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Abstract 
 

Since the beginning of 2020, the world has been struggling with a viral epidemic 

(COVID-19), which poses a serious threat to the collective health of the human race. 

Mathematical modeling of epidemics is critical for developing such policies, 

especially during these uncertain times. In this study, the reproduction number and 

model parameters were predicted using AR(1) (autoregressive time-series model of 

order 1) and the adaptive Kalman filter (AKF). The data sample used in the study 

consists of the weekly and daily number of cases amongst the Ziraat Bank personnel 

between March 11, 2020, and April 19, 2021. This sample was modeled in the state 

space, and the AKF was used to estimate the number of cases per day. It is quite 

simple to model the daily and weekly case number time series with the time-varying 

parameter AR(1) stochastic process and to estimate the time-varying parameter with 

online AKF. Overall, we found that the weekly case number prediction was more 

accurate than the daily case number (R2 = 0.97), especially in regions with a low 

number of cases. We suggest that the simplest method for reproduction number 

estimation can be obtained by modeling the daily cases using an AR(1) model. 
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1. Introduction  

The ability to make future predictions helps us to navigate uncertain times. 

Mathematical, deterministic, and statistical modeling methods are invaluable tools 

at the disposal of policymakers to do just that, which is especially salient during 

these trying times. Just as it was with previous viral outbreaks, scientists have 

conducted numerous studies modeling the rate of disease transmission and the dates 

when we will reach maximum capacity. These studies are not specific to the 

COVID-19 outbreak, and these epidemic models are scientifically important for 

policy development [1].  

Trend and peak estimations are tough obstacles due to the changes and restrictions 

in the data disclosure policies of different countries. The deviation and margin of 

error are seen to be high in studies with peak estimation [2]. Owing to these 

constraints, predictive models generally rely on the reproduction numbers to 

determine model trends. As other researchers have noted, the uncertainty of 

available official data, especially regarding the actual number of infected cases, may 

lead to uncertain results and false estimates [3].  

A total of 244 oft-cited articles since January 2020 showed that 46% of studies used 

compartmental models, 32% used statistical models, and 1% used individual-based 

models. A majority of the studies were conducted in Asian (78.93%) and European 

(59.09%) countries. A majority of them used compartmental models (SIR and SEIR) 

(46.1%) and statistical models (growth models and time series) (31.8%). The 

remaining studies employed artificial intelligence (6.7%), the Bayesian approach 

(4.7%), network models (2.3%), and agent-based models (1.3%) [4]. 

The biggest contribution of modeling studies is their ability to show the number of 

reproductions and the progress of the epidemic trend. Highlighting the true impact 

of the epidemic at an early stage is an important step towards effective planning on 

restrictions, hospital SOPs, vaccination policy, etc. As the COVID-19 pandemic 

continues, mathematical epidemiologists have continued to share their models on 

how the disease has spread, the current state of play, and what still needs to be done. 

Since the beginning of COVID-19, nonparametric methods have been used in 

modeling studies more frequently, especially logarithmic and exponential models 

[5]. 

Along with the growth models, non-linear methods were also used for parameter 

estimation. The spread of the epidemic in China was estimated using a logistic 

growth model, while non-linear least squares (NLS) were used to estimate model 

parameters. In this study, we found that the growth rate of Covid-19 is significantly 

different between China, South Korea, and Iran [6]. 

In Nigeria, estimations were made using logistic and exponential models, while 

model parameters were estimated using ordinary least squares [7]. 

The logistic growth model, generalized logistic growth model, generalized Richards 

model, and generalized growth model to the reported number of infected cases for 

the whole of China, 29 provinces in China, and 33 countries and regions that have 

been or are undergoing major outbreaks are used to estimate peak times [8]. 
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Nine non-linear models (Brody, Bertalanffy, Logistic, Generalized Logistic, 

Richard, Negative Exponential, Stevens, Tanaka, Gompertz) for the US, Brazil, 

Germany, India, Russia, Italy, Spain, France, the United Kingdom, and Turkey were 

studied to model the estimation of reproduction number and daily number of cases 

by estimating parameters using a Kalman filter [9]. 

A support vector machine (SVM) with fuzzy granulation was used to predict the 

growth range of confirmed new cases, new deaths, and new cured cases in China. 

The experimental results showed that the Elman neural network and SVM can 

predict the development trend of cumulative confirmed cases, deaths, and cured 

cases, whereas LSTM (long short-term memory) is more suitable for predicting 

cumulative confirmed cases [10]. 

Using mathematical and statistical methods, we attempted to estimate the 

reproduction number and the time range between waves in South Korea. The 

findings of the model study support the effectiveness of control measures against 

COVID-19 in Korea [11]. The purpose of managing and controlling COVID-19 in 

Iran mortality trends was modeled using regression, spatial modeling, risk mapping, 

and change detection using the random forest machine learning technique [12]. The 

maximum likelihood (ML) value of reproductive number (R0) can be estimated by 

the Poisson distribution determined by daily infectiousness [13].  

It is seen in the literature that the types of Kalman filters are also used in the 

prediction of the transmission of epidemic diseases. An adaptive unscented Kalman 

filter (AUKF) -based optimal controller has been designed to control unknown 

tuberculosis dynamics in individuals treated with active tuberculosis, at home or in 

hospital. In this way, even in the presence of a small group of infectious people, the 

long-term persistence of the disease is thought to be prevented [14]. Our study 

proposes a method different from the models of epidemic diseases so far. 

 

2. Materials and Methods 

This study consists of four steps:  

1. Data collection 

2. Trend Analyses with Moving Average Graphs Modeling 

3. Parameter Estimation with time series (AR) models 

4. Parameter estimation with adaptive Kalman filters (AKF). 

2.1 Data Collection Phase 

In this study, we used the data of Ziraat Bank as a sample because of their wide 

presence throughout Turkey. Another reason for using bank data is the policy 

change affecting data disclosure within the country. The data were collected through 

an application that was developed by the Bank's technology team, starting from the 

day the first case was observed on March 11, 2020, to April 19, 2021. Data collected 

in the timespan of these 325 days were analyzed, (timespan is >365 and 325 days 

modeled, because no cases days are excluded). The total number of cases used in 

this study represents 21% of bank employees. 
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Figure 1: The flowchart of methodologies modeling the spread of coronavirus 

in Ziraat Bank 

 

2.2 Trend Analyses 

  

Figure 2: COVID-19 cases trend graphs between 11 March 2020-19 April 

2020 in Ziraat Bank Case 

 

As shown in Figure 2, we can see the 3rd peak occurring in the moving average 

(MA) charts. In this study, MA was used as a checkpoint. Daily cases are more 

smoothing than weekly cases. 
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2.3 Parameter Estimation with Time Series AR1 Models 

In this study, time-series data (number of daily cases) was modeled. It is assumed 

that the number of daily cases 𝑖𝑡 is in the form of AR(1) is given by Equation (1). 
 

𝑖𝑡 = θi𝑡−1 + 𝑣𝑡  (1) 

 

where θ is a constant and 𝑣𝑡 is 𝑣𝑡  ~ N(0,𝜎1
2). The random variables 𝑣1, 𝑣2 , … , 𝑣𝑛 

are assumed to be uncorrelated. It is also assumed that the θ parameter in Equation 

(1) is time-varying and is a stochastic process in the form of a random walk process. 

In this case, the θ random walk process can be expressed as in Equation (2) 

 

𝜃𝑡 = θ𝑡−1 + 𝑤𝑡 (2) 

 

𝑤𝑡 is normally distributed with N(0,𝜎1
2), and the random variables 𝑤, 𝑤2 , … , 𝑤𝑛 

are assumed to be uncorrelated. Considering Equations (1) and (2), the following 

state-space model can be written: 

 
𝜃𝑡 = θ𝑡−1 + 𝑤𝑡

(3)
𝑖𝑡 = θi𝑡−1 + 𝑣𝑡

 

                        

The state variable is unobservable, and the time-varying 𝜃𝑡  parameter can be 

estimated using the AKF. 

Model codes are written in Matlab 2013a program. 

Figure 3 shows the estimation of the number of cases per day and the estimation of 

the reproduction number with the Kalman filter. In Figure 4, the estimation of the 

weekly case numbers and the estimation of the reproduction number with the 

Kalman filter are shown. The graphs are created using Matlab. Because of daily 

cases variability, weekly cases are averaged and smoothed. Calculated MSE, MAPE 

and R2 are shown in Table 1. If there is no variation in the daily cases, calculated 

values can be expected close to the weekly cases calculated values. As can be seen 

from Table 1 calculated values differ between daily and weekly cases. Estimations 

made by averaging weekly cases are suitable for using R(t).  
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Figure 3: Daily estimated cases and estimated reproduction number 

 

It is quite simple to model the daily and weekly case number time series with the 

time-varying parameter AR(1) stochastic process and estimate the time-varying 

parameter with online AKF. It can be seen weekly case number prediction was more 

precise than the daily case number (R2 = 0.97). 
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Figure 4: Weekly cases and estimated reproduction number 

 

 
Table 1: Calculated MSE, MAPE, R2 

Time MSE MAPE R2 

Daily 84 154.19 0.69 

Weekly 6 62.23 0.97 

MSE: Mean squared error, MAPE: Mean absolute percentage error. 
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2.4 Estimating the Reproduction Number with Adaptive Kalman Filtering 

The instantaneous reproduction number, Rt, at time t can be estimated using 

Equation (4). [15] 

𝑅𝑡 =
𝐸(𝑖𝑡)

∑ 𝑖𝑡−𝑠−𝑤𝑠
𝑡
𝑠=1

(4)                                                                                              

In Equation (4), 𝑖𝑡 stands for the number of new infections generated at time step 

t. 𝑤𝑠 is the probability distribution of the infectivity profile, which is dependent on 

time elapsed since the infection of the case. In practice, w is approximated by the 

distribution of serial intervals. Let us express the value of 𝑅𝑡 calculated using the 

AR(1) model with 𝑅𝑡
𝐴𝑅. İf s=1 and 𝑤1=1 are given in (4), then Equation (4), can be 

written as 

𝑅𝑡
𝐴𝑅 =

𝐸(𝑖𝑡)

𝑖𝑡−1
=

î𝑡

𝑖𝑡−1
=

𝜃𝑡𝑖𝑡−1

𝑖𝑡−1
= 𝜃𝑡 ,    𝑡 = 1,2,3, … , 𝑛 (5) 

The Kalman filter is a popular estimation method used to solve the state estimation 

problem in dynamic systems. As long as the system characteristics are known 

correctly, Kalman filter works with the best prediction performance. However, in 

cases where the system characteristics are partially known or uncertain, it is 

inevitable that there will be serious losses in the prediction performance of the filter. 

In order to overcome the performance loss problem in the Kalman filter, the 

adaptive Kalman filter method has been adapted. In adaptation forgetting factor 

proposed by Özbek and Aliev is used [15]. 

The estimated 𝑅𝑡 value using the AR(1) model is equal to the estimate of the time-

varying parameter of the AR(1) model. The values of 𝑅𝑡
𝐴𝑅calculated using Equation 

5 are shown in Figure 3 and Figure 4 [16]. 

 

3. Conclusion and Results 

Theta in the AR(1) model called it the 'multiplication' factor. In time series models, 

this is called a parameter. In classical time series methods, this parameter is assumed 

to be constant and estimated accordingly. Here we assumed the parameter as time 

varying and random walk stochastic process. When this assumption is made, 

classical time series methods are not used. We took this assumption and AR(1) 

model together and turned it into a state-space model and estimated the parameter 

based on time using AKF. This method does not require all the data, only the arrival 

of the last observation is sufficient to obtain an estimate of the parameter and is an 

online estimation method. This is one of the advantages of the method. When the 

classical AR(1) model is used, the stationarity condition must be met in order to 

make the predictions. In the time-varying parameter assumption we use, this 

condition does not need to be met. This is the second advantage of the method we 
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use. Since the Adaptive Kalman Filter is a self-adaptive estimation method and the 

variance of the noise processes in the model is not known exactly, it makes better 

predictions than the normal Kalman filter. This is stated in the references. In 

addition to generally known methods, it is quite simple to model the daily case 

number time series with the time-varying parameter AR(1) stochastic process and 

estimate the time-varying parameter with online AKF. It does not require any 

assumptions and it produces good results in cumulative weekly data when the model 

results are examined. The model is so simple that it can be reproduced and applied 

without detailed knowledge of epidemiology or programming languages. We must 

stress again that the purpose of this study is merely to show that it is possible to 

model epidemic trends using simple methods.  

Using AR(1), the stochastic process for estimation is a common approach as it does 

not require any other modeling assumptions. Due to the simplicity of AR models, 

we highly recommend this approach for reproduction number estimation. As seen 

in our study, it is simple enough to model the daily and weekly case number time 

series with the time-varying parameter AR(1) stochastic process and estimate the 

time-varying parameter with online AKF.  

We also noted that the weekly case number prediction was more precise than the 

daily case number prediction (R2 = 0.97). 
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Appendix 

State-Space Model and Adaptive Kalman Filter (AKF) 
The optimum linear filtering and estimations methods introduced by Kalman (1960) 

have been considered one of the greatest achievements in estimation theory. 

Discrete-time linear state-space models and Kalman filtering (KF) have been 

employed since the 1960s, mostly in the control and signal processing areas. The 

KF has been extensively employed in many areas of estimation the extensions and 

applications of discrete-time linear state-space models can be found in almost all 

disciplines [17-25].  

Let us consider a general discrete-time stochastic system represented by the state 

and measurement models given by 

1t t t t tx F x G w+ = + (A1) 

t t t ty H x v= + (A2) 

where 𝑥𝑡 is an n1 system vector, 𝑦𝑡 is an m1 observation vector, 𝐹𝑡 is an nn 

system matrix, 𝐻𝑡  is an mn matrix, 𝑤𝑡 an n1 vector of zero mean white noise 

sequence and 𝑣𝑡 is an m1 measurement error vector assumed to be a zero mean 

white sequence uncorrelated with the 𝑤𝑡 sequence. The covariance matrices 𝑤𝑡 

and 𝑤𝑡 are defined by 𝑤𝑡~ 𝑁(0, 𝑄𝑡), 𝑣𝑡~ 𝑁(0, 𝑅𝑡). The filtering problem is the 

problem of determining the best estimate of its 𝑥𝑡 condition, given its observations 

𝑌𝑡 = (𝑦0, 𝑦1, . . . , 𝑦𝑡) [17-25]. When 𝑌𝑡 = (𝑦0, 𝑦1, . . . , 𝑦𝑡) observations are given, 

the prediction of state 𝑥𝑡 with  

 

�̂�𝑡 = 𝐸(𝑥𝑡|𝑦0, 𝑦1, . . . , 𝑦𝑡) = 𝐸(𝑥𝑡|𝑌𝑡) 

 

and the covariance matrix of the error with 

 

𝑃𝑡|𝑡 = 𝐸[(𝑥𝑡 − �̂�𝑡|𝑡)(𝑥𝑡 − �̂�𝑡|𝑡)′|𝑌𝑡] 

 

when 𝑌𝑡−1 = (𝑦0, 𝑦1, . . . , 𝑦𝑡−1) observations are given, the prediction of state 𝑥𝑡 

with 

�̂�𝑡|𝑡−1 = 𝐸(𝑥𝑡|𝑦0, 𝑦1, . . . , 𝑦𝑡−1) = 𝐸(𝑥𝑡|𝑌𝑡−1) 

 

and the covariance matrix of the error are shown with 

 

𝑃𝑡|𝑡−1 = 𝐸[(𝑥𝑡 − �̂�𝑡|𝑡−1)(𝑥𝑡 − �̂�𝑡|𝑡−1)′|𝑌𝑡−1]. 
Let the initial state be assumed to have a normal distribution in the form of  

𝑥0~ N(�̄�0,P0). The optimum update equations for KF are, 

 
�̂�𝑡|𝑡−1 = 𝐹𝑡−1�̂�𝑡−1 (A3) 
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𝑃𝑡|𝑡−1 = 𝐹𝑡−1𝑃𝑡−1|𝑡−1𝐹𝑡−1
′ + 𝐺𝑡−1𝑄𝑡−1𝐺𝑡−1

′  (A4) 

 

𝐾𝑡 = 𝑃𝑡|𝑡−1𝐻𝑡
′(𝐻𝑡𝑃𝑡|𝑡−1𝐻𝑡

′ + 𝑅𝑡)−1 (A5)

                                                             
𝑃𝑡|𝑡 = [𝐼 − 𝐾𝑡𝐻𝑡]𝑃𝑡|𝑡−1 (A6) 

                                                                                                

�̂�𝑡 = �̂�𝑡|𝑡−1 + 𝐾𝑡(𝑦𝑡 − 𝐻𝑡�̂�𝑡|𝑡−1) (A7) 

 

In the above Equations, �̂�𝑡/𝑡−1 is the a priori estimation and �̂�𝑡 is the a posteriori 

estimation of 𝑥𝑡 . Also, 𝑃𝑡|𝑡−1  and 𝑃𝑡|𝑡  are the covariance of a priori and a 

posteriori estimation respectively [17],[18]. In some cases, divergence problems 

may occur in the Kalman Filter due to the incorrect installation of the model. In 

order to eliminate divergence in the Kalman filter, adaptive methods are used [26], 

[27], [28]. One of these is the use of the forgetting factor. A forgetting factor is 

proposed by Ozbek and Aliev [26]. 

 

𝑃𝑡|𝑡−1 = 𝛼(𝐹𝑡−1𝑃𝑡−1|𝑡−1𝐹𝑡−1
′ + 𝐺𝑡−1𝑄𝑡−1𝐺𝑡−1

′ ) (A8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


