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Abstract 

In this paper, we’ll give a necessary and sufficient condition that a function 
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1  Introduction  

The studying of order of decrease of Fourier coefficients of a function 
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belonging to different subclasses of class pL  ( 1p  ) represents one of the 

fundamental issues of Fourier theory. This paper deals with the Fourier 

coefficients ( 0na  and quasi-monotone) of a function of class ( , )L p  , where 

1 p   , 1 1p p    . 

 

 

2  Preliminary Notes 

That’s why, first of all, we’ll represent the main statements needed for 

representation of the results of this paper. 

Definition 2.1  A sequence { }nb is quasi-monotone if  0nb  , and n bn
  0  

for some   0 . 

Definition 2.2  Let  1 p   , we say that function f   with period 2  is in 

class pL  if  
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Definition 2.3  A function ( )f x  is said to belong to the class  ( , )L p  , if: 
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where 1 p   , 1 1p p    . 
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    The following affirmation gives necessary condition receptively  adequate 

that is necessary to complete Fourier coefficients in order that function belongs to 

class pL  ( ( , )L p  ). 

Theorem 2.4 (Hausdorff-Young) [2, p. 211] Let 1 2 p   and  q
p

p


1
 

( 2   q ). The following estimate holds true 

1) If f Lp  and   cn n


 are Fourier coefficients of function, then 
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2) If  cn n


 is sequence of numbers such that  
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then there exists function f Lq  with Fourier coefficients { }nc  the inequality   
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holds true. 

 

Theorem 2.5 ( Hardy- Littlewood ) [2, p. 657] The necessary and sufficient 

condition that  0cos
1





n

n
n anxa  be the Fourier series of a function 

f Lp , 1p   is that the series 
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Theorem 2.6 [3] The necessary and sufficient condition that the 
1

cosn
n

a nx



   

where { }na is positive and quasi-monoton be Fourier series of a function 
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( , )f L p  , where 1 p   , 1 1p p     is that the series 
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In [1] given the following theorem concerning the Fourier coefficients of a 

function belonging to pL  class. 

Theorem 2.7 [1]  Let  f Lp  ( 1p  ), function given with Fourier series   
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   0na  

 Then 

S S S1 2 3

1 2 3
, , , ...  

are also Fourier coefficients of a function of class pL , where 
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   As you can see from Theorem 2.7 the connection is becoming between 

coefficients   na  and  
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A question is settled down if the coefficients  na  are quasi-monoton will the 

coefficients  
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 be quasi-monoton. A following lemma gives the 

positive answer to this question. 

 

Lemma 2.8 [4] If {an} is positive and quasi-monoton, then  
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is also positive and quasi-monoton. 
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3  Main Results  

The purpose of this paper is to reformulate the Theorem 4. in case when 

function ( ) ( , )f x L p   and appropriate coefficients are quasi-monoton. 

Theorem 3.1 Let ( ) ( , )f x L p   (1 1 1      p p p,    ), function given 

with Fourier series  

1

( ) cosn
n

f x a nx




  ,  

where  na  is positive and quasi-monoton. Then series  




1

cos
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n nxA  

where  A
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an k
k

n










1

1
, will be Fourier series of a function ( )F x of class 

( , )L p  . 

Proof: Let  ( ) ( , )f x L p   (1 1 1      p p p,    , function given with 

Fourier series  

1

( ) cosn
n

f x a nx




  , 

where  na  is positive and quasi-monoton. 

Since {an} is positive and quasi-monoton and due to Lemma 2.8  
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is positive and quasi-monoton. To proof theorem we have to show that             
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Fourier series of a function ( )F x  of class ( , )L p  .   



184                  Assessment Fourier coefficients of a function of class ( , )L p   

Let  
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A similar method may be used to estimate 
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This finishes the proof of Theorem 3.1.                                  

      

The question appears: Is the converse valuable of Theorem 2.7 and 3.1 if the 

series 


1

cos
n

n nxA  is Fourier series, will Fourier series be 


1

cos
n

n nxa . From 

the following example it is proved that the converse of Theorem 2.7 and 3.1 

doesn’t worth. 

Example 3.2  Let 
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Hence by the theorem1.(Hausdorf-Young), nA  is the Fourier coefficients of a 

function ( ) qF x L , where  1
11


qp
, 1 2 , 2p q   . 

Now,  if 
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n nxa Fourier series of a function e  ( ) pf x L  , then we have 

by Theorem 2.4 (Hausdorf – Young) necessarily 
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But 
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Therefore 
1 1

cos 2 ( 1) cosn
n

n n

a nx nx
 

 

      is not the Fourier series of a function 

( ) pf x L . 

 So the question is settled down. What conditions of coefficients na  will be 

fulfilled in order that converse is valuable. A following theorem gives answer to 

the question. 

Theorem 3.3 Let 

1

( ) cosn
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f x a nx




 , 

where { }na is positive and quasi-monoton. Then a necessary and sufficient 

condition that  


1
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n nxa  be the Fourier series of function ),()( pLxf   is 

that: 
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to be the Fourier series of a function ( )F x be belonging to L p( , )  where        

1 1 1      p p p,      and 
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Proof: The necessary part follows from Theorem 3.1 as a particular case. 
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Sufficiency. Suppose that series 
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A nx



  is Fourier series of a function 

F x L p( ) ( , )  . Since { }na is positive and quasi-monoton, then by Lemma 2.8 

follows  { }nA  is positive and quasi-monoton. Hence by Theorem 2.6 we have  
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Hence by Theorem 2.6 f x L p( ) ( , )   and consequently 
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  is the 

Fourier series of function ( )f x .                                       
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