1 First expression of the price of the bond (𝑷𝟏,𝒎) 

Suppose you want to price a reverse floater bond, with maturity 𝑇, that for the first 

𝑠 periods (with 𝑠 = 1,… , 𝑆) pays a fixed coupon equal to 𝑀 and in the remaining 

𝑡 periods (with 𝑡 = 𝑠 + 1, … , 𝑇) pays a coupon 𝐶𝑡 calculated as: 

 

𝐶𝑡 = 𝑟̅ − 𝑘𝑟𝑡 
 

where 𝑟̅ is a fixed rate, 𝑘 is a multiplier and 𝑟𝑡 is swap interest rate. The authors 

price the Reverse Floater bond with reference to interest rate swaps because this is 

the approach most commonly used in financial markets.  In fact, an issuer of a 

Reverse Floater bond can easily replicate the cash flows on that bond with a fixed 

rate bond and an interest rate swap, namely he receives a fixed rate and pays a 

floating rate.  Also assume that for 𝑟𝑡 the hypotheses of Engle (2001) hold (cfr. 

Appendix Section II) and that, therefore, it can be represented as an AR (1) - 

GARCH (1,1) process: 

 

𝜎𝑡
2 = 𝜔 + 𝛼1𝑟𝑡−1

2 + 𝛽1𝜎𝑡−1
2  

 

with 𝜔 > 0, 𝛼1 ≥ 0, 𝛽1 ≥ 0 and 

 

𝜇𝑡 = 𝜑0 + 𝜑1𝑟𝑡 
 

with 𝜑1 ≠ 1. 

 

The price of the reverse floater at time 𝑚, with 𝑚 = 1,… , 𝑆, 𝑆 + 1,… , 𝑇, under 

these assumptions is given by the following expression: 

 

 

𝑃1,𝑚 = ∑
𝑀

(1 + 𝑖𝑠)𝑠

𝑆

𝑠=1

+ ∑
𝑟̅ − 𝑘(𝜑0 + 𝜑1𝑟𝑡 + 𝜔 + 𝛼1𝑟𝑡−1

2 + 𝛽1𝜎𝑡−1
2 )

(1 + 𝑖𝑡)𝑡

𝑇

𝑡=𝑆+1

 

 

(1) 

 

where 𝑖𝑠 and 𝑖𝑡 are the same swap interest rate, respectively, at the maturity 𝑠 and 

at maturity 𝑡.  

 

5.2 Second expression of the price of the bond (𝑷𝟐,𝒎) 

Assume, again, that one want to price a reverse floater with maturity 𝑇, that for the 

first 𝑠  periods (with 𝑠 = 1,… , 𝑆 ) pays a fixed coupon equal to 𝑀  and in the 

remaining 𝑡 periods (with 𝑡 = 𝑠 + 1,… , 𝑇) pays a coupon 𝐶𝑡 calculated as: 

 

𝐶𝑡 = 𝑟̅ − 𝑘𝑟𝑡 
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Furthermore, consider a fixed-income security issued at time 1, that has its maturity 

in 𝑇  and pays a coupon equal to 𝐹  in each period. Let 𝐵𝑚(𝐹, 𝑇) with 𝑚 =
1,… , 𝑆, 𝑆 + 1,… , 𝑇  the price of that fixed income security. 

According to Filigrana (2000), the price of the reverse floater at time 𝑚 (with 𝑚 =
1,… , 𝑆, 𝑆 + 1,… , 𝑇) under the hypotheses considered above is the following: 

 

 

𝑃2,𝑚 = 𝐵𝑚(𝐹, 𝑇) − ∑
𝐹 − 𝑀

(1 + 𝑖𝑠)𝑠

𝑆

𝑠=1

− 𝛾 ∑
𝑟̅ − 𝑘𝑟𝑡
(1 + 𝑖𝑡)𝑡

𝑇

𝑡=𝑆+1

 

 

(2) 

 

where, similarly to the previous expression of the price, 𝑖𝑠  and 𝑖𝑡  are the same 

swap interest rate, respectively at maturity 𝑠 and at maturity 𝑡 and 𝛾 is a constant. 

 

5.3 The model risk with two expressions of the price of the bond 

The authors calculate now the model risk at current time using the two previous 

expressions of the price of the security. 

The risk model at time 𝑚 with only two expressions of the price is equal to: 

 

𝑀𝑅𝑚 = 𝑝1𝑃1,𝑚
2 + 𝑝2𝑃2,𝑚

2 − (𝑝1𝑃1,𝑚 + 𝑝2𝑃2,𝑚)
2
 

 

This formula represents the variance of the Reverse Floater prices at time 𝑚 and it 

is calculated by adding the squares of the prices weighted for the respective 

probabilities and subtracting the square of the expected value of the prices. 

Given the first expression of the price 𝑃1,𝑚 (expressed by (1)) and given the second 

expression of the price  𝑃2,𝑚 (expressed by (2)), replacing in the previous equation 

the (1) and the (2) it follows: 

 

 

 

 

 

 

                                    (3) 

 

 

 

 

 

 

From this expression, follows that the model risk at current time depends on the 

current value of the underlying interest rate, on the value of the underlying interest 

rate at the previous time, on the volatility of the underlying interest rate at the 

previous time and on the current value of the discount rate.  

𝑀𝑅𝑚 = 𝑝1  ∑
𝑀

(1 + 𝑖𝑠)𝑠

𝑆

𝑠=1

+ ∑
𝑟̅ − 𝑘(𝜑0 + 𝜑1𝑟𝑡 + 𝜔 + 𝛼1𝑟𝑡−1

2 + 𝛽1𝜎𝑡−1
2 )

(1 + 𝑖𝑡)𝑡

𝑇

𝑡=𝑆+1

 

2

+ 𝑝2  𝐵𝑚 (𝐹, 𝑇) − ∑
𝐹 − 𝑀

(1 + 𝑖𝑠)𝑠

𝑆

𝑠=1

− 𝛾 ∑
𝑟̅ − 𝑘 1 + 𝑟𝑡  

(1 + 𝑖𝑡)𝑡

𝑇

𝑡=𝑆+1

 

2

−  𝑝1  ∑
𝑀

(1 + 𝑖𝑠)
𝑠

𝑆

𝑠=1

+ ∑
𝑟̅ − 𝑘(𝜑0 + 𝜑1𝑟𝑡 + 𝜔 + 𝛼1𝑟𝑡−1

2 + 𝛽1𝜎𝑡−1
2 )

(1 + 𝑖𝑡)
𝑡

𝑇

𝑡=𝑆+1

 

+ 𝑝2  𝐵𝑚 (𝐹, 𝑇) − ∑
𝐹 − 𝑀

(1 + 𝑖𝑠)
𝑠

𝑆

𝑠=1

− 𝛾 ∑
𝑟̅ − 𝑘 1 + 𝑟𝑡  

(1 + 𝑖𝑡)
𝑡

𝑇

𝑡=𝑆+1

  

2
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From the latter equation, it is possible to calculate the systemic component of the 

model risk. 

In fact, putting 𝑝1 = 𝑝2 = 1, it is obtained: 

 

𝑀𝑅𝑚 = 2 ∑
𝑀

(1 + 𝑖𝑠)
𝑠

𝑆

𝑠=1

+ ∑
𝑟̅ − 𝑘(𝜑0 + 𝜑1𝑟𝑡 + 𝜔 + 𝛼1𝑟𝑡−1

2 + 𝛽1𝜎𝑡−1
2 )

(1 + 𝑖𝑡)
𝑡

𝑇

𝑡=𝑆+1

  

                                                                                       (4) 

                              𝐵𝑚(𝐹, 𝑇) − ∑
𝐹 − 𝑀

(1 + 𝑖𝑠)
𝑠

𝑆

𝑠=1

− 𝛾 ∑
𝑟̅ − 𝑘 1 + 𝑟𝑡 

(1 + 𝑖𝑡)
𝑡

𝑇

𝑡=𝑆+1

          

 

that is precisely the value of the model risk at current time when the reverse floater 

price is exactly equal to the theoretical one given by the two previous expressions 

of the price. 

 

5.4 The forecast of the model risk 

In this paragraph, however, the authors, using the previous expressions of the price, 

estimate the model risk in a future time. 

They show that, given the (1), it is possible to estimate the price of the reverse floater 

at future time 𝑚 + ℎ  as: 

 

 

𝑃1,𝑚+ℎ = ∑
𝑀

(1 + 𝑖𝑡)(1 + 𝑓𝑡,𝑡+ℎ)
ℎ

𝑆

𝑠+ℎ=1

+ ∑
𝑟̅ − 𝑘[𝜇̂𝑇,ℎ + 𝜎̂𝑇,ℎ

2 ]

(1 + 𝑖𝑡)(1 + 𝑓𝑡,𝑡+ℎ)
ℎ

𝑇

𝑡+ℎ=𝑆+1

 

 

(5) 

where: 𝜇̂𝑇,ℎ = 𝜑ℎ𝑟𝑇 

 

and: 

𝜎̂𝑇,ℎ
2 = 𝜔 ∑(𝛼1 + 𝛽1)

𝑖−1

ℎ−1

𝑖=1

+ (𝛼1 + 𝛽1)
ℎ−1 𝜔 + 𝛼1𝑟𝑇

2 + 𝛽1𝜎𝑇
2  

 

are, respectively, the forecast at time ℎ of the average component of 𝑟𝑡 and the 

forecast at future time ℎ of the conditional variance of 𝑟𝑡. 
Similarly, given the (2), it is possible to calculate the price of the reverse floater at 

future time ℎ as follows: 

 

(6) 

 

 

where 𝑠𝑡,𝑡+ℎ and 𝑓𝑡,𝑡+ℎ  are, respectively, the forward rate relative to 𝑟𝑡  and the 

forward rate relative to 𝑖𝑡. 

𝑃2,𝑚+ℎ = 𝐵𝑚 (𝐹, 𝑇) − ∑
𝐹 − 𝑀

(1 + 𝑖𝑡)(1 + 𝑓𝑡,𝑡+ℎ)
ℎ

𝑆

𝑠+ℎ=1

− 𝛾 ∑
𝑟̅ − 𝑘  (1 + 𝑟𝑡)(1 + 𝑠𝑡 ,𝑡+ℎ)

ℎ
 

(1 + 𝑖𝑡)(1 + 𝑓𝑡 ,𝑡+ℎ)
ℎ

𝑇

𝑡+ℎ=𝑆+1
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Finally, the (5) and the (6) allow to estimate the model risk at future time ℎ as 

follows: 

 

 
𝑀𝑅𝑚+ℎ = 𝑝1  ∑

𝑀

(1 + 𝑖𝑡)(1 + 𝑓𝑡,𝑡+ℎ)
ℎ

𝑆

𝑠+ℎ=1

+ ∑
𝑟̅ − 𝑘[𝜇̂𝑇,ℎ + 𝜎̂𝑇,ℎ

2 ]

(1 + 𝑖𝑡)(1 + 𝑓𝑡,𝑡+ℎ)
ℎ

𝑇

𝑡+ℎ=𝑆+1

 

2

+ 𝑝2 (𝐵𝑚(𝐹, 𝑇) − ∑
𝐹 − 𝑀

(1 + 𝑖𝑡)(1 + 𝑓𝑡,𝑡+ℎ)
ℎ

𝑆

𝑠+ℎ=1

− 𝛾 ∑
𝑟̅ − 𝑘  (1 + 𝑟𝑡)(1 + 𝑠𝑡,𝑡+ℎ)

ℎ
 

(1 + 𝑖𝑡)(1 + 𝑓𝑡,𝑡+ℎ)
ℎ

𝑇

𝑡+ℎ=𝑆+1

)

2

− [𝑝1  ∑
𝑀

(1 + 𝑖𝑡)(1 + 𝑓𝑡,𝑡+ℎ)
ℎ

𝑆

𝑠+ℎ=1

+ ∑
𝑟̅ − 𝑘[𝜇̂𝑇,ℎ + 𝜎̂𝑇,ℎ

2 ]

(1 + 𝑖𝑡)(1 + 𝑓𝑡,𝑡+ℎ)
ℎ

𝑇

𝑡+ℎ=𝑆+1

 

+ 𝑝2 (𝐵𝑚(𝐹, 𝑇) − ∑
𝐹 − 𝑀

(1 + 𝑖𝑡)(1 + 𝑓𝑡,𝑡+ℎ)
ℎ

𝑆

𝑠+ℎ=1

− 𝛾 ∑
𝑟̅ − 𝑘  (1 + 𝑟𝑡)(1 + 𝑠𝑡,𝑡+ℎ)

ℎ
 

(1 + 𝑖𝑡)(1 + 𝑓𝑡,𝑡+ℎ)
ℎ

𝑇

𝑡+ℎ=𝑆+1

)]

2

 

 

 

 

 

 

 

 

 

(7) 

 

The equation (7) indicates that the model risk at future time ℎ depends not only on 

swap rates but also on forward rates. Furthermore, the dependent variables, unlike 

the (3), do not include the values at previous time of the underlying interest rate and 

the conditional variance, but the predicted value at time ℎ  of the average 

component and the conditional variance of the underlying interest rate . 

In addition to what has been obtained, it is important to underline that some authors 

have highlighted that the trend of the model risk depends on the market uncertainty. 

More precisely, it tends to increase in periods of financial distress and becomes 

negligible in periods of low uncertainty (Danielsson et al., 2016). 

This implies that also the model risk of the Reverse Floaters follows a well-

determined temporal trend that is characterized by a very irregular trend that 

alternates maximum peaks with moments in which the value of the model risk is 

drastically reduced. More specifically, it is lower in the periods in which the price 

of the Reverse Floater is lower and higher in the years in which the value of the 

structured product rises, revealing a trend that, in many aspects, recalls the trend in 

the price of the stock. The reason of this trend can be found in the circumstance that 

the higher the price of the Reverse Floater, the greater the consequences of an 

incorrect choice of the valuation model implemented. 

In fact, the model risk is calculated as a variance of the prices of the Reverse Floater 

obtained with the different assessments made, weighted by the weight attributed to 

the different models and, consequently, its value will be the greater the higher the 

values that fall into the equation. This obviously implies that higher values of the 

Reverse Floater price will correspond to higher values of the model risk. 



A Mathematical Model for the Pricing of Derivative Financial… 43  

5.5 Model risk minimization 

In this subsection, the authors propose a minimization strategy of the Model risk of 

a reverse floaters portfolio. More precisely, they find the wealth to be invested in 

the Reverse Floater portfolio that minimizes the model risk borne by the investor. 

Let 𝑊𝑚 be the total wealth of the investor at time 𝑚. The wealth invested in reverse 

floaters priced using (1) is equal to: 

 

𝑊1,𝑚 = 𝑛1,𝑚𝑃1,𝑚 

 

where 𝑛1,𝑚 is the number of reverse floaters purchased at the price 𝑃1,𝑚. 

Similarly, the wealth invested in reverse floaters priced using (2) is equal to: 

 

𝑊2,𝑚 = 𝑛2,𝑚𝑃2,𝑚 

 

where 𝑛2,𝑚 is the number of reverse floaters purchased at the price 𝑃2,𝑚. 

The model risk associated with the portfolio can be written as: 

 

 𝑀𝑅𝑚 = 𝑝1𝑊1,𝑚
2 + 𝑝2𝑊2,𝑚

2 − (𝑝1𝑊1,𝑚 + 𝑝2𝑊2,𝑚)
2
 (8) 

 

similarly to what was done at the beginning of paragraph 5.3 with 𝑃1,𝑚 and 𝑃2,𝑚. 

The share of wealth 𝑊1,𝑚
∗  that should be invested in reverse floaters priced with (1) 

in order to minimize the Model risk 𝑀𝑅𝑚 associated with the portfolio, is (Cfr. 

Appendix, Section III): 

 

 
𝑊1,𝑚

∗ =
𝑝2𝑊2,𝑚

(1 − 𝑝1)
 

(9) 

 

The share of wealth 𝑊2,𝑚
∗  that should be invested in reverse floaters priced with (2) 

in order to minimize the Model risk 𝑀𝑅𝑚 associated with the portfolio, is (Cfr. 

Appendix, Section III): 

 

 
𝑊2,𝑚

∗ =
𝑝1𝑊1,𝑚

(1 − 𝑝2)
 

(10) 

 

In other words, the (9) and the (10) express necessary and sufficient conditions to 

minimize the Model risk associated with the reverse floater portfolio.  

These expressions, in fact, indicate the share of wealth that should be invested in 

reverse floaters priced with the two pricing models proposed by the authors 

(equation (1) and equation (2)) in order to minimize the Model risk associated with 

the portfolio. 
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6. Verification of the hypothesis of the theoretical model 

In this paragraph, the authors show two estimation outputs in order to demonstrate 

the validity of the hypothesis, formulated in the previous paragraph, that the swap 

rate 𝑟𝑡 can be represented as an AR (1) - GARCH (1,1). 

As a reference swap rate, the authors consider the ICE Swap Rates, namely the 

principal global benchmark for swap rates and spreads for interest rate swaps. 

More precisely, the authors considered the time series of the ICE Swap Rates on a 

daily basis in the sample period 2021/04/06 – 2021/10/29. The data were taken from 

the dataset of the Federal Reserve of Saint Louis (FRED). Table 1 below shows the 

AR(1) estimate relating to ICE Swap Rates: 

 

Table 1: AR(1) estimation for ICE Swap Rates 

Model AR(1) for ICE Swap Rates using observations 2021/04/06-2021/10/29 

Coefficients 

𝜑0 − 0,182463 *** 

(3,81322e-09) 

𝜑1 0,994274 *** 

(0,00681065) 

Root 1 

Modulus 

Log-likelihood R-squared Adjusted R-squared Mean Standard 

deviation 

1,0024 395,2935 0,963435 0,963435 −0,267450 0,086713 

 

As can be seen, both estimated coefficients are significantly different from zero, the 

root associated with 𝜑1 in modulus is greater than 1. 

This result indicates that the assumption that the ICE Swap Rates follows an AR(1) 

process is correct. 

After estimating the AR(1) on the ICE Swap Rates, the authors proceeded by 

estimating a GARCH (1,1) on the residuals of the same variable.  
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Table 2 below shows the estimated values of the GARCH (1.1) relating to the 

residuals of AR(1) model of the ICE Swap Rates: 

 

Table 2: AR(1)-GARCH(1,1) estimation for the AR(1) residuals of the ICE Swap 

Rates 

GARCH(1,1) for the AR(1) residuals of the ICE Swap Rates using observations 

2021/04/06-2021/10/29 and with 𝜀𝑡 =
𝑟𝑡

𝜎𝑡
~𝑁(0,1) 

Conditional mean equation  

Coefficient  

𝜇𝑚 0,0545463 *** 

(0,000126937) 

Conditional variance equation 

Coefficient  

𝜔 5,80580e-06 *** 

(8,48505e-09) 

𝛼1 0,108666 ** 

(0,0474147) 

𝛽1 0,887462 *** 

(0,0553304) 

 

The mean component 𝜇𝑚  is significantly different from 0. The coefficient 𝜔 , 

although having a very small value, is significantly different from 0 with size 𝛼 =
0,01. 

The two results just presented, therefore, demonstrate that the assumption according 

to which 𝑟𝑡 ~ AR(1) - GARCH (1,1) is verified in the case of the ICE Swap Rates. 

In conclusion, in this paragraph the authors proved that swap interest rates follow 

an AR(1)-GARCH(1,1) process, as assumed in the previous Section 5. It is 

important because this is a key assumption of their model. 

 

7. Concluding remarks          

The results presented in the previous paragraph allow us to draw some general 

considerations on the model risk, valid not only in the case of the Reverse Floater, 

but that may be extended to any pricing procedure of financial instruments for which 

the methods of price determination are not unique. 

The authors have, in fact, shown that it is possible to arrive at a formula to calculate: 

a) the model risk at the current time (expression (3)), 

b) the model risk in a future time (expression (7)), 

of a Reverse Floater using two different expressions of the price (given by 

expression (1) and expression (2)), under the assumption that the underlying interest 

rate is a swap rate that can also be represented as an AR (1) - GARCH (1,1) process. 

Moreover, the authors proposed a minimization strategy of the Model risk of a 

reverse floaters portfolio (expressions (9) and (10)) and, finally, they verified that 
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the hypotheses underlying their theoretical model are satisfied for the swap interest 

reference rate (ICE Swap Rates). 

The innovative result of the authors' analysis is that the model risk at current time 

(including its systemic component) depends on the underlying interest rate at the 

current time, on the underlying interest rate at the previous time, on the volatility of 

the underlying interest rate at the previous time and on the discount rate at the 

current time. On the other hand, the model risk at the future time depends on: the 

underlying interest rate at the current time, the discount rate at the current time, the 

forward rate associated with the underlying interest rate, the forward rate associated 

with the underlying discount rate, the underlying interest rate expected at the future 

time and the volatility of the underlying interest rate expected at the future time. 

From the analysis carried out by the authors, may be deduced that the only feasible 

way to reduce, in a decisive manner, the model risk is that which makes an accurate 

analysis of the financial instrument under exam, a detailed and meticulous study 

that allows to identify, with the highest margin of safety, which model is most suited 

to the concrete situation, so as to attribute to one of the models considered a weight 

in probabilistic terms that is as high as possible. 

In reality, the use of mathematical models to minimize the exposure to the model 

risk, is the final step in a predefined corporate process of assumption and 

management of the risk  within the company. This process is articulated on two 

levels; the first concerns the units responsible for defining and implementing the 

models, while the second directly concerns the corporate bodies responsible of the 

risk assumption ultimately. 

The need to associate a risk process with the use of mathematical models represents, 

then, the real added value of pricing modeling and also one of the main reasons why 

the supervisory authorities at the international level welcome the disuse of standard 

methods in favour of the diffusion of internal models. 

In conclusion, the debate on the applicability of the currently available modeling is, 

in any case, more heated than ever, and still far from definitive considerations; in 

fact, the awareness of the complexity of reality, together with the reduced 

forecasting capacity of the human being and its limited rationality, leave wide 

margin for improvement of the pricing procedures in an attempt to reduce, as far as 

possible, the model risk. 
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Appendix 

Section I 

 

Let (𝑃𝑗,1, 𝑃𝑗,2 , … , 𝑃𝑗,𝑇) be the historical series relative to the 𝑗th expression of the 

price. The density function for 𝑃𝑗 is: 

𝑓𝑏𝑗
(𝑃𝑗) =

1

𝑇𝑏𝑗
∑ 𝐾𝑏𝑗

𝑇

𝑚=1

(
𝑃𝑗 − 𝑃𝑗,𝑚

𝑏𝑗
) 

 

where 𝑏𝑗 > 0 and 𝐾𝑏𝑗
 are, respectively, the bandwidth and the Kernel function. 

Therefore: 

𝑝𝑗(𝑃𝑗,𝑚 = 1) = ∫ 𝑓𝑏𝑗
(𝑃𝑗)

1

−∞

𝑑𝑃𝑗
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Section II 

 

The rate of return at time 𝑡 is equal to: 

𝑟𝑡 = 𝜇𝑡 + 𝜎𝑡𝑧𝑡 

 

where 𝜇𝑡 is the average component of the rate of return at time 𝑡 and is calculated 

as the expected value of 𝑟𝑡 conditionated to an information set 𝐼𝑡−1, that is  𝜇𝑡 =
𝐸(𝑟𝑡|𝐼

𝑡−1); 𝜎𝑡
2 is the conditional variance of the rate of return at time 𝑡 and it is 

computed as the conditional variance of 𝑟𝑡 with respect to an information set 𝐼𝑡−1, 

namely 𝜎𝑡
2 = 𝑉𝑎𝑟(𝑟𝑡|𝐼

𝑡−1); 𝑧𝑡~𝐷(0,1) is an error term. 

 

Section III 

 

Let consider the (8): 

 

𝑀𝑅𝑚 = 𝑝1𝑊1,𝑚
2 + 𝑝2𝑊2,𝑚

2 − (𝑝1𝑊1,𝑚 + 𝑝2𝑊2,𝑚)
2
 

 

In order to find the values of 𝑊1,𝑚 and 𝑊2,𝑚 that minimize 𝑀𝑅𝑚, the authors 

calculate: 

 
𝜕𝑀𝑅𝑚

𝜕𝑃1,𝑚
= 2𝑝1𝑊1,𝑚 − 2𝑝1(𝑝1𝑊1,𝑚 + 𝑝2𝑊2,𝑚) = 0 

 

and: 
𝜕𝑀𝑅𝑚

𝜕𝑃2,𝑚
= 2𝑝2𝑊2,𝑚 − 2𝑝2(𝑝1𝑊1,𝑚 + 𝑝2𝑊2,𝑚) = 0 

 

From the two previous expressions, the coordinates of the only candidate point: 

 

𝑊1,𝑚
∗ =

𝑝2𝑊2,𝑚

(1 − 𝑝1)
 

 

and: 

 

𝑊2,𝑚
∗ =

𝑝1𝑊1,𝑚

(1 − 𝑝2)
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It may easily be verified that this point is a minimum point. In fact, given the 

Hessian matrix: 

 

𝐻 =

[
 
 
 
 

𝜕2𝑀𝑅𝑚

𝜕𝑃1,𝑚
2

𝜕2𝑀𝑅𝑚

𝜕𝑃1,𝑚𝜕𝑃2,𝑚

𝜕2𝑀𝑅𝑚

𝜕𝑃2,𝑚𝜕𝑃1,𝑚

𝜕2𝑀𝑅𝑚

𝜕𝑃2,𝑚
2 ]

 
 
 
 

 

 

it results: 

 

|𝐻| = 4𝑝1(1 − 𝑝1)𝑝2(1 − 𝑝2) + 4𝑝1
2𝑝2

2 > 0 

 

Since |𝐻| > 0 e 
𝜕2𝑀𝑅𝑚

𝜕𝑃1,𝑚
2 > 0, the point is a minimum point. 

 

 


