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Stability of solitary waves for symmetric

coupled Klein-Gordon equations

in 2-dimensional

Hua Liu1 and Guoguang Lin2

Abstract

In this paper, the authors discuss the existence and stability of soli-

tary waves for the symmetric coupled Klein-Gordon equations in R2.

The existence is obtained by considering a minimization problem using

the concentration compactness principle and the stability is proved by

stability theory.
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1 Introduction

Stability of solitary waves describes the phenomenon that two solitary waves

still maintain their energy and velocity in respectively after they encounter.

Now, the virtue is concerned by more and more investigators. [1-4] state the
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existence or stability of solitary waves for Schrödinger equation, Kadomtsev-

Petvicshvili equation, Klein-Gordon equation and their coupled equations.

Where [4] describe the interaction of a nucleon field with a meson field, whereas

we use the following Klein-Gordon equations to interpret the motion between

the meson. {
utt −∆u+ u = |v|r|u|r−2u,

vtt −∆v + v = |u|r|v|r−2v, (x, y) ∈ R2
(1.1)

where (u, v) is a real function of (x, y, t) ∈ R2. The periodic solutions,

periodic traveling wave solutions, exact solutions and stability of the standing

waves of the similar coupled Klein-Gordon equations in [5-9]. (1.1) describes

the interact of the same masses charged meson in an electromagnetic field, the

motion via a nonlinear coupling.

This paper is organized as follows: In Section 2 , we discuss the existence

by considering a minimization problem using the concentration compactness

principle; In Section 3 , based on the results obtained in section 2, we state

the stability by stability theory, [10-11].

Here we set: H1 = H1(R2), L2 = L2(R2), Y (R2) = H1(R2)×H1(R2).

The solitary waves of (1.1) are defined in the following form{
u(x, y, t) = ϕc(x− ct, y),

v(x, y, t) = ψc(x− ct, y).
(1.2)

Then {
c2ϕxx −∆ϕc + ϕc = |ψc|r|ϕc|r−2ϕc,

c2ψxx −∆ψc + ψc = |ϕc|r|ψc|r−2ψc.
(1.3)

2 Existence Of Solitary Waves

Theorem 2.1. (1.3) admits one nontrivial solution in H1(R2)×H1(R2).

It is clear that (1.3) is the critical point equations of the functional

T (ϕ, ψ) =
1

2

∫
|∇ϕ|2 − c2|ϕx|2 + |ϕc|2 + |∇ψ|2 − c2|ψx|2 + |ψc|2 −

2

r
|ϕψ|r
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When 0 < c < 1 consider the following minimization problem

Iλ = Mc = inf
(ϕ,ψ)∈Σλ

Ic(ϕ, ψ) (2.1)

Σλ =
{

(ϕ, ψ) ∈ H1 ×H1 : ϕ, ψ 6≡ 0, K(ϕ, ψ) = λ
}

(2.2)

Where

Ic(ϕ, ψ) =
1

2

∫
|∇ϕ|2 − c2|ϕx|2 + |ϕc|2 + |∇ψ|2 − c2|ψx|2 + |ψc|2

K(ϕ, ψ) =

∫
|ϕψ|r

If (ϕ, ψ) is a minimizer of (2.1), then there exists a Lagrange multiplier θ

such that {
c2ϕxx −∆ϕc + ϕc − θ|ψc|r|ϕc|r−2ϕc = 0,

c2ψxx −∆ψc + ψc − θ|ϕc|r|ψc|r−2ψc = 0.

Where ϕ1 = θ
1

2(r−1)ϕ, ψ1 = θ
1

2(r−1)ψ is solution of (1.3).

We prove the Theorem 2.1 by the following several lemmas.

Lemma 2.2. Iλ > 0, for any λ > 0.

Proof. When u ∈ H1(R2), then

∫
|ux|qdxdy ≤

∫
|∇u|qdxdy,∀q < ∞.

And since ϕ ∈ H1(R2), ψ ∈ H1(R2), we get∫
|ϕ|r|ψ|rdxdy ≤ 1

2

∫
(|ϕ|2r + |ψ|2r)dxdy

Hence λ =

∫
|ϕ|r|ψ|rdxdy ≤ A1I

r
λ. Therefore there is a some r > 0, for any

λ > 0, we have Iλ > 0.

Lemma 2.3. Σλ 6= ∅, for any λ > 0.

Lemma 2.4. (Strict Sub-additivity) We have Iλ < Iλ−α + Iα, for any α ∈
(0, λ).
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Proof. Let ϕλ = λ
1
2rϕ, ψλ = λ

1
2rψ. Then (ϕ, ψ) ∈ Σ1 ⇔ (ϕλ, ψλ) ∈ Σλ

and Iλ = λ
1
r I1.

Proof of Theorem 2.1 (Concentration Compactness Principle): Let (ϕk, ψk)

be the minimizing sequence of problem Iλ for ∀λ > 0 and set

ρk =
1

2

(
|∇ϕk|2 + |ϕk|2 − c2|ϕkx|2 + |∇ψk|2 + |ψk|2 − c2|ψkx|2

)
We have∫

ρk =
1

2

∫ (
|∇ϕk|2 + |ϕk|2 − c2|ϕkx|2 + |∇ψk|2 + |ψk|2 − c2|ψkx|2

)
= Ic(ϕk, ψk)→ Iλ

(i) If lim
k→∞

sup
X∈R2

∫
X+Bk

ρkdxdy = 0, for any R <∞,

Where BR = BR(0) is a circle with radius R centered at 0 and X = (x, y) ∈ R2.

And since∫
R2

|ϕψ|rdxdy ≤ A1

 sup
X∈R2

∫
X+B1

|ϕ|2
r

+

 sup
X∈R2

∫
X+B1

|ψ|2
r

Therefore |ϕk|r|ψk|r → 0, strongly in Lr.

Which contradicts the fact that (ϕk, ψk) ∈ Σλ and λ > 0.

(ii) We may assume

lim
t→∞

N(t) = γ ∈ (0, Iλ) (2.3)

Where

N(t) = lim
k→∞

sup
X0∈R2

∫
X0+Bt

ρkdxdy (2.4)

X0 = (x0, y0) ∈ R2 and (ϕk, ψk) is the minimizing sequence.

We need the following several lemmas to prove the consequence.

Lemma 2.5. Assume (2.3) holds. Then for any ε > 0, there exists δ(ε)→
0 (as ε → 0) such that we can find ϕ1

k, ϕ2
k, ψ

1
k, ψ2

k satisfying the following

relations ∥∥ϕk − (ϕ1
k + ϕ2

k)
∥∥
H1 +

∥∥ψk − (ψ1
k + ψ2

k)
∥∥
H1 ≤ δ(ε) (2.5)
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∣∣Ic(ϕ1
k, ψ

1
k)− γ

∣∣ ≤ δ(ε) (2.6)∣∣Ic(ϕ1
k, ψ

1
k)− (Iλ − γ)

∣∣ ≤ δ(ε) (2.7)∣∣∣∣∫ (|ϕ1
k|rψ1

k|r + |ϕ2
k|rψ2

k|r − |ϕk|rψk|r)
∣∣∣∣ < δ(ε) (2.8)

dist(suppϕ1
k, suppϕ

2
k)→∞, dist(suppψ1

k, suppψ
2
k)→∞ (2.9)

We may assume

K(ϕ1
k, ψ

1
k)→ λ1(ε), K(ϕ2

k, ψ
2
k)→ λ2(ε) as k →∞

Then

|λ− (λ1(ε) + λ2(ε))| ≤ δ(ε)→ 0 as ε→ 0

We distinguish the following two cases:

Case 1 When λ1(ε)→ 0 as ε→ 0. Choosing ε small enough ,we have

K(ϕ2
k, ψ

2
k) > 0

Set (
ϕ̃2
k, ψ̃

2
k

)
=

((
λ2(ε)

K(ϕ2
k, ψ

2
k)

)
1
2rϕ2

k, (
λ2(ε)

K(ϕ2
k, ψ

2
k)

) 1
2r

ψ2
k

)

And since
λ2(ε)

K(ϕ2
k, ψ

2
k)
→ 1 as ε→ 0.

We get

Iλ2(ε) ≤ lim sup
k→∞

Ic(ϕ
2
k, ψ

2
k) ≤ Iλ − γ + δ(ε)

Which contradicts the fact that λ2(ε)→ λ as ε→ 0 .

Case 2 lim
ε→0
|λ1(ε)| > 0 and lim

ε→0
|λ2(ε)| > 0, similar to the Case 1, we obtain

I|λ1(ε)| + I|λ2(ε)| ≤ lim inf
k→∞

(Ic(ϕ
1
k, ψ

1
k) + Ic(ϕ

2
k, ψ

2
k))

≤ Iλ + 2δ(ε)

Then Is + Iλ−s ≤ Iλ, for a some s ∈ (0, λ) contradicts the strict sub-additivity.

(iii) The only possibility is that ρk is tight, there exists a sequence Xk ∈
R2 such that for all ε > 0, there is a finite number R > 0 and k0 > 0 such that

1

2

∫
Xk+BR

|∇ϕ|2 − c2|ϕx|2 + |ϕc|2 + |∇ψ|2 − c2|ψx|2 + |ψc|2 ≥ Iλ − ε (2.10)
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Since (ϕk, ψk) is bounded in H1 × H1, we may assume that (ϕk(· − Xk),

ψk(· −Xk)) converges weakly in H1 ×H1 to (ϕ, ψ).

We prove that

ϕ(· −Xk)→ϕ, strongly in Lq (2.11)

ψ(· −Xk)→ψ, strongly in Lq , ∀2 ≤ q <∞ (2.12)

Indeed, from (2.10) it follows that for all ∀k ≥ k0,∫
Xk+BR

|ϕk|2 ≥
∫
R2

|ϕk|2 − 2ε

and hence ∫
R2

|ϕk|2 ≤ lim inf
k→∞

∫
Xk+BR

|ϕk|2 + 2ε

On the other hand, since H1(R2) ⊆ L2(R2) is compact, we get ϕk → ϕ strongly

in L2(R2), therefore ϕk(· − Xk) → ϕ strongly in L2(R2). From interpolation

and H1 ⊂ Lq (as 2 ≤ q <∞), we see that (2.11) holds.

(2.12) can be proved in the similar manner.

Therefore

K(ϕk, ψk)→ K(ϕ, ψ) = λ

and Iλ is a minimizer of Iλ.

Proof of Lemma 2.5. Assume (2.3) holds.

We can find R0 > 0, Rk ≥ R0, Rk with Rk ↗ ∞ and Xk ∈ R2 such that

γ − ε ≤
∫

X+BR0

ρkdxdy ≤ γ and Nk(2Rk) ≤ γ + ε, for k ≥ k0, where

Nk(t) = sup
X0∈R2

∫
X0+Bt

ρkdxdy.

Therefore ∫
R0≤|X−Xk|≤2Rk

ρkdxdy ≤ 2ε (2.13)

Define ϕ1
k, ϕ

2
k, ψ

1
k and ψ

2
k as follows:

Choose ξ, η ∈ C∞0 (R2), such that 0 ≤ ξ, η ≤ 1 and ξ ≡ 1, on B1, suppξ ⊂ B2;
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η ≡ 1, on Bc
1 ,suppη ⊂ Bc

1.

Let

ξk = ξ

(
· −Xk

R1

)
, ηk = η

(
· −Xk

Rk

)
Set

ϕ1
k = ξkϕk, ϕ

2
k = ηkϕk, ψ

1
k = ξkϕk, ψ

1
k = ηkϕk.

Now we prove (2.5)-(2.8)

‖ϕk − (ϕ1
k + ϕ2

k)‖L2
= ‖ϕk − (ξkϕk + ηkϕk)‖L2

≤ (

∫
R0≤|X−Xk|≤2Rk

|ϕk|2)
1
2 + ‖ξkϕk + ηkϕk‖L2

≤
√

2ε+ ‖ξkϕk‖L2 + ‖ηkϕk‖L2

However

‖ξkϕk‖L2 ≤ ‖ξk||Lp‖ϕk‖Lq , (2.14)

where

1

p
+

1

q
=

1

2
.

By (2.13)

‖ξkϕk‖L2 ≤ A
√
ε.

Similarly we can prove

‖ϕkϕk‖L2 ≤ A
√
ε.

Then

‖ϕk − (ϕ1
k + ϕ2

k)‖L2 ≤ A
√
ε.

By the same method as above, we obtain

‖ϕk − (ϕ1
k + ϕ2

k)‖H1 ≤ A
√
ε, ‖ψk − (ψ1

k + ψ2
k)‖H1 ≤ A

√
ε,

therefore (2.5) holds.
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(2.6)-(2.7) follows from the definition of N(t), γ.

Since∣∣∣∣∣∣
∫
R2

(|ϕk|r|ψk|r − |ϕ1
k|r|ψ1

k|r − |ϕ2
k|r|ψ2

k|r)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
R2

|ϕk|r|ψk|r(1− ξ2r
k − η2r

k )

∣∣∣∣∣∣
≤

∫
R0≤|X−Xk|≤2Rk

|ϕk|r|ψk|r

≤ A(

∫
R0≤|X−Xk|≤2Rk

ρk)
r

≤ δ(ε)

then (2.8) holds.

3 Stability of Solitary Waves

Set

~ϕ(x, y) = (ϕ(x, y), ψ(x, y)),

where (ϕ, ψ) is solution of (1.3).

Theorem 3.1. There exists T∗ = T∗(‖~ϕ0‖) > 0 such that have only one

solution of (1.1) and satisfy ~ϕ(0) = ~ϕ0, for any ~ϕ(x, y) ∈ H1(R2)×H1(R2).

Definition 3.2. Let (ϕ, ψ) be a solution of (1.3). If there is a some δ > 0,

for all λ > 0 such that for any ~ϕ(x, y, 0) ∈ Y (R2) with ‖~ϕ(x, y, 0) − ~ϕ‖Y <

δ and ~ϕ(x, y, t) satisfies the following inequality is solution of (1.1)

sup
t

inf
θ
|~ϕ(x, y, t)− (ϕ(x− θ, y), ψ(x− θ, y))|Y < ε,

Then ~ϕ(x, y, t) = (ϕ(x − ct, y), ψ(x − ct, y)) is solution of (1.1) is orbital

stability; Otherwise is orbital instability.

Note

Sc =
{

(ϕ, ψ) ∈ Y |Ic(ϕ, ψ) = K(ϕ, ψ) = [M(c)]
r
r−1

}
,
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where (ϕ, ψ) is solution of (1.3).

Choose ~u = (u, v) ∈ Y (R2), set

E(~u) =
1

2

∫
R2

|ut|2 + |∇u|2 + |u|2 + |vt|2 + |∇v|2 + |v|2 +
2

r
|uv|r

Q(~u) = −
∫
R2

uxut + vxvt (3.1)

Consider d(c) = E(~ϕ)− cQ(~ϕ), ~ϕ ∈ Sc.

d(c) = E(~ϕ)− cQ(~ϕ)

= Ic(~ϕ)− 1

r
K(~ϕ)

=
r − 1

r
Ic(~ϕ)

=
r − 1

r
K(~ϕ)

(3.2)

Set {
ϕ(x, y) = (1− c2)−

1
2G([2(1− c2)]−

1
2x, y),

ψ(x, y) = (1− c2)−
1
2W ([2(1− c2)]−

1
2x, y),

We get

M(c) =
√

2(1− c2)−
1
2M(

√
2

2
) (3.3)

By (3.2)-(3.3)

d′′(c) =

[
3r − 2

2(r − 1)
c2(1− c2)−( r

2(r−1)
+2) + (1− c2)−( r

2(r−1)
+1)

][√
2M(

√
2

2
)

] r
r−1

Therefore d′′(c) > 0, for any r > 1.

Lemma 3.3. d(c) is differentiable and strictly increasing function for

0 < c < 1.

Proof. By (3.2)-(3.3)

d(c) =
r − 1

r
[M(c)]

r
r−1 =

r − 1

r
(1− c2)−( r

2(r−1)
)[
√

2M(

√
2

2
)]

r
r−1 ,

d′(c) = c(1− c2)−( r
2(r−1)

+1)[
√

2M(

√
2

2
)]

r
r−1 > 0.
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Lemma 3.4. Let d′′(c) > 0 and 0 < c < 1, there is a some ε > 0, such

that c1 > 0 and |c1 − c|2 < ε, then

d(c1) ≥ d(c) + d′(c)(c1 − c) +
1

4
d′′(c)|c1 − c|2. (3.4)

Proof. This follows by Taylor’s expansion at c1 = c.

Now define

Uc,ε =

{
~u ∈ Y

∣∣∣ inf
~ϕ∈Sc
‖~u− ~ϕ‖Y < ε

}
Since d(c) is differentiable and strictly increasing for 0 < c < 1. By ~u→~ϕ, ~ϕ ∈
Sc, then

c(~u) = d−1

(
r − 1

r
K(~u)

)
, (3.5)

is a C1 map c(~u) : Uc,ε→R+ for small enough ε > 0 and ~ϕc ∈ Sc.

Lemma 3.5. Suppose d′′(c) > 0 for 0 < c < 1, then there exists ε > 0

such that for all ~u ∈ Uc,ε and ~ϕc ∈ Sc,

E(~u)− E(~ϕc)− c(~u)(Q(~u)−Q(~ϕc)) ≥
1

4
d′′(c)|c(~u)− c|2, (3.6)

where c(~u) = d−1

(
r − 1

r
K(~u)

)
, for ~u ∈ Uc,ε.

Proof. It follows from (3.2), we have

E(~u)− c(~u)Q(~u) = Ic(~u)(~u)− 1

r
K(~u). (3.7)

Since

r

r − 1
d(c(~u)) = K(~u),

r

r − 1
d(c(~u)) = K(~ϕc(~u)), ~ϕc(~u) ∈ Sc(~u)

Then

K(~u) = K(~ϕc(~u))

This implies that

Ic(~u)(~u) ≥ Ic(~u)(~ϕc(~u)). (3.8)
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And since ~ϕc(~u) is a minimizer of Ic(~u)(~u) subject to constraint and c(~u) ∈
C1, then by (3.7) and Lemma 3.4 we have

E(~u)− c(~u)Q(~u) ≥ Ic(~u)(~ϕc(~u))−
r − 1

r
K(~ϕc(~u))

= d(c(~u))

≥ d(c) + d′(c)(c(~u)− c) +
1

4
d′′(c)|c(~u)− c|2

≥ E(~ϕc)− c(~u)Q(~ϕc) +
1

4
d′′(c)|c(~u)− c|2.

(3.9)

Where d′(c) = −Q(~ϕc).

Now using the above lemmas we can prove the following theorem.

Theorem 3.6. (Theorem of Stability) Let r > 1 and 0 < c < 1, (ϕ, ψ) is

solution of (1.3), then

~ϕ(x, y, t) = (ϕ(x− ct, y), ψ(x− ct, y))

is a orbital stability solution of (1.1).

Proof. In fact, if it is instability. Then by the definition of stability,

∃δ > 0 and initial data ~Uk(0) ∈ Ut, 1
k

such that

sup
t>0

inf
~ϕ∈Sc
‖~uk(t)− ~ϕ‖Y ≥ δ (3.10)

where ~uk(t) is the solution of (1.1) with initial data ~uk(0).

By continuity in t, we choose the first time tk such that

inf
~ϕ∈Sc
‖~uk(tk)− ~ϕ‖Y = δ (3.11)

Since E(~u) and Q(~u) are conserved at t and continuous for ~u, we find

~ϕk ∈ Sc such that

|E(~uk(tk))− E(~ϕk)| = |E(~uk(0))− E(~ϕk)|→0, as k→∞

|Q(~uk(tk))−Q(~ϕk)| = |Q(~uk(0))−Q(~ϕk)|→0, as k→∞ (3.12)
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Choose δ small enough and by Lemma 3.4

E(~uk(tk))− E(~ϕk)− c(~uk(tk)(Q(~uk(tk))−Q(~ϕk))) ≥
1

4
d′′(c)|c(~uk(tk))− c|2

(3.13)

By (3.11)

‖~uk(tk)‖Y ≤ ‖~ϕk)‖Y + 2δ

≤ (2− 2

c2
)Ic(~ϕk) + 2δ

≤ C[M(c)]
r
r−1 + 2δ

< ∞

(3.14)

Since c(~u) is a continuous map, c(~uk(tk)) is uniformly bounded for k. By (3.13)

c(~uk(tk))→c, k→∞ (3.15)

Hence

lim
k→∞

K(~uk(tk)) = lim
k→∞

r

r − 1
d(c(~uk(tk))) =

r

r − 1
d(c) (3.16)

On the other hand

Ic(~uk(tk)) = E(~uk(tk))− c(~uk(tk))Q(~uk(tk)) +
1

r
K(~uk(tk))

= d(c(~uk(tk)))− (c− c(~uk(tk)))Q(~uk(tk)) +
1

r
K(~uk(tk))

(3.17)

And since

Q(~uk(tk)) = Q(~uk(0)) ≤ ||~uk(tk)||Y <∞.

By (3.16)

Ic(~uk(tk))→d(c) +
1

r
· r

r − 1
d(c) =

r

r − 1
d(c), as k→∞ (3.18)

That is

Ic(~uk(tk))→Ic(~ϕc) = [M(c)]
r
r−1 (3.19)

Let

~ζk(tk) = (K(~uk(tk)))
− 1
r Ic(~uk(tk))

→ [M(c)]
r
r−1

([M(c)]
r
r−1 )

1
r

= [M(c)]
r
r−1 [M(c)]−

r
r−1

= [M(c)]
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Hence ~ζk(tk) is a minimizing sequence, therefore exists ~ϕk ∈ Sc such that

lim
k→∞
‖~ζk(tk)− ([M(c)]−

1
2(r−1) ~ϕk)‖Y = 0 (3.20)

where

K([M(c)]−
1

2(r−1) ~ϕk) = 1.

lim
k→∞
‖~uk(tk)− ~ϕk‖Y = lim

k→∞
[(K(~uk(tk)))

1
2r ‖(K(~uk(tk)))

− 1
2r (~uk(tk)− ~ϕk)‖Y ]

≤ [M(c)]
1

2(r−1) [ lim
k→∞
‖~ζk(tk)− ([M(c)]−

1
2(r−1) ~ϕk)‖Y ]

+ lim
k→∞

∣∣∣([M(c)]−
1

2(r−1) − (K(~uk(tk)))
− 1

2r

∣∣∣ ‖~ϕk‖Y
= 0

(3.21)

which contradicts with (3.11).
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