Wada's Representations of the

Pure Braid Group of High Degree

Ihsan A. Daakur ${ }^{1}$ and Mohammad N. Abdulrahim ${ }^{2}$

Abstract

We consider the representation obtained by composing the embedding map of the pure braid group $P_{n} \rightarrow P_{n+k}$ and Wada's representation of degree $n+k$ to get a linear representation $$
P_{n} \rightarrow G L_{n+k}\left(C\left[t_{1}^{ \pm 1}, \ldots, t_{n+k}^{ \pm 1}\right]\right),
$$ whose composition factors are to be determined. A similar work was done in a previous work in the case of the Gassner representation of P_{n}.

Mathematics Subject Classification: 20F36

Keywords: pure braid group, Wada's representation

1 Introduction

The braid group on n strands, denoted by B_{n}, is defined as an abstract group with generators $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}$ and relations $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i},|i-j| \geq 2$, $1 \leq i, j \leq n-1 ; \quad \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$ for $1 \leq i \leq n-2$.

[^0]The pure braid group, P_{n}, is a normal subgroup of the braid group, B_{n}, on n strings. It has many linear representations. One of them is Wada's representation, which is an embedding $P_{n} \rightarrow \operatorname{Aut}\left(F_{n}\right)$, the automorphism group of a free group on n generators.

In [1], Abdulrahim has constructed an embedding of the pure braid group $P_{n} \rightarrow P_{n+k}$ and composed it with the Gassner representation of P_{n+k} to get a linear representation $P_{n} \rightarrow G L_{n+k}\left(C\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}, \ldots, t_{n+k}^{ \pm 1}\right]\right)$, where the composition factors were completely determined. In our work, we consider Wada's representation instead of the Gassner representation, where σ_{i}, takes $x_{i} \rightarrow x_{i} x_{i+1}^{-1} x_{i}, x_{i+1} \rightarrow x_{i}$; and fixes all other free generators. Our main theorem is similar to that obtained in [1], where the composition factors of the representation obtained by composing the embedding map and Wada's representation are to be determined. However, for the sake of our work, the embedding map $P_{n} \rightarrow P_{n+k}$ has to be defined in a different way, where a generator of P_{n} is mapped to another generator of P_{n+k}, rather than to a product of generators of P_{n+k} as in [1].

2 Preliminaries

Definition 2.1. Let F_{n} be a free group of rank n, with free basis x_{1}, \ldots, x_{n}
. We define for $j=1,2, \ldots \ldots . ., n$ the free derivatives on the group $\mathbb{Z} F_{n}$ by
(i) $\frac{\partial x_{i}}{\partial x j}=\delta_{i, j}$,
(ii) $\frac{\partial x_{i}^{-1}}{\partial x j}=-\delta_{i, j} x_{i}^{-1}$,
(iii) $\frac{\partial}{\partial x_{j}}(u v)=\frac{\partial u}{\partial x j} \epsilon(v)+u \frac{\partial v}{\partial x j} \quad u, v \in \mathbb{Z} F$.

Here $\delta_{i, j}$ is the Kronecker symbol. For simplicity, we denote $\frac{\partial}{\partial x_{j}}$ by d_{j}.

Definition 2.2. The pure braid group, P_{n}, is defined as the kernel of the homomorphism $B_{n} \rightarrow S_{n}$, defined by $\sigma_{i} \rightarrow(i, i+1), 1 \leq i \leq n-1$. It has the following generators:

$$
A_{i, j}=\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i}^{2} \sigma_{i+1} \ldots \sigma_{j-2} \sigma_{j-1}, 1 \leq i<j \leq n
$$

Definition 2.3. Wada's representation is defined as the representation of the automorphism corresponding to the braid generator σ_{i}, takes $x_{i} \rightarrow x_{i} x_{i+1}^{-1} x_{i}$, $x_{i+1} \rightarrow x_{i}$ and fixes all other free generators.

It is easy to see that the inverse σ_{i}^{-1}, takes $x_{i} \rightarrow x_{i+1}, x_{i+1} \rightarrow x_{i+1}^{-1} x_{i} x_{i+1}^{-1}$; and fixes all other generators. For more details, see [3].

3 Main Results

We determine the action of the automorphisms $A_{i, j}$ on the generators of the free group F_{n}. We then define an embedding of the pure braid group $P_{n} \rightarrow P_{n+k}$ and compose the embedding map and Wada's representation of the pure braid group P_{n+k}.

3.1 Action of the automorphisms on the free group

Lemma 3.1. As automorphisms of the free group F_{n}, the generators, $A_{i, j}$, act on the free group F_{n} as follows:
(i) $A_{i, j}\left(x_{i}\right)=x_{i} x_{j}^{-1} x_{i} x_{j}^{-1} x_{i}$
(ii) $A_{i, j}\left(x_{j}\right)=x_{i} x_{j}^{-1} x_{i}$
(iii) $A_{i, j}\left(x_{r}\right)=x_{r} \quad$ if $1 \leq r<i$ or $j<r \leq n$
(iv) $A_{i, j}\left(x_{r}\right)=\left(x_{i} x_{j}^{-1} x_{i} x_{j}\right) x_{r}^{-1}\left(x_{j} x_{i} x_{j}^{-1} x_{i}\right) \quad$ if $i<r<j$

Proof. We have that

$$
A_{i, j}=\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i}^{2} \sigma_{i+1} \ldots \sigma_{j-2} \sigma_{j-1}, 1 \leq i<j \leq n .
$$

We need to consider $A_{i, j}$ as left automorphisms acting on the generators of F_{n} from the left.

To prove (i):

$$
\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i}^{2} \sigma_{i+1} \ldots \sigma_{j-2} \sigma_{j-1}\left(x_{i}\right)
$$

$$
\begin{aligned}
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i}^{2} \sigma_{i+1} \ldots \sigma_{j-2}\left(x_{i}\right) \\
& \vdots \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i}\left(\sigma_{i}\left(x_{i}\right)\right) \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i}\left(x_{i} x_{i+1}^{-1} x_{i}\right) \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1}\left(x_{i} x_{i+1}^{-1} x_{i} x_{i}^{-1} x_{i} x_{i+1}^{-1} x_{i}\right) \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1}\left(x_{i} x_{i+1}^{-1} x_{i} x_{i+1}^{-1} x_{i}\right) \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+2}^{-1}\left(x_{i} x_{i+2}^{-1} x_{i} x_{i+2}^{-1} x_{i}\right) \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+3}^{-1}\left(x_{i} x_{i+3}^{-1} x_{i} x_{i+3}^{-1} x_{i}\right) \\
& \vdots \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1}\left(x_{i} x_{j-2}^{-1} x_{i} x_{j-2}^{-1} x_{i}\right) \\
& =\sigma_{j-1}^{-1}\left(x_{i} x_{j-1}^{-1} x_{i} x_{j-1}^{-1} x_{i}\right) \\
& =x_{i} x_{j}^{-1} x_{i} x_{j}^{-1} x_{i}
\end{aligned}
$$

To prove (ii):

$$
\begin{aligned}
& \sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i}^{2} \sigma_{i+1} \ldots \sigma_{j-2} \sigma_{j-1}\left(x_{j}\right) \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i}^{2} \sigma_{i+1} \ldots \sigma_{j-2}\left(x_{j-1}\right) \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{\sigma}^{2} \sigma_{i+1} \ldots \sigma_{j-3}\left(x_{j-2}\right) \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i}^{2} \sigma_{i+1} \ldots \sigma_{j-4}\left(x_{j-3}\right) \\
& \vdots \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i}^{2} \sigma_{i+1}\left(x_{i+2}\right) \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i}^{2}\left(x_{i+1}\right) \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i}\left(x_{i}\right) \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1}\left(x_{i} x_{i+1}^{-1} x_{i}\right) \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+2}^{-1}\left(x_{i} x_{i+2}^{-1} x_{i}\right) \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+3}^{-1}\left(x_{i} x_{i+3}^{-1} x_{i}\right) \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+4}^{-1}\left(x_{i} x_{i+4}^{-1} x_{i}\right) \\
& \vdots \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1}\left(x_{i} x_{j-2}^{-1} x_{i}\right) \\
& =\sigma_{j-1}^{-1}\left(x_{i} x_{j-1}^{-1} x_{i}\right) \\
& =x_{i} x_{j}^{-1} x_{i}
\end{aligned}
$$

To prove (iii):
Since $r>j$, that is, the smallest possible value of r is $j+1$, then $A_{i, j}\left(x_{r}\right)=$ x_{r} for $j<r \leq n$.

Now, since $r<i$, that is, the greatest possible value of r is $i-1$, then $A_{i, j}\left(x_{r}\right)=x_{r}$ for $1 \leq r<i$.

To prove (iv):
Since $i<r<j$, the largest index of x, namely r, is $j-1$ and the smallest index of x, namely r, is $i-1$. Then

$$
\begin{aligned}
& \sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i}^{2} \sigma_{i+1} \ldots \sigma_{j-2} \sigma_{j-1}\left(x_{r}\right) \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i}^{2} \sigma_{i+1} \ldots \sigma_{r-1} \sigma_{r}\left(x_{r}\right) \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i}^{2} \sigma_{i+1} \ldots \sigma_{r-1}\left(x_{r} x_{r+1}^{-1} x_{r}\right) \\
& =\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i}^{2} \sigma_{i+1} \ldots \sigma_{r-2}\left(x_{r-1} x_{r+1}^{-1} x_{r-1}\right)
\end{aligned}
$$

$$
\vdots
$$

$$
=\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i}^{2} \sigma_{i+1}\left(x_{i+2} x_{r+1}^{-1} x_{i+2}\right)
$$

$$
=\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i}^{2}\left(x_{i+1} x_{r+1}^{-1} x_{i+1}\right)
$$

$$
=\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1} \sigma_{i}\left(x_{i} x_{r+1}^{-1} x_{i}\right)
$$

$$
=\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+1}^{-1}\left(x_{i} x_{i+1}^{-1} x_{i} x_{r+1}^{-1} x_{i} x_{i+1}^{-1} x_{i}\right)
$$

$$
=\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+2}^{-1}\left(x_{i} x_{i+2}^{-1} x_{i} x_{r+1}^{-1} x_{i} x_{i+2}^{-1} x_{i}\right)
$$

$$
=\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{i+3}^{-1}\left(x_{i} x_{i+3}^{-1} x_{i} x_{r+1}^{-1} x_{i} x_{i+3}^{-1} x_{i}\right)
$$

$$
\vdots
$$

$$
=\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{r}^{-1}\left(x_{i} x_{r}^{-1} x_{i} x_{r+1}^{-1} x_{i} x_{r}^{-1} x_{i}\right)
$$

$$
=\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{r+1}^{-1}\left(x_{i} x_{r+1}^{-1} x_{i} x_{r+1} x_{r}^{-1} x_{r+1} x_{i} x_{r+1}^{-1} x_{i}\right)
$$

$$
=\sigma_{j-1}^{-1} \sigma_{j-2}^{-1} \ldots \sigma_{r+2}^{-1}\left(x_{i} x_{r+2}^{-1} x_{i} x_{r+2} x_{r}^{-1} x_{r+2} x_{i} x_{r+2}^{-1} x_{i}\right)
$$

$$
\vdots
$$

$$
=\sigma_{j-1}^{-1} \sigma_{j-2}^{-1}\left(x_{i} x_{j-2}^{-1} x_{i} x_{j-2} x_{r}^{-1} x_{j-2} x_{i} x_{j-2}^{-1} x_{i}\right)
$$

$$
=\sigma_{j-1}^{-1}\left(x_{i} x_{j-1}^{-1} x_{i} x_{j-1} x_{r}^{-1} x_{j-1} x_{i} x_{j-1}^{-1} x_{i}\right)
$$

$$
=x_{i} x_{j}^{-1} x_{i} x_{j} x_{r}^{-1} x_{j} x_{i} x_{j}^{-1} x_{i}
$$

$$
=\left(x_{i} x_{j}^{-1} x_{i} x_{j}\right) x_{r}^{-1}\left(x_{j} x_{i} x_{j}^{-1} x_{i}\right)
$$

3.2 The embedding $P_{n} \rightarrow P_{n+k}$

In [1], the embedding of the pure braid group was defined in a way that the generators $A_{1, j}$ were mapped to a product of generators of P_{n+k} and other generators $A_{i, j}$ to $A_{i+k, j+k}$. Whereas in our work, we require that the generator of P_{n} is to be mapped to another generator of P_{n+k}. More precisely, we define the following map:

$$
\Psi: P_{n} \rightarrow P_{n+k}
$$

as

$$
\Psi\left(A_{i, j}\right)= \begin{cases}A_{1, j+k}, & i=1 \text { and } 2 \leq j \leq n \\ A_{i+k, j+k}, & 2 \leq i<j \leq n,\end{cases}
$$

where $\Psi\left(A_{i, j}\right)$ is a generator of P_{n+k}, that is an automorphism of F_{n+k} whose action on the free generator $x_{1}, x_{2}, \ldots, x_{n}, \ldots, x_{n+k}$ is defined in Lemma 3.1. We compose the map above with the embedding $P_{n+k} \rightarrow \operatorname{Aut}\left(F_{n+k}\right)$. The image of the generators under this embedding is treated as left automorphisms of the free froup F_{n+k}. As a basis for the free group F_{n+k}, we take the following generators:

$$
\begin{gathered}
y_{1}=x_{1}, \quad y_{2}=x_{k+2}, \quad y_{3}=x_{k+3}, \ldots, y_{n}=x_{k+n} \\
y_{n+1}=x_{2}, \quad y_{n+2}=x_{3}, \ldots, y_{n+k}=x_{k+1}
\end{gathered}
$$

Using the action of the automorphism, σ_{i}, on the basis of F_{n+k}, we have the following lemmas about the images of the generators of P_{n}, namely $\Psi\left(A_{i, j}\right)$ for $1 \leq i<j \leq n$.

Lemma 3.2. For $1<j \leq n$, the action of the images of the generators, $A_{1, j}$ on the basis of F_{n+k} is given by
(i) $\Psi\left(A_{1, j}\right)\left(y_{1}\right)=y_{1}\left(y_{j}^{-1} y_{1} y_{j}^{-1} y_{1}\right)$,
(ii) $\Psi\left(A_{1, j}\right)\left(y_{j}\right)=y_{1} y_{j}^{-1} y_{1}$,
(iii) $\Psi\left(A_{1, j}\right)\left(y_{r}\right)=y_{r} \quad$ for $j<r \leq n$,
(iv) $\Psi\left(A_{1, j}\right)\left(y_{r}\right)=\left(y_{1} y_{j}^{-1} y_{1} y_{j}\right) y_{r}^{-1}\left(y_{j} y_{1} y_{j}^{-1} y_{1}\right) \quad$ for $1<r<j$,
(v) $\Psi\left(A_{1, j}\right)\left(y_{n+r}\right)=\left(y_{1} y_{j}^{-1} y_{1} y_{j}\right) y_{n+r}^{-1}\left(y_{j} y_{1} y_{j}^{-1} y_{1}\right) \quad$ for $1 \leq r \leq k$.

Proof. Since the image of $A_{1, j}$ under Ψ is a generator of P_{n+k} namely $A_{1, j+k}$, it suffices only to prove (v). We have that

$$
\Psi\left(A_{1, j}\right)=A_{1, j+k}=\sigma_{j+k-1}^{-1} \sigma_{j+k-2}^{-1} \ldots \sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{1}^{2} \sigma_{2} \sigma_{3} \ldots \sigma_{k} \sigma_{k+1} \sigma_{k+2} \ldots \sigma_{j+k-1}
$$

To prove (v): Let $y_{n+r}=x_{r+1}$, for $1 \leq r \leq k$. Then $1 \leq r<j+k-1$ and we have that

$$
\begin{aligned}
& \sigma_{j+k-1}^{-1} \sigma_{j+k-2}^{-1} \ldots \sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{1}^{2} \sigma_{2} \sigma_{3} \ldots \sigma_{k} \sigma_{k+1} \sigma_{k+2} \ldots \sigma_{j+k-1}\left(x_{r+1}\right) \\
& =\sigma_{j+k-1}^{-1} \sigma_{j+k-2}^{-1} \ldots \sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{1}^{2} \sigma_{2} \sigma_{3} \ldots \sigma_{k} \sigma_{k+1} \sigma_{k+2} \ldots \sigma_{r} \sigma_{r+1}\left(x_{r+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sigma_{j+k-1}^{-1} \sigma_{j+k-2}^{-1} \ldots \sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{1}^{2} \sigma_{2} \sigma_{3} \ldots \sigma_{k} \sigma_{k+1} \sigma_{k+2} \ldots \sigma_{r}\left(x_{r+1} x_{r+2}^{-1} x_{r+1}\right) \\
& =\sigma_{j+k-1}^{-1} \sigma_{j+k-2}^{-1} \ldots \sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{1}^{2} \sigma_{2} \sigma_{3} \ldots \sigma_{k} \sigma_{k+1} \sigma_{k+2} \ldots \sigma_{r-1}\left(x_{r} x_{r+2}^{-1} x_{r}\right) \\
& =\sigma_{j+k-1}^{-1} \sigma_{j+k-2}^{-1} \ldots \sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{1}^{2} \sigma_{2} \sigma_{3} \ldots \sigma_{k} \sigma_{k+1} \sigma_{k+2} \ldots \sigma_{r-2}\left(x_{r-1} x_{r+2}^{-1} x_{r-1}\right) \\
& \vdots \\
& =\sigma_{j+k-1}^{-1} \sigma_{j+k-2}^{-1} \ldots \sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{1}^{2}\left(x_{2} x_{r+2}^{-1} x_{2}\right) \\
& =\sigma_{j+k-1}^{-1} \sigma_{j+k-2}^{-1} \ldots \sigma_{3}^{-1} \sigma_{2}^{-1} \sigma_{1}\left(x_{1} x_{r+2}^{-1} x_{1}\right) \\
& =\sigma_{j+k-1}^{-1} \sigma_{j+k-2}^{-1} \ldots \sigma_{3}^{-1} \sigma_{2}^{-1}\left(x_{1} x_{2}^{-1} x_{1} x_{r+2}^{-1} x_{1} x_{2}^{-1} x_{1}\right) \\
& =\sigma_{j+k-1}^{-1} \sigma_{j+k-2}^{-1} \ldots \sigma_{3}^{-1}\left(x_{1} x_{3}^{-1} x_{1} x_{r+2}^{-1} x_{1} x_{3}^{-1} x_{1}\right) \\
& =\sigma_{j+k-1}^{-1} \sigma_{j+k-2}^{-1} \ldots \sigma_{4}^{-1}\left(x_{1} x_{4}^{-1} x_{1} x_{r+2}^{-1} x_{1} x_{4}^{-1} x_{1}\right) \\
& \vdots \\
& =\sigma_{j+k-1}^{-1} \sigma_{j+k-2}^{-1} \ldots \sigma_{r+2}^{-1} \sigma_{r+1}^{-1}\left(x_{1} x_{r+1}^{-1} x_{1} x_{r+2}^{-1} x_{1} x_{r+1}^{-1} x_{1}\right) \\
& =\sigma_{j+k-1}^{-1} \sigma_{j+k-2}^{-1} \ldots \sigma_{r+2}^{-1}\left(x_{1} x_{r+2}^{-1} x_{1} x_{r+2} x_{r+1}^{-1} x_{r+2} x_{1} x_{r+2}^{-1} x_{1}\right) \\
& =\sigma_{j+k-1}^{-1} \sigma_{j+k-2}^{-1} \ldots \sigma_{r+3}^{-1}\left(x_{1} x_{r+3}^{-1} x_{1} x_{r+3} x_{r+1}^{-1} x_{r+3} x_{1} x_{r+3}^{-1} x_{1}\right) \\
& \vdots \\
& =\sigma_{j+k-1}^{-1}\left(x_{1} x_{j+k-1}^{-1} x_{1} x_{j+k-1} x_{r+1}^{-1} x_{j+k-1} x_{1} x_{j+k-1}^{-1} x_{1}\right) \\
& =x_{1} x_{j+k}^{-1} x_{1} x_{j+k} x_{r+1}^{-1} x_{j+k} x_{1} x_{j+k}^{-1} x_{1} \\
& =\left(y_{1} y_{j}^{-1} y_{1} y_{j}\right) y_{n+r}^{-1}\left(y_{j} y_{1} y_{j}^{-1} y_{1}\right)
\end{aligned}
$$

For $1<i<j \leq n$, we have that $\Psi\left(A_{i, j}\right)=A_{i+k, j+k}$. Acting on the generators of F_{n+k}, namely, x_{1}, \ldots, x_{n+k} subject to the rules stated in Lemma 3.1 , we easily verify the following lemma.

Lemma 3.3. For $1<i<j \leq n$, the action of the images of the generators $A_{i, j}$ on the basis of F_{n+k} is as follows:
(i) $\Psi\left(A_{i, j}\right)\left(y_{i}\right)=y_{i}\left(y_{j}^{-1} y_{i} y_{j}^{-1} y_{i}\right)$
(ii) $\Psi\left(A_{i, j}\right)\left(y_{j}\right)=y_{i} y_{j}^{-1} y_{i}$
(iii) $\Psi\left(A_{i, j}\right)\left(y_{r}\right)=y_{r} \quad$ for $1 \leq r<i$ or $j<r \leq n$
(iv) $\Psi\left(A_{i, j}\right)\left(y_{r}\right)=\left(y_{i} y_{j}^{-1} y_{i} y_{j}\right) y_{r}^{-1}\left(y_{j} y_{i} y_{j}^{-1} y_{i}\right) \quad$ for $i<r<j$
(v) $\Psi\left(A_{i, j}\right)\left(y_{n+r}\right)=y_{n+r}$

$$
\text { for } 1 \leq r \leq k
$$

Proof. As in Lemma 3.2, we only need to prove (v): Let $y_{n+r}=x_{r+1}$, for $1 \leq r \leq k$. Since $r \leq k$, that is, the greatest possible value of $r+1$ is $k+1$, it follows that $\Psi\left(A_{i, j}\right)\left(y_{n+r}\right)=\Psi\left(A_{i, j}\right)\left(x_{r+1}\right)=A_{i+k, j+k}\left(x_{r+1}\right)=x_{r+1}=$ y_{n+r}.

Let ϕ be a homomorphism from F_{n+k} to $\left(\mathbb{C}^{*}\right)^{n+k}$ defined by $\phi\left(y_{i}\right)=t_{i}$, for $1 \leq i \leq n+k$. Let $D_{i}=\phi \frac{\partial}{\partial y_{i}}$. Our objective now is to determine the Jacobian matrix of the image of the generator $A_{i, j}$ under the map, namely the automorphism $\Psi\left(A_{i, j}\right)$ on the free group F_{n+k} defined in Lemma 3.2 and Lemma 3.3, so that we can find the linear representation obtained by composing the map $P_{n} \rightarrow P_{n+k}$ with Wada's representation. By intuition, the order of the generators of F_{n+k} is:

$$
y_{1}, \ldots, y_{n}, y_{n+1}, \ldots, y_{n+k}
$$

Consider $\Psi\left(A_{i, j}\right)$, the image of $A_{i, j}$ under the map $P_{n} \rightarrow P_{n+k}$, and call it $A_{i, j}$ for simplicity. Then we define the jacobian matrix as follows:

$$
J\left(A_{i, j}\right)=\left[\begin{array}{ccc}
D_{1}\left(A_{i, j}\left(y_{1}\right)\right) & \ldots & D_{n+k}\left(A_{i, j}\left(y_{1}\right)\right) \\
\vdots & & \vdots \\
D_{1}\left(A_{i, j}\left(y_{n+k}\right)\right) & \ldots & D_{n+k}\left(A_{i, j}\left(y_{n+k}\right)\right)
\end{array}\right]
$$

The construction used here is the Magnus representation of $P_{n+k}[2$, p.115119].

We now prove our main theorem.

Theorem 3.4. By composing the embedding $P_{n} \rightarrow P_{n+k}$ with Wada's representation of P_{n+k}, we get a linear representation of degree $n+k$ whose one of the composition factors is isomorphic to Wada's representation of P_{n} and the other is a diagonal representation. The matrix that corresponds to the image of $A_{i, j}$ has the following form:

$$
\left[\begin{array}{cc}
\gamma\left(A_{i, j}\right) & 0 \\
* & M_{k}
\end{array}\right]
$$

where $\gamma\left(A_{i, j}\right)$ is the image of $A_{i, j}$ under Wada's representation of degree n and M_{k} is a diagonal representation whose diagonal entries are all ones in the case $1<i \leq n$ and $-t_{1}^{2} t_{n+r}^{-1}$ when $i=1$ and $1 \leq r \leq k$.

Proof. From Lemma 3.2 and Lemma 3.3, we easily verify that statements (i), (ii), (iii) and (iv) coincide with the definition of the image of $A_{i, j}$ under the

Wada's representation of P_{n} specified by the basis $\left\{y_{1}, \ldots, y_{n}\right\}$ (See Lemma 3.1). Furthermore, statement (v) in Lemma 3.2 asserts that

$$
\Psi\left(A_{1, j}\right)\left(y_{n+r}\right)=\left(y_{1} y_{j}^{-1} y_{1} y_{j}\right) y_{n+r}^{-1}\left(y_{j} y_{1} y_{j}^{-1} y_{1}\right)
$$

for any $1 \leq r \leq k$, which in turn implies that

$$
D_{n+r}\left(\Psi\left(A_{1, j}\right)\left(y_{n+r}\right)\right)=-t_{1}^{2} t_{n+r}^{-1} .
$$

Statement (v) in Lemma 3.3 asserts that for $1<i<j \leq n$, we have that $\Psi\left(A_{i, j}\right)\left(y_{n+r}\right)=y_{n+r}$ for $1 \leq r \leq k$, which implies that

$$
D_{n+r}\left(\Psi\left(A_{i, j}\right)\left(y_{n+r}\right)\right)=1 .
$$

This completes the proof.

4 Conclusion

In our work, we have completely determined the composition factors of the representation obtained by composing the embedding map $P_{n} \rightarrow P_{n+k}$ and Wada's representation of the pure braid group P_{n+k}.

References

[1] M.N. Abdulrahim, On embeddings of pure braid groups $P_{n} \rightarrow P_{n+k}$, Int. J. Appl. Math., 16(1), (2004), 1-12.
[2] J.S. Birman, Braids, Links and Mapping Class Groups, Annals of Mathematical Studies, vol. 82, Princeton University Press, New Jersey, 1975.
[3] M. Wada, Group Invaraints of Links, Topolgy, 31(1), (1992), 399-406.

[^0]: 1 Department of Mathematics, Beirut Arab University, P.O. Box: 11-5020, Beirut, Lebanon, e-mail: iad101@bau.edu.lb
 ${ }^{2}$ Department of Mathematics, Beirut Arab University, P.O. Box: 11-5020, Beirut, Lebanon, e-mail: mna@bau.edu.lb

