
Journal of Applied Mathematics and Bioinformatics, Vol. 12, No. 1, 2022, 1-12  

ISSN: 1792-6602(print), 1792- 6939(online) 

https://doi.org/10.47260/jamb/1211 

Scientific Press International Limited 

 

 

 

On exponential fitting of finite difference methods 

for heat equations 
 

 

E.O. Tuggen1 and C.E. Abhulimen2 

 

 

Abstract 
 

In this article, a new kind of finite difference scheme that is exponentially fitted, 

inspired from Fourier analysis, for a fourth space derivative was developed for 

solving diffusion problems. Dispersion relation and local truncation error of the 

method were discussed. Stability analysis of the method revealed that it is 

conditionally stable. Compared to the corresponding fourth order classical scheme 

in the literature, the proposed scheme is efficient and accurate. 
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1. Introduction  

In this paper, we shall be concerned with the numerical solutions of problems 

associated with the following reaction-diffusion system. 
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where ),( txu is a quantity being diffused in some domain n . In physical 

applications, ),( txu , 0,  tx  may represent the temperature field, moisture 

content, vapour concentration etc. M is a matrix of diffusion coefficients and V is a 

vector valued function whose elements are the densities of the substances and 

represents reaction process. Finally, 2 is the classical n-dimensional 

Laplace operator [7]. 

This article is ultimately aimed at developing an exponentially based discrete 

derivative formula for a fourth derivative, which can be used to model the fourth 

order diffusion equation in the form: 
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Finite difference discretizations of ODEs and PDEs are widely used by researchers 

due to their easy analysis. Some of their implementation drawbacks include 

violation of positivity requirements and strict conditions on step sizes which are 

often encountered in the applications. Few variants of FD scheme have been 

developed over time. They include the nonstandard finite differences (NSFD) 

proposed by Mickens [4], whose rules are based on complicated denominators and 

nonlocal representation of nonlinear terms in the equation [7]. Another alternative 

is the exponentially fitted models which Paternoster[13] presented in his paper titled, 

‘an overview of recent literatures in exponential fitting methods’. The similarities 

and differences between NSFD and EF methods are discussed by Erdoğan[6] and 

Tadasse[10]. 

EF method was originally proposed by Liniger and Willoughby [5] as described by 

Abhulimen[1,2]. The method includes a fitting parameter, the so called frequency 

that affects the convergence and stability properties of the method.  For ordinary 

differential equations, the problem on how to choose fitting parameters are 

discussed in [8,9]. According to Erdogan [7,11], the full discretization’s of partial 

differential equations has not been well studied. 

However, the aim of this paper is to develop an exponentially fitted scheme for (1.2) 

that can explicitly handle problems in the form of (1.1) numerically for a 
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considerable number of time steps. The motivation behind this great attempt is 

credited to Erdogan [7] and R. J. Leveque [12] who in particular, mentioned the 

similarity in behavior that exists between (1.1) and (1.2) in his book. 

 

Remark 1.1. It is important to note the second order diffusion equation (1.1) has an 

important property which the fourth order diffusion equation (1.2) in general does 

not possess: maximum principle. 

 

2. Derivatives of the scheme    

We consider the differential equation 
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Adding the terms giving exponential kernel, we obtain 

 

)2.2(~~~
ii

i yfyy  −=−  

 

where ),( iii yxff = , ii yxy ~)(~ =  and ),( 11 +− ii xx . Imposing the continuity 

conditions ii yxy ~)(~ = and 11
~)(~

++ = ii yxy , we obtain:  

ih

ii f
yy
=

−

−+



 1

~~
1


 

Therefore the new forward difference is 
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In the development of the fourth derivative, we consider the differential equation 

 

(2.4)),(~ yxfy iv =  

 

if f is frozen at ixx =  in the subinterval ),( 22 +− ii xx  we get an approximation to (2.4): 

i
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Adding the terms giving exponential kernel, we obtain 
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where ),( 22

4

+− ii xxk . Now, we obtain the four fourth roots associated with the 

characteristic equation from (2.5) and treating each root as repeated roots, we obtain the 

general solution in each case as: 
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To obtain the exponentially fitted for (2.4), we shall impose some continuity 

conditions on each of equations in (2.6):  

22111122
~)(~and~)(~,~)(~,~)(~,~)(~

++++−−−− ===== iiiiiiiiii yxyyxyyxyyxyyxy , which will 

always lead to five (5) algebraic equations for each case. After a rigorous algebraic 

manipulations and simplifications, we obtain the required exponentially fitted fourth 

derivative quotient given by: 
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3. Fourth Order Diffusion 

We shall conside                                         
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with initial condition )()0,( xuxu =  and periodic boundary conditions. We shall 

assume a trial solution of the form ),()(),( tTxXtxu = where )(xX is a function of 

x  only and )(tT is a function of t only.                              
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The separation of variables method gives 
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Simplifying the above, we obtain the time and spatial components of the solution 

as 
ttckT  == − 4

(where 4ck−= ) and 

( )kxDkxCkxBkxA coshsinhcossin +++  respectively. The relation between 

time and spatial components is called dispersion relation [7] and in this case it is 

given by  

)1.3(4ck−=  

 

The relation (3.1) is never taken into account explicitly in the classical finite 

difference methods as described by Erdoğan [7]. Our contribution here, is to 

consider (3.1) in the construction of finite difference schemes. We recall that 

exponentially fitted methods and nonstandard finite differences avail us with a 

useful tool in the form of denominators in terms of non-polynomial functions [7,4]. 

Therefore we present forward time derivative and fourth space derivative for (1.2) 

to obtain an explicit exponentially fitted scheme given by: 
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where  and k are evaluated at the 
thji ),( mesh point. 

 

The assignment of and k  and the relation between these parameters are of 

paramount importance. In this paper, we shall describe a parameter selection 

strategy that is based on dispersion relation and local error formula in consonance 

with the work of Erdogan [7].  

The local error of (3.2) can be written as: 
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Where the derivatives j

itu )( , j

ixu )(  and other higher derivatives are computed at the 

point ),( ji tx .  
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The selections 
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That makes the first two terms zero in the local error formula is of importance here. 

This is because the selections give the dispersion relation () of the fourth order 

diffusion by considering 
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In the implementation of (3.5), the classical finite difference approximation of 

xxxxxxxxu  and xxxxu might be employed as follows for computing k numerically: 
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However, in this paper rather than applying the frequency search algorithm in the 

implementation, we shall restrict our ambition by making use of settings for picking 

suitable values for k and  .   

 

3.1 Stability Analysis 

Definition 3.1. Stability is the property which a numerical method possesses that 

keeps its errors bounded as the computation advances [3]. 

Now, to establish the stability of our method, we must understand that both classical 

explicit finite difference scheme and our exponentially fitted scheme for the fourth 

order diffusion equation can be written as: 
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Stand for the Courant-Frederichs-Lewy (CFL) numbers and  for classical finite 

difference and exponentially fitted schemes. After the dispersion relation 
4j

i

j

i ck−= is substituted into EFM , we find that the limit 
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Hence just like the case for the second order diffusion [7], this tells us that the 

classical finite difference formulation is employed in the implementation in case 

very small k be noticed. 

 

Now, we obtain the stability of our method by using 
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And assume that our numerical scheme admits solutions of the form: 
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as amplification factor which governs the growth of the Fourier component E(k). 

The Von Neumann [15], stability condition requires that the modulus of (3.10) must 

be less than or equal to unity. After a cumbersome algebraic manipulations, it is 

easy to verify that this requirement is satisfied when 
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From above, we can say that the new exponentially fitted method is conditionally 

stable and the method converges to the solution of (1.2) with rate of converges of
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It should be noted that the stability of the method depends not only on the step sizes 

but also on the parameters of the method. 
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3.2 Matrix representation of the method 

The proposed method is explicitly represented in the following matrix form for the 

purpose of application [12]. We first present the initial and boundary conditions 

associated with the method: 
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Where B is the column matrix containing boundary values and is given by  
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which can be written as 
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The nearly pentadiagonal matrix on the right hand side of (5.2) is known (and 

constant) once the time-step, t  is chosen. The entries in the column matrix B are 

expected to be all zeros in this case. The known values of u at 

mixfu i

j

i ,...,1),( == , are multiplied by this nearly pentadiagonal matrix to obtain 

new values of u  at 1+j
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4. Numerical examples 

Problem 1 

We consider the heat equation from Richard L. Burden and J. Douglas Faires [14].  
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The initial condition leads to the exact solution ).(cos),(
2
1−= − xtxu t         

We will use 1.0=x  and 00004.0=t , and compare our results at 0004.0=t  to 

the exact solution. In Table 6.1, the EF method with settings 1=k and 610−=
gives an exact solution up to machine accuracy. We denote classical method and 

present method respectively by CM4 and AE4 in our numerical results. 

 
Table 4.1: Table of solution values at t=0.0004. 

 

 

xi 

Exact  

Solution (ES) 

)0004.0,( ixu  

 

 

CM 4 

 

 

AE 4 

 

 

4CMES −  

 

 

4AEES −  

0 0 0 0 0 0 

0.1 0.30889338 0.30610277 0.30895909 2.791 × 10-3 6.571 × 10-5 

0.2 0.58755017 0.58487103 0.58772743 2.679 × 10-3 1.773 × 10-4 

0.3 0.80869345 0.80586006 0.80893824 2.833 × 10-3 2.448 × 10-4  

0.4 0.95067616 0.94742368 0.95096375 3.252 × 10-3 2.876 × 10-4 

0.5 0.99960008 0.99615138 0.99990207 3.449 × 10-3 3.020 × 10-4 

0.6 0.95067616 0.94742368 0.95096377 3.252 × 10-3 2.876 × 10-4 

0.7 0.80869345 0.80586006 0.80893822 2.833 × 10-3 2.448 × 10-4 

0.8 0.58755017 0.58487103 0.58772743 2.679 × 10-3 1.773 × 10-4 

0.9 0.30889338 0.30610278 0.30895909 2.791 × 10-3 6.571 × 10-5 

1.0 0 0 0 0 0 
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From the numerical results of Problem 1 presented in Table (4.1), we observed that 

for various step sizes our proposed scheme competes favorably with the existing 

classical method which is an existing method in the literature.  
 

Problem 2                                                                       

We consider the diffusion equation from Richard L. Burden and J. Douglas Faires 

[14].  
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We will use 2.0=x  and 0004.0=t , and compare our results at 0012.0=t  

to the exact solution. In Table 5.3, the EF method with settings 1=k and 410−=
gives an exact solution up to machine accuracy. We denote classical method and 

present method respectively by CM 4 and AE 4 in our numerical results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



On exponential fitting of finite difference methods for heat equations 11  

Table 4.2: Table of solution values at t=0.0012. 

xi Exact Solution (ES) 

)0012.0,( ixu  

CM 4 AE 4 4CMES −  4AEES −  

0 0 0 0 0 0 

0.2 0.46503395 0.46337838 0.46499753 1.656 × 10-3 3.642 × 10-5 

0.4 0.89600465 0.89472917 0.89634827 1.275 × 10-3 3.436 × 10-4 

0.6 1.2619011 1.2606032 1.2624133 1.298 × 10-3 5.122 × 10-4  

0.8 1.5375249 1.5359892 1.5381360 1.536 × 10-3 6.111 × 10-4 

1.0 1.7056954 1.7040638 1.7063602 1.632 × 10-3 6.648 × 10-4 

1.2 1.7586903 1.7571570 1.7593575 1.533 × 10-3 6.672 × 10-4 

1.4 1.6987860 1.6975054 1.6994052 1.281 × 10-3 6.192 × 10-4 

1.6 1.5378515 1.5369562 1.5383787 8.953 × 10-4 5.272 × 10-4 

1.8 1.2960384 1.2956242 1.2964399 4.142 × 10-4 4.015 × 10-4 

2.0 0.99970004 0.99981569 0.99995475 1.157 × 10-4 2.547 × 10-4 

2.2 0.67874559 0.67938846 0.67884740 6.429 × 10-4 1.018 × 10-4 

2.4 0.36369089 0.36480622 0.36364819 1.115 × 10-3 4.270 × 10-5 

2.6 0.08269244 0.084179256 0.082527206 1.487 × 10-3 1.652 × 10-4 

2.8 -0.14114166 -0.13942139 -0.14139662 1.720 × 10-3 2.550 × 10-4 

3.0 -0.29190605 -0.29011118 -0.29221063 1.795 × 10-3 3.046 × 10-4 

3.2 -0.36230704 -0.36063375 -0.36261862 1.673 × 10-3 3.116 × 10-4 

3.4 -0.35419242 -0.35278725 -0.35447301 1.405 × 10-3 2.806 × 10-4 

3.6 -0.27815594 -0.27682947 -0.27834355 1.326 × 10-3 1.876 × 10-4 

3.8 -0.15225887 -0.15064370 - 0.15215777 1.615 × 10-3 1.011 × 10-4 

4.0 0 0 0 0 0 

 

From the numerical results of Problem 2 presented in Table (4.2), we observed that 

for various step sizes, our proposed scheme competes favorably with the classical 

method which is an existing method in the literature.  
 

5. Conclusion 

Following the numerical results presented so far in this article, simply show that our 

newly derived EF method that is first order in time and fourth order in space which 

has a second order accuracy dominance and competes favorably with the classical 

method of the fourth order diffusion equation with same order of accuracy and do 

behave much like the second order heat equation.   

In conclusion, our new EF method can adequately solve heat problems for a 

considerable number of initial time steps. Though, time stepping is generally the 

only major challenge for the explicit method of solving heat problems using the 

fourth order diffusion equation. 
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