A Study of Pál-Type Interpolation

Swarnima Bahadur ${ }^{1}$

Abstract

In this paper, we consider an interscaled set of nodes, which are the zeros of two different polynomials. Then we obtain the explicit forms of interpolatory polynomials and prove the convergence theorem such páltype interpolation.

Mathematics Subject Classification: 41A05
Keywords: Legendre polynomial, Pál-Type Interpolation, explicit forms, convergence

1 Introduction

In 1975, L.G. Pal [4] introduced a new type of interpolation on the zeros of two different polynomials. He considered two system of real numbers $\left\{x_{k}\right\}_{k=0}^{n}$ and $\left\{x_{k}^{*}\right\}_{k=0}^{n-1}$, which are the zeros of $W_{n}(x)$ and $W_{n}^{\prime}(x)$ respectively, then there exists a unique polynomial $P(x)$ of degree at most $2 n-1$ satisfying the interpolation properties

1 University of Lucknow, Lucknow 226007, India, e-mail: swarnimabahadur@ymail.com

$$
\begin{align*}
& \left\{\begin{array}{rr}
P\left(x_{k}\right)=y_{k}, & (k=1,2, \ldots . n) \\
P^{\prime}\left(x_{k}^{*}\right)=y_{k}^{\prime}, & (k=1,2, \ldots . n-1)
\end{array}\right. \text { and gave the explicit } \tag{1.1}\\
& \text { polynomial. }
\end{align*}
$$

formula of this polynomial.
Later on many authors have dealt with the above method of interpolation on the various set of nodes i.e. on the real line or unit circle. In 2006, M. Lénárd [3] considered the weighted $(0,2)$ pál-type interpolation problem on the zeros of Legendre polynomial $P_{n}(x)$ and gave the explicit formulae. In a paper V.Srivastava, N. Mathur, P Mathur [5] have considered a new kind of Pál-type interpolation. In other papers author $[1,2]$ has also considered $(0,1 ; 0)$ and $(0 ; 0,1)$ interpolation on the unit circle.

In this paper, we consider two pairwise disjoint sets $\left\{x_{k}\right\}_{k=1}^{n}$ and $\left\{y_{k}\right\}_{k=1}^{n}$, which are the zeros of $P_{n}(x)$ and $\Pi_{n}(x)$ respectively with two additional conditions i.e. the function is also prescribed at ± 1. The Pál-type interpolation on these set of points means the determination of the polynomial, say $Q_{n}(x)$ of degree $\leq 2 n+1$ satisfying the conditions:

$$
\left\{\begin{array}{cr}
Q_{n}\left(x_{k}\right)=\alpha_{k} ; & k=0(1) n+1 \tag{1.2}\\
Q_{n}^{\prime}\left(y_{k}\right)=\beta_{k} ; & k=1(1) n
\end{array}\right.
$$

where $\alpha_{k}^{\prime} \mathrm{S}(k=0(1) n+1)$ and $\beta_{k}^{\prime} \mathrm{S}(k=1(1) n)$ are arbitrary real numbers.
In section 2 we give some preliminaries, in section 3 we give explicit representation and in sections $4 \& 5$ estimates and convergence of interpolatory polynomials are respectively given.

2 Preliminaries

We shall use some well known facts about Legendre polynomials.

$$
\begin{align*}
& \Pi_{n}(x)=\left(1-x^{2}\right) P_{n-1}^{\prime}(x) \tag{2.1}\\
& \Pi_{n}^{\prime}(x)=-n(n-1) P_{n-1}(x) \tag{2.2}\\
& \left(1-x^{2}\right) P_{n}^{\prime \prime}(x)-2 x P_{n}^{\prime}(x)+n(n+1) P_{n}(x)=0 \tag{2.3}\\
& \left(1-x^{2}\right) \Pi_{n}^{\prime \prime}(x)+n(n-1) \Pi_{n}(x)=0 \tag{2.4}\\
& H_{k}(x)=\int_{-1}^{x} x^{n} \Pi_{n}(x) d x \tag{2.5}\\
& \left\{x^{-n} P_{n}(x)\right\}_{x=y_{j}}^{\prime}=0, \text { for } j=1(1) n \tag{2.6}
\end{align*}
$$

We shall require the fundamental polynomials of Lagrange interpolation on zeros of $P_{n}(x)$ and $\Pi_{n}(x)$, i.e

$$
\begin{align*}
& L_{k}(x)=\frac{P_{n}(x)}{\left(x-x_{k}\right) P_{n}^{\prime}\left(x_{k}\right)} \text { for } k=1(1) n \tag{2.6}\\
& l_{k}(x)=\frac{\Pi_{n}(x)}{\left(x-y_{k}\right) \Pi_{n}^{\prime}\left(y_{k}\right)} \text { for } k=1(1) n \tag{2.7}
\end{align*}
$$

For $-1 \leq x \leq 1$.
(2.7) $\quad\left|P_{n}(x)\right| \leq 1$

$$
\begin{equation*}
\left|\Pi_{n}(x)\right| \leq\left(\frac{2 n}{\pi}\right)^{\frac{1}{2}} \tag{2.9}
\end{equation*}
$$

Let $x_{k}=\cos \theta_{k} \quad(k=1(1) n)$ be the zeros of the $n^{\text {th }}$ Legendre polynomial P_{n}, with $1>x_{1}>x_{2}>\ldots>x_{n}>-1$, then by [6]

$$
\begin{align*}
& \left\{\begin{array}{cc}
\left(1-x_{k}\right)^{2} \geq k^{2} n^{-2}, & k=1, \ldots,\left[\frac{n}{2}\right] \\
\left(1-x_{k}\right)^{2} \geq(n-k+1)^{2} n^{-2}, & k=\left[\frac{n}{2}\right]+1, \ldots, n
\end{array}\right. \tag{2.10}\\
& \left\{\begin{array}{rr}
\left|P_{n}^{\prime}\left(x_{k}\right)\right| \geq c k^{-\frac{3}{2}} n^{2}, & k=1, \ldots,\left[\frac{n}{2}\right] \\
\left|P_{n}^{\prime}\left(x_{k}\right)\right| \geq c(n-k+1)^{-\frac{3}{2}} n^{2}, & k=\left[\frac{n}{2}\right]+1, \ldots, n
\end{array}\right.
\end{align*}
$$

Let $l_{k}(z)$ be defined in (2.7), then

$$
\begin{equation*}
\sum_{k=1}^{2 n-1}\left|l_{k}(x)\right| \leq c \log n . \tag{2.12}
\end{equation*}
$$

For more details, one can see [6]

3 Explicit representation of polynomials

We shall write $Q_{n}(x)$ satisfying (1.2) as

$$
\begin{equation*}
Q_{n}(x)=\sum_{k=0}^{n+1} \alpha_{k} A_{k}(x)+\sum_{k=1}^{n} \beta_{k} B_{k}(x) \tag{3.1}
\end{equation*}
$$

where $A_{k}(x)$ and $B_{k}(x)$ are fundamental polynomials of first and second kind respectively each of degree $\leq 2 n+1$, uniquely determined by the following conditions:

For $k=0(1) n+1$

$$
\left\{\begin{array}{lr}
A_{k}\left(x_{j}\right)=\delta_{k j}, & j=0(1) n+1, \tag{3.2}\\
A_{k}^{\prime}\left(y_{j}\right)=0, & j=1(1) n .
\end{array}\right.
$$

for $k=1(1) n$

$$
\left\{\begin{array}{rr}
B_{k}\left(x_{j}\right)=0, & j=0(1) n+1, \tag{3.3}\\
B_{k}^{\prime}\left(y_{j}\right)=\delta_{k j}, & j=1(1) n .
\end{array}\right.
$$

Theorem 3.1. For $k=1$ (1) n

$$
\begin{equation*}
B_{k}(x)=x^{-n} P_{n}(x)\left\{a_{k} J_{k}(x)+b_{k} H_{k}(x)\right\} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{align*}
& J_{k}(x)=\int_{-1}^{x} x^{n} l_{k}(x) d x \tag{3.6}\\
& a_{k}=\frac{1}{P_{n}\left(x_{k}\right)} \tag{3.7}\\
& b_{k}=-a_{k} \frac{\int_{-1}^{1} x^{n} l_{k}(x) d x}{\int_{-1}^{1} x^{n} \Pi_{n}(x) d x} .
\end{align*}
$$

Proof. Let

$$
\begin{equation*}
B_{k}(x)=x^{-n} P_{n}(x) q(x), \tag{3.9}
\end{equation*}
$$

where $q(x)$ is a polynomial of degree at most $2 n+1$.
One can check that $B_{k}\left(x_{j}\right)=0$, for $j=1(1) n$.
Similarly from (3.9) , using the $2^{\text {nd }}$ condition of (3.3), i.e.

$$
\begin{equation*}
B_{k}^{\prime}\left(y_{j}\right)=\left\{x^{-n} P_{n}(x)\right\}_{x=y_{j}} q^{\prime}\left(y_{j}\right)+\left\{x^{-n} P_{n}(x)\right\}_{x=y_{j}}^{\prime} q\left(y_{j}\right)=\delta_{k j}, \tag{3.10}
\end{equation*}
$$

using (2.6), we get

$$
\begin{equation*}
y_{j}^{-n} P_{n}\left(y_{j}\right) q^{\prime}\left(y_{j}\right)=\delta_{k j} \tag{3.11}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
q^{\prime}(x)=x^{n}\left\{a_{k} l_{k}(x)+b_{k} \Pi_{n}(x)\right\} . \tag{3.12}
\end{equation*}
$$

On integration, we get (3.4)

Again

$$
B_{k}^{\prime}\left(y_{k}\right)=a_{k} \delta_{k j}
$$

we get (3.7) .For $x=1$, we get (3.8), which completes the proof.

Theorem 3.2. For $k=1$ (1) n

$$
\begin{align*}
A_{k}(x)= & \frac{\left(1-x^{2}\right) \Pi_{n}(x)}{\left(1-x_{k}^{2}\right) \Pi_{n}\left(x_{k}\right)} L_{k}(x)+ \tag{3.9}\\
& \quad+\frac{x^{-n} P_{n}(x)}{\left(1-x_{k}^{2}\right) \Pi_{n}\left(x_{k}\right) P_{n}^{\prime}\left(x_{k}\right)}\left\{S_{k}(x)+c_{k} H_{k}(x)\right\}
\end{align*}
$$

where

$$
\begin{equation*}
S_{k}(x)=-\int_{-1}^{x} x^{n} \frac{\left(1-x^{2}\right) \Pi_{n}^{\prime}(x)+d_{k} \Pi_{n}(x)}{\left(x-x_{k}\right)} d x \tag{3.10}
\end{equation*}
$$

with $\quad d_{k}=-\frac{\left(1-x_{k}^{2}\right) \Pi_{n}^{\prime}\left(x_{k}\right)}{\Pi_{n}\left(x_{k}\right)}$

$$
\begin{equation*}
c_{k}=-\frac{\int_{-1}^{1} x^{n} \frac{\left(1-x^{2}\right) \Pi_{n}^{\prime}(x)+d_{k} \Pi_{n}(x)}{\left(x-x_{k}\right)} d x}{\int_{-1}^{1} x^{n} \Pi_{n}(x) d x} \tag{3.11}
\end{equation*}
$$

For $k=0, n+1$

$$
\begin{gather*}
A_{0}(x)=\frac{x^{-n} P_{n}(x) \int_{-1}^{x} x^{n} \Pi_{n}(x) d x}{P_{n}(1) \int_{-1}^{1} x^{n} \Pi_{n}(x) d x} \tag{3.12}\\
A_{n+1}(x)=\frac{x^{-n} P_{n}(x) \int_{x}^{1} x^{n} \Pi_{n}(x) d x}{P_{n}(1) \int_{-1}^{1} x^{n} \Pi_{n}(x) d x}
\end{gather*}
$$

Proof. Let $A_{k}(x)=\frac{\left(1-x^{2}\right) \Pi_{n}(x)}{\left(1-x_{k}^{2}\right) \Pi_{n}\left(x_{k}\right)} L_{k}(x)+$

$$
+\frac{x^{-n} P_{n}(x)}{\left(1-x_{k}^{2}\right) \Pi_{n}\left(x_{k}\right) P_{n}^{\prime}\left(x_{k}\right)}\left\{S_{k}(x)+c_{k} H_{k}(x)\right\}
$$

Obviously $A_{k}\left(x_{j}\right)=\delta_{k j}, \quad j=1(1) n$ and $A_{k}(1)=0$ gives c_{k}. From the second condition of (3.2), we get $S_{k}(x)$. Similarly one can find $A_{k}(x)$, for $k=0, n+1$.

4 Estimation of Fundamental Polynomials

In this section, we prove the following:
Lemma 4.1. Let $A_{k}(x)$ be defined in theorem 2, then
(4.1) $\quad \sum_{k=1}^{n}\left|A_{k}(x)\right|=O\left(n^{\frac{3}{2}} \log n\right), \quad$ for $k=1$ (1) n

$$
\begin{equation*}
\left|A_{k}(x)\right|=O\left(n^{-\frac{3}{2}}\right), \text { for } k=0, n+1 \tag{4.2}
\end{equation*}
$$

Lemma 4.2. Let $B_{k}(x)$ be defined in theorem 1, then

$$
\begin{equation*}
\sum_{k=1}^{n}\left|B_{k}(x)\right|=O\left(n^{\frac{1}{2}} \log n\right), \quad \text { for } k=1 \text { (1) } n \text {. } \tag{4.1}
\end{equation*}
$$

Lemmas 4.1 and 4.2 can be proved owing to conditions (2.7) - (2.12) and the results in [6].

5 Convergence

In this section we prove the following.
Theorem 5.1. If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is continuously differentiable function, then

$$
\begin{equation*}
Q_{n}(x)=\sum_{k=0}^{n+1} f\left(x_{k}\right) A_{k}(x), \text { for }-1 \leq x \leq 1 \tag{5.1}
\end{equation*}
$$

satisfies the relation

$$
\begin{equation*}
\left|Q_{n}(x)-f(x)\right|=O\left(n^{\frac{3}{2}} \omega_{2}\left(f, \frac{1}{n}\right) \log n\right) \tag{5.2}
\end{equation*}
$$

Remark Let $f(x) \in C^{r}[-1,1]$ and $f^{\prime} \in \operatorname{Lip} \alpha, \alpha>\frac{1}{2}$, then sequence $\left\{Q_{n}\right\}$ converges uniformly to $f(x)$, follows from (5.2) provided

$$
\begin{equation*}
\omega_{2}\left(f, \frac{1}{n}\right)=O\left(n^{-1-\alpha}\right) . \tag{5.3}
\end{equation*}
$$

To prove Theorem 5.1, we shall need the following:

Let $f(x) \in C^{r}[-1,1]$. Then there exists a polynomial $F_{n}(x)$ of degree \leq $2 n-2$ satisfying inequality :
(5.4) $\left|f(x)-F_{n}(x)\right| \leq c \omega_{2}\left(f, \frac{1}{n}\right)$.

Proof. Theorem 5.1 Using (5.1), (5.3) - (5.4) and Lemmas 4.1 and 4.2, we get (5.2).

References

[1] Swarnima Bahadur, Pál-type (0,$1 ; 0$)-interpolation on the unit circle, $A d$ vances in Theo. and Appl. Math., 6(1), (2011), 35-39.
[2] Swarnima Bahadur, Pál-type ($0 ; 0,1$)-interpolation on the unit circle, Int. Journal of Math. Analysis, 5(29), (2011), 1429-1434.
[3] Margit Lènard, On weighted (0.2)- type interpolation, Elect. Trans. Num. Anal., 25, (2006), 206-223.
[4] L.G. Pál, A general lacunary ($0 ; 0,1$)-interpolation process, Annals Univ. Budapest, Sect. Comp., 16, (1996), 291-301.
[5] V. Srivastava, N. Mathur and P. Mathur, A New Kind of Pál -type Interpolation, Int. J. Contemp. Math. Sciences, 6(45), (2011), 2237-2246.
[6] G. Szegŏ, Orthogonal Polynomials, Amer. Math. Soc. Coll. Publ., New York, 1959.

