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A Study of Pál-Type Interpolation
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Abstract

In this paper, we consider an interscaled set of nodes, which are the

zeros of two different polynomials.Then we obtain the explicit forms of

interpolatory polynomials and prove the convergence theorem such pál-

type interpolation.
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1 Introduction

In 1975, L.G. Pal [4] introduced a new type of interpolation on the zeros of

two different polynomials. He considered two system of real numbers {xk}
n

k=0

and {x∗

k}
n−1

k=0
, which are the zeros of Wn(x) and W ′

n(x) respectively, then

there exists a unique polynomial P (x) of degree at most 2n− 1 satisfying the

interpolation properties
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(1.1)

{

P (xk) = yk, (k = 1, 2, ....n)

P ′ (x∗

k) = y′k, (k = 1, 2, ....n− 1)
and gave the explicit

formula of this polynomial.

Later on many authors have dealt with the above method of interpolation

on the various set of nodes i.e. on the real line or unit circle. In 2006, M.

Lénárd [3] considered the weighted (0, 2) pál-type interpolation problem on

the zeros of Legendre polynomial Pn (x) and gave the explicit formulae. In

a paper V.Srivastava, N. Mathur, P Mathur [5] have considered a new kind

of Pál-type interpolation. In other papers author [1, 2] has also considered

(0, 1; 0) and (0; 0, 1) interpolation on the unit circle.

In this paper, we consider two pairwise disjoint sets {xk}
n

k=1
and {yk}

n

k=1
,

which are the zeros of Pn (x) and Πn (x) respectively with two additional con-

ditions i.e. the function is also prescribed at ±1. The Pál-type interpolation

on these set of points means the determination of the polynomial, say Qn (x)

of degree ≤ 2n+ 1 satisfying the conditions:

(1.2)

{

Qn (xk) = αk; k = 0 (1)n+ 1

Q′

n (yk) = βk; k = 1 (1)n

where α′

ks (k = 0 (1)n+ 1) and β′

ks ( k = 1 (1)n) are arbitrary real numbers.

In section 2 we give some preliminaries, in section 3 we give explicit rep-

resentation and in sections 4 &5 estimates and convergence of interpolatory

polynomials are respectively given.

2 Preliminaries

We shall use some well known facts about Legendre polynomials.

(2.1) Πn (x) = (1− x2)P ′

n−1 (x)

(2.2) Π′

n (x) = −n (n− 1)Pn−1 (x)

(2.3) (1− x2)P ′′

n (x)− 2xP ′

n (x) + n (n+ 1)Pn (x) = 0.

(2.4) (1− x2) Π′′

n (x) + n (n− 1)Πn (x) = 0

(2.5) Hk (x) =
∫ x

−1
xnΠn (x) dx

(2.6) {x−nPn (x)}
′

x=yj
= 0, for j = 1 (1)n.
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We shall require the fundamental polynomials of Lagrange interpolation on

zeros of Pn (x) and Πn (x), i.e

(2.6) Lk (x) =
Pn (x)

(x− xk)P ′

n (xk)
for k = 1 (1)n

(2.7) lk (x) =
Πn (x)

(x− yk) Π′

n (yk)
for k = 1 (1)n .

For −1 ≤ x ≤ 1.

(2.7) |Pn (x)| ≤ 1

(2.9) |Πn (x)| ≤

(

2n

π

)
1

2

Let xk = cos θk (k = 1 (1)n) be the zeros of the nth Legendre polynomial

Pn, with 1 > x1 > x2 > .... > xn > −1, then by [6]

(2.10)

{

(1− xk)
2 ≥ k2n−2, k = 1, ...,

[

n
2

]

(1− xk)
2 ≥ (n− k + 1)2 n−2, k =

[

n
2

]

+ 1, ..., n

(2.11)

{

|P ′

n (xk)| ≥ ck−
3

2n2, k = 1, ...,
[

n
2

]

|P ′

n (xk)| ≥ c(n− k + 1)−
3

2n2, k =
[

n
2

]

+ 1, ..., n

Let lk (z) be defined in (2.7) , then

(2.12)
2n−1
∑

k=1

|lk (x)| ≤ c log n.

For more details, one can see [6]

3 Explicit representation of polynomials

We shall write Qn (x) satisfying (1.2) as

(3.1) Qn (x) =
n+1
∑

k=0

αkAk (x) +
n
∑

k=1

βkBk (x)
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where Ak (x) and Bk (x) are fundamental polynomials of first and second

kind respectively each of degree ≤ 2n+1, uniquely determined by the following

conditions:

For k = 0 (1)n+ 1

(3.2)

{

Ak (xj) = δkj, j = 0 (1)n+ 1,

A′

k (yj) = 0, j = 1 (1)n.

for k = 1 (1)n

(3.3)

{

Bk (xj) = 0, j = 0 (1)n+ 1,

B′

k (yj) = δkj, j = 1 (1)n.

Theorem 3.1. For k = 1 (1)n

(3.4) Bk (x) = x−nPn (x) {akJk (x) + bkHk (x)}

where

(3.6) Jk (x) =
∫ x

−1
xnlk (x) dx

(3.7) ak =
1

Pn (xk)

(3.8) bk = −ak

∫

1

−1
xnlk (x) dx

∫

1

−1
xnΠn (x) dx

.

Proof. Let

(3.9) Bk (x) = x−nPn (x) q (x) ,

where q (x) is a polynomial of degree at most 2n+ 1.

One can check that Bk (xj) = 0 , for j = 1 (1)n.

Similarly from (3.9) ,using the 2nd condition of (3.3) , i.e.

(3.10) B′

k (yj) = {x−nPn (x)}x=yj
q′ (yj) + {x−nPn (x)}

′

x=yj
q (yj) = δkj,

using (2.6) , we get

(3.11) y−n
j Pn (yj) q

′ (yj) = δkj

Hence we have

(3.12) q′ (x) = xn {aklk (x) + bkΠn (x)} .

On integration , we get (3.4)
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Again

B′

k (yk) = akδkj

we get (3.7) .For x = 1, we get (3.8) , which completes the proof.

Theorem 3.2. For k = 1 (1)n

(3.9) Ak (x) =
(1− x2) Πn (x)

(1− x2
k) Πn (xk)

Lk (x) +

+
x−nPn (x)

(1− x2
k) Πn (xk)P ′

n (xk)
{Sk (x) + ckHk (x)}

where

(3.10) Sk (x) = −
∫ x

−1
xn

(1− x2) Π′

n (x) + dkΠn (x)

(x− xk)
dx

with dk = −
(1− x2

k) Π
′

n (xk)

Πn (xk)

(3.11) ck = −

∫

1

−1
xn

(1− x2) Π′

n (x) + dkΠn (x)

(x− xk)
dx

∫

1

−1
xnΠn (x) dx

.

For k = 0, n+ 1

(3.12) A0 (x) =
x−nPn (x)

∫ x

−1
xnΠn (x) dx

Pn (1)
∫

1

−1
xnΠn (x) dx

,

(3.13) An+1 (x) =
x−nPn (x)

∫

1

x
xnΠn (x) dx

Pn (1)
∫

1

−1
xnΠn (x) dx

.

Proof. Let Ak (x) =
(1− x2) Πn (x)

(1− x2
k) Πn (xk)

Lk (x) +

+
x−nPn (x)

(1− x2
k) Πn (xk)P ′

n (xk)
{Sk (x) + ckHk (x)}

Obviously Ak (xj) = δkj, j = 1 (1)n and Ak (1) = 0 gives ck. From the

second condition of (3.2) , we get Sk (x) . Similarly one can find Ak (x) , for

k = 0, n+ 1.
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4 Estimation of Fundamental Polynomials

In this section, we prove the following:

Lemma 4.1. Let Ak (x) be defined in theorem 2, then

(4.1)
n
∑

k=1

|Ak (x)| = O
(

n
3

2 log n
)

, for k = 1 (1)n

(4.2) |Ak (x)| = O
(

n−
3

2

)

, for k = 0, n+ 1 .

Lemma 4.2. Let Bk (x) be defined in theorem 1, then

(4.1)
n
∑

k=1

|Bk (x)| = O
(

n
1

2 log n
)

, for k = 1 (1)n.

Lemmas 4.1 and 4.2 can be proved owing to conditions (2.7)− (2.12) and

the results in [6].

5 Convergence

In this section we prove the following.

Theorem 5.1. If f : R −→ R is continuously differentiable function , then

(5.1) Qn (x) =
n+1
∑

k=0

f (xk)Ak (x), for −1 ≤ x ≤ 1

satisfies the relation

(5.2) |Qn (x)− f (x)| = O
(

n
3

2ω2

(

f, 1

n

)

log n
)

.

Remark Let f (x) ∈ Cr[−1, 1] and f ’∈ Lip α, α > 1

2
, then sequence {Qn}

converges uniformly to f (x) , follows from (5.2) provided

(5.3) ω2

(

f, 1

n

)

= O (n−1−α) .

To prove Theorem 5.1, we shall need the following:
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Let f (x) ∈ Cr[−1, 1].Then there exists a polynomial Fn (x) of degree ≤

2n− 2 satisfying inequality :

(5.4) |f (x)− Fn (x)| ≤ cω2

(

f, 1

n

)

.

Proof. Theorem 5.1 Using (5.1) , (5.3) − (5.4) and Lemmas 4.1 and 4.2, we

get (5.2) .
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