Assessment Fourier coefficients

of a function of class $L(p,\alpha)$

Ismet Temaj¹

Abstract

In this paper, we'll give a necessary and sufficient condition that a function

$$f(x) = \sum_{n=1}^{\infty} a_n \cos nx$$
, where coefficient $a_n (n = 1, 2, ...)$ are quasi-monotone, to be of class $L(n, \alpha)$

of class $L(p,\alpha)$.

Mathematics Subject Classification: 42A16

Keywords: Fourier series, Fourier coefficients, quasi-monotone coefficients

1 Introduction

The studying of order of decrease of Fourier coefficients of a function

Prishtina University Education Faculty, Prishtina, Kosovo, 1 e-mail: itemaj63@yahoo.com

Article Info: Received : December 21, 2011. Revised : January 27, 2012 Published online : March 15, 2012

belonging to different subclasses of class L_p ($p \ge 1$) represents one of the fundamental issues of Fourier theory. This paper deals with the Fourier coefficients ($a_n \downarrow 0$ and quasi-monotone) of a function of class $L(p,\alpha)$, where $1 \le p < \infty$, $-1 < \alpha p < p - 1$.

2 **Preliminary Notes**

That's why, first of all, we'll represent the main statements needed for representation of the results of this paper.

Definition 2.1 A sequence $\{b_n\}$ is quasi-monotone if $b_n > 0$, and $n^{-\tau}b_n \downarrow 0$ for some $\tau > 0$.

Definition 2.2 Let $1 \le p < \infty$, we say that function f with period 2π is in class L_p if

$$||f||_{p} = \left\{ \int_{0}^{2\pi} |f(x)|^{p} dx \right\}^{\frac{1}{p}} < \infty$$

So

$$L_{p} = \left\{ f(x) / \left\| f(x) \right\|_{p} = \left\{ \int_{0}^{2\pi} |f(x)|^{p} dx \right\}^{\frac{1}{p}} < \infty \right\}$$

Definition 2.3 A function f(x) is said to belong to the class $L(p,\alpha)$, if:

$$\left\|f\right\|_{p,\alpha} = \left\{\int_{0}^{\pi} \left|f(x)\right|^{p} (\sin x)^{\alpha p} dx\right\}^{\frac{1}{p}} < \infty$$

where $1 \le p < \infty$, $-1 < \alpha p < p - 1$.

So

$$L(p,\alpha) = \left\{ f(x) / \|f\|_{p,\alpha} = \left\{ \int_{0}^{\pi} |f(x)|^{p} (\sin x)^{\alpha p} dx \right\}^{\frac{1}{p}} < \infty$$

Ismet Temaj

The following affirmation gives necessary condition receptively adequate that is necessary to complete Fourier coefficients in order that function belongs to class L_p ($L(p,\alpha)$).

Theorem 2.4 (Hausdorff-Young) [2, p. 211] Let $1 \le p \le 2$ and $q = \frac{p}{p-1}$ $(2 \le q \le \infty)$. The following estimate holds true

1) If $f \in L_p$ and $\{c_n\}_{n=-\infty}^{\infty}$ are Fourier coefficients of function, then

$$\left\{\sum_{|n|=0}^{\infty} |c_n|^q\right\}^{\frac{1}{q}} \le A(p) \left\|f\right\|_p$$

2) If $\{c_n\}_{n=-\infty}^{+\infty}$ is sequence of numbers such that

$$\sum_{|n|=0}^{\infty} \left| c_n \right|^p < \infty$$

then there exists function $f \in Lq$ with Fourier coefficients $\{c_n\}$ the inequality

$$\left\|f\right\|_{q} \leq A'(q) \left\{\sum_{n=0}^{\infty} \left|c_{n}\right|^{p}\right\}^{\frac{1}{p}}$$

holds true.

Theorem 2.5 (Hardy- Littlewood) [2, p. 657] The necessary and sufficient condition that $\sum_{n=1}^{\infty} a_n \cos nx$ $a_n \downarrow 0$ be the Fourier series of a function $f \in L_p$, p > 1 is that the series $\sum_{n=1}^{\infty} a_n^p n^{p-2} < +\infty$.

Theorem 2.6 [3] The necessary and sufficient condition that the $\sum_{n=1}^{\infty} a_n \cos nx$ where $\{a_n\}$ is positive and quasi-monoton be Fourier series of a function

$$f \in L(p, \alpha)$$
, where $1 \le p < \infty$, $-1 < \alpha p < p - 1$ is that the series
$$\sum_{n=1}^{\infty} (a_n)^p n^{p-\alpha p-2} < +\infty$$

In [1] given the following theorem concerning the Fourier coefficients of a function belonging to L_p class.

Theorem 2.7 [1] Let $f \in L_p$ ($p \ge 1$), function given with Fourier series

$$f(x) = \sum_{n=1}^{\infty} a_n \cos nx \ a_n \downarrow 0$$

Then

$$\frac{S_1}{1}, \frac{S_2}{2}, \frac{S_3}{3}, \dots$$

are also Fourier coefficients of a function of class L_p , where $S_n = \sum_{k=1}^n a_k$.

As you can see from Theorem 2.7 the connection is becoming between coefficients $\{a_n\}$ and $\{A_n\} = \left\{\frac{1}{n}\sum_{k=1}^n a_n\right\}$, where $a_n \downarrow 0$ $A_n \downarrow 0$. A question is settled down if the coefficients $\{a_n\}$ are quasi-monoton will the coefficients $\{A_n\} = \left\{\frac{1}{n}\sum_{k=1}^n a_n\right\}$ be quasi-monoton. A following lemma gives the positive answer to this question.

Lemma 2.8 [4] If $\{a_n\}$ is positive and quasi-monoton, then $\{A_n\} = \left\{\frac{1}{n}\sum_{k=1}^n a_k\right\}$

is also positive and quasi-monoton.

3 Main Results

The purpose of this paper is to reformulate the Theorem 4. in case when function $f(x) \in L(p, \alpha)$ and appropriate coefficients are quasi-monoton.

Theorem 3.1 Let $f(x) \in L(p, \alpha)$ $(1 \le p < \infty, -1 < \alpha p < p - 1)$, function given with Fourier series

$$f(x) = \sum_{n=1}^{\infty} a_n \cos nx ,$$

where $\{a_n\}$ is positive and quasi-monoton. Then series

$$\sum_{n=1}^{\infty} A_n \cos nx$$

where $\{A_n\} = \left\{\frac{1}{n}\sum_{k=1}^n a_k\right\}$, will be Fourier series of a function F(x) of class

 $L(p,\alpha).$

Proof: Let $f(x) \in L(p, \alpha)$ $(1 \le p < \infty, -1 < \alpha p < p - 1$, function given with Fourier series

$$f(x) = \sum_{n=1}^{\infty} a_n \cos nx ,$$

where $\{a_n\}$ is positive and quasi-monoton.

Since $\{a_n\}$ is positive and quasi-monoton and due to Lemma 2.8

$$\left\{A_n\right\} = \left\{\frac{1}{n}\sum_{k=1}^n a_k\right\}$$

is positive and quasi-monoton. To proof theorem we have to show that $\sum_{n=1}^{\infty} (A_n)^p n^{p-\alpha p-2} < +\infty \text{ , then by Theorem 2.6 follows that series } \sum_{n=1}^{\infty} A_n \cos nx \text{ is}$

Fourier series of a function F(x) of class $L(p,\alpha)$.

Let

$$f_1(x) = \int_0^x f(x)dx$$
 and $f_2(x) = \int_0^x f_1(x)dx$

Then

$$f_2(x) = \sum_{k=1}^{\infty} a_k [1 - \cos kx] \cdot k^{-2} \ge \sum_{k=1}^{n} a_k [1 - \cos kx] k^{-2}$$

for

$$\frac{\pi}{4(n+1)} \le x \le \frac{\pi}{4n}$$

we have

$$f_2(x) \ge B_1 \cdot n^{-2} \cdot \sum_{k=1}^n a_k \ge B_1 \cdot n^{-1} A_n$$

for same constant B_1 . So $A_n \le B \cdot n \cdot f_2(x)$ for same constant B.

Thus:

$$\sum_{n=1}^{\infty} n^{p-\alpha p-2} [A_n]^p \le B \cdot \sum_{n=1}^{\infty} n^{p-\alpha p-2} \cdot n^p [f_2(x)]^p = \\ = B \cdot \sum_{n=1}^{\infty} n^{2p-\alpha p-2} \min_{\frac{\pi}{4(n+1)} \le x \le \frac{\pi}{4n}} [f_2(x)]^p \le \\ \le B \cdot \sum_{n=1}^{\infty} \int_{\frac{\pi}{4(n+1)}}^{\frac{\pi}{4(n+1)}} (\sin x)^{\alpha p-p} \cdot \left[\frac{f_2(x)}{x}\right]^p dx = \\ = B \cdot \int_{0}^{\pi/4} (\sin x)^{\alpha p-p} \cdot [x^{-1} f_2(x)]^p dx \le B(\alpha, p) \cdot \int_{0}^{\pi/4} (\sin x)^{\alpha p-p} \cdot [x^{-1} f_1(x)]^p dx \\ \le B(\alpha, p) \cdot \int_{0}^{\pi/4} (\sin x)^{\alpha p} \cdot (f(x))^p dx < \infty$$

A similar method may be used to estimate

184

Ismet Temaj

$$\int_{\pi/4}^{\pi} (\sin x)^{\alpha p} \cdot (f(x))^p \, dx < \infty$$

So

$$\sum_{n=1}^{\infty} n^{p-\alpha p-2} [An]^p < \infty \, .$$

This finishes the proof of Theorem 3.1.

The question appears: Is the converse valuable of Theorem 2.7 and 3.1 if the series $\sum_{n=1}^{\infty} A_n \cos nx$ is Fourier series, will Fourier series be $\sum_{n=1}^{\infty} a_n \cos nx$. From the following example it is proved that the converse of Theorem 2.7 and 3.1 doesn't worth.

Example 3.2 Let

$$\sum_{n=1}^{\infty} A_n \cos nx = \sum_{n=1}^{\infty} \frac{1}{n} (-1)^n \cos nx$$

We have

$$\left[\sum_{n=1}^{\infty} |A_n|^p\right]^{\frac{1}{p}} = \left[\sum_{n=1}^{\infty} \left|\frac{1}{n} (-1)^n\right|^p\right]^{\frac{1}{p}} = \left\{\sum_{n=1}^{\infty} \frac{1}{n^p}\right\}^{\frac{1}{p}} < \infty, \quad 1 < p \le 2.$$

Hence by the theorem1.(Hausdorf-Young), A_n is the Fourier coefficients of a function $F(x) \in L_q$, where $\frac{1}{p} + \frac{1}{q} = 1$, $1 \le p < 2$, $q \ge 2$.

Now, if $\sum_{n=1}^{\infty} a_n \cos nx$ Fourier series of a function $f(x) \in L_p$, then we have

by Theorem 2.4 (Hausdorf – Young) necessarily $\left(\sum_{n=1}^{\infty} |a_n|^q\right)^{\frac{1}{q}} < \infty$, where $\frac{1}{n} + \frac{1}{q} = 1, 1$

But
$$A_n = \frac{1}{n} \sum_{k=1}^n a_k = \frac{1}{n} (-1)^n$$
 so follow
 $S_n = \sum_{k=1}^n a_k = (-1)^n$,
 $a_n = S_n - S_{n-1} = (-1)^n - (-1)^{n-1} = (-1)^{n-1} (-1-1) = 2 \cdot (-1)^n$
 $\left(\sum_{n=1}^\infty |a_n|^q\right)^{\frac{1}{q}} = \left(\sum_{n=1}^\infty |2(-1)^n|^q\right)^{\frac{1}{q}} = \sum_{n=1}^\infty (2^q)^{\frac{1}{q}} = \sum_{n=1}^\infty 2 = \infty$.
Therefore $\sum_{n=1}^\infty a_n \cos nx = \sum_{n=1}^\infty 2 \cdot (-1)^n \cos nx$ is not the Fourier series

Therefore $\sum_{n=1}^{\infty} a_n \cos nx = \sum_{n=1}^{\infty} 2 \cdot (-1)^n \cos nx$ is not the Fourier series of a function $f(x) \in L_p$.

So the question is settled down. What conditions of coefficients a_n will be fulfilled in order that converse is valuable. A following theorem gives answer to the question.

Theorem 3.3 Let

$$f(x) \approx \sum_{n=1}^{\infty} a_n \cos nx$$
,

where $\{a_n\}$ is positive and quasi-monoton. Then a necessary and sufficient condition that $\sum_{n=1}^{\infty} a_n \cos nx$ be the Fourier series of function $f(x) \in L(p, \alpha)$ is that:

$$\sum_{n=1}^{\infty} A_n \cos nx$$

to be the Fourier series of a function F(x) be belonging to $L(p,\alpha)$ where

$$1 \le p < \infty, -1 < \alpha p < p-1 \quad and \quad A_n = \frac{1}{n} \sum_{k=1}^n a_k.$$

Proof: The necessary part follows from Theorem 3.1 as a particular case.

Sufficiency. Suppose that series $\sum_{n=1}^{\infty} A_n \cos nx$ is Fourier series of a function $F(x) \in L(p, \alpha)$. Since $\{a_n\}$ is positive and quasi-monoton, then by Lemma 2.8 follows $\{A_n\}$ is positive and quasi-monoton. Hence by Theorem 2.6 we have

$$\sum_{n=1}^{\infty} n^{p-\alpha p-2} A_n^p < \infty \, .$$

Since sequence $\{a_n\}$ is positive and quasi-monoton then for some constant $\tau > 0$, sequence $n^{-\tau}a_n \downarrow 0$, and fore some constant $B_1 > 0$ we have $n^{-\tau}a_n \leq B_1k^{-\tau}a_k$ for k < n, then it follows that

$$A_{n} = \frac{1}{n} \sum_{k=1}^{n} a_{k} = \frac{1}{n} \sum_{k=1}^{n} k^{-\tau} a_{k} k^{\tau} \ge \frac{1}{B_{1}} \frac{1}{n} \cdot n^{-\tau} a_{n} \sum_{k=1}^{n} k^{\tau} =$$
$$= \frac{1}{B_{1}} \frac{1}{n} n^{-\tau} a_{n} \cdot n n^{\tau} = \frac{1}{B_{1}} a_{n}$$
$$a_{n} \le B_{1} \cdot A_{n}$$

So that

$$\sum_{n=1}^{\infty} n^{p-\alpha p-2} a_n^p \leq (B_1)^p \sum_{k=1}^{\infty} n^{p-\alpha p-2} A_n^p < \infty.$$

Hence by Theorem 2.6
$$f(x) \in L(p, \alpha)$$
 and consequently $\sum_{n=1}^{\infty} a_n \cos nx$ is the Fourier series of function $f(x)$.

ACKNOWLEDGEMENTS. The author wish to express their thanks to the worthy referees for their valuable suggestions and encouragement.

References

- G.H. Hardy, Not on some points in integral calculus, Messenger of Mathematics, 58, (1929), 50-52.
- [2] N.K. Bari, Trigonometriçeskie rjade, Moskva, 1961.
- [3] R. Askey and R. Wainger, Integrability theorems for Fourier series, Duke Mathematical Journal, 33(1), (1966), 223-228.
- [4] A.K. Gaur, A theorem for Fourier coefficients of a function of class L^P, *International Journal of Mathematics and Mathematical Sciences*, 13(4), (1990), 721-726.