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                                                Abstract 

This work focused on method of modeling multivariate time series with seasonal 

univariate components. Five variables representing Nigeria’s Gross Domestic 

Products (GDP) were found to exhibit seasonal behaviours. These series were 

subjected to Box and Jenkins techniques and different univariate seasonal models 

were entertained for each component. The residuals from the fitted univariate 

models were cross examined. The correlation and cross correlation structures of 

these residuals revealed the inter-relationships among the variables, and 

multivariate consideration was therefore obvious. Multivariate order selection 

technique was employed to obtain the vector autoregressive (VAR) order of the 

model. A VAR (1) model was identified and developed to fit the data. Stability of 

the VAR process was achieved. Diagnostic checks were applied to the fitted 

model and the model was found to be adequate. Hence, forecasts were generated.  
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1  Introduction 

         The analysis of time dependent variables is one of the methods designed for 

prediction of future events. Most variables are economical in nature and the 

economy of any nation partly depends on the interplay of these variables with 

respect to time. Indeed time series plays a vital role in planning and predicting the 

future economy of any nation. 

         Nigerian Economy is not stable over the years and as a result, the country is 

facing some economic crises, challenges or shocks which are internally or 

externally over some decades. Internally, as a result of investments and 

consumption pattern, as well as improper implementation of public policy and 

change in expectation. Externally, the crises could be as a result of population 

increase, revolution or war etc. Economic development of a country shows its 

ability to increase production of goods and services. It clearly defines increase in 

the Gross Domestic Product (GDP) of a country. 

           Macro-economic variables are instrumental in the economic performance 

of any country. Nigeria’s Economy has faced numerous challenges which have led 

to a fall in its growth rate in both Agricultural and non-Agricultural sectors which 

in turn affect the Gross Domestic product (GDP). It is therefore the intent of this 

work to study the inter-relationships among these sectors in Nigeria’s GDP. The 

variables under consideration are: Agriculture, Industry, Building & Construction, 

wholesale and retail, and Services. 
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 2  Literature Review 

            A time series is a collection of observations made sequentially in time.  

On the other hand, analysis of time series comprises methods for analyzing time 

series data to extract relevant statistics and other features of the data with the aim 

of making future predictions. 

           [1] carried out a research on interest rate, Gross domestic product and 

inflation in the economy of Jordan using unit root test to check the integration 

order of the variables. The result showed that inflation causes interest rate while 

other variables were independent with each other. The regression result also 

suggested that the current interest rate has influence on growth rate and current 

Gross domestic. 

          [9]  researched on inflation and economic growth in Nigeria by applying co-

integration and Granger causality test. The findings suggested that there was a co-

integration between inflation and economic growth. Also through empirical 

findings, it was discovered that inflation has no impact on growth. 

       [8] worked on buy-ballout modeling of Nigerian Domestic crude oil 

production using inverse square root transformation to make the variance stable. 

Quadratic trends were fitted and the error component was discovered to be 

normally distributed with zero mean and constant variance. 

      [2]  examined unemployment and inflation on economic growth in Nigeria. He 

also applied causality test on Gross domestic product, unemployment and 

inflation. The study revealed that all the variables in the model were stationary. 

Further result indicated that unemployment and inflation possesses positive impact 

on economic growth.  

       [11]  used quarterly time series data to estimate the threshold level of inflation 

using 13% threshold. The findings revealed that inflation has a mild effect on 

economic activities; and the magnitude of the negative effect of inflation in 

growth was higher.  
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 [3]  modeled time series using South Africa inflation data. The research was 

based on financial time series and autoregressive integrated moving average 

(ARIMA) model. Conditional heteroscedasticity (ARCH) model was fitted to the 

data. Box and Jenkins strategies were employed and the best fitted model was 

chosen from the family of models. 

[4] conducted a study for 131 countries using Vector autoregressive analysis. 

It was discovered that higher crude oil prices were more severe for the oil 

importing poorer countries as compared to the developed countries. The work 

further revealed that with 10 Dollars per barrel increase in the price of crude oil, 

economic growth could decrease up to 4%. 

 [7]  carried out a research on the inflation rate of three African Countries. 

The series were observed to exhibit non seasonal behavior; thus non seasonal 

ARIMA models were applied to each series and were adequately represented. The 

three series were modeled using the multivariate approach. The multivariate 

method was found to give adequate representation than the non seasonal linear 

approach.  

[5]  used Autocorrelation and partial Autocorrelation to identify multivariate 

time series model after confirming stationarity. The Akaike information criteria 

(AIC) and Schwartz (Bayesian) information criteria(SIC) were used to select the 

best model among the identified. VAR (2) multivariate model was identified as 

the best fitted model.  

[10]  compared the pared the performance between the univariate  and 

bivariate time series models. Several tests were carried out in the comparative 

study. In the work, the bivariate model was found to be superior to the univariate 

models. The bivariate model was also found to give optimal forecasts than the 

univariate models. [10] concluded that if two variables are found to be 

interrelated, a bivariate model should be adopted rather than giving them separate 

univariate models.     
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          Due to the present fall in the oil price which Nigeria so much depended on 

as the major source of revenue, there is need to go back to Agriculture. However, 

focusing attention only on Agricultural sector may not solve the problem. There is 

need for Government to consider other sectors that are involved in making up 

Nigeria’s Gross Domestic products (GDP). This work intends to capture these 

variables along with Agricultural sector with the aim of studying their inter-

relationships with respect to time and possibly develop a model for predicting the 

future of the various sectors under consideration. 

                  

                             

3  Methodology 

3.1 The  Univariate Case 

3.1.1 Stationarity 

A time series is said to be stationary if the statistical property e.g. the mean 

and variance are constant through time. A non stationary series 𝑋𝑡 can be made 

stationary by differencing. The differenced series is given as 

                            𝑌𝑡 = 𝑋𝑡 − 𝑋𝑡−1 . 

 

3.1.2 Backward shift Operator 

 The Backward shift Operator 𝐵  is defined by 

                                𝐵𝑚𝑋𝑡= 𝑋𝑡−𝑚          

                                                                                     

3.1.3 The Backward Difference Operator 

 The backward difference operator, ∇ ,  is define by 

                                   ∇= 1 − B  
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3.1.4 Seasonal Autoregressive Integrated Moving Average 

Seasonal autoregressive integrated moving average (SARIMA) model is used 

for time series with seasonal and non seasonal behaviour. The SARIMA 

multiplicative model is written as 

           𝑆𝐴𝑅𝐼𝑀𝐴 (𝑝,𝑑, 𝑞) × (𝑃,𝐷,𝑄)𝑠                                                                   (1) 

and this can expressed explicitly as 

          𝜙𝑝(𝐵)Φ𝑃(𝐵𝑠)∇d∇sDXt = θq(B)ΘQ(Bs)εt                                                   (2)                                        

where 

               𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯− 𝜙𝑝𝐵𝑝 , 

              Φ(𝐵) = 1 − Φ1,𝑠𝐵𝑠 − Φ2,𝑠𝐵2𝑠 − ⋯− Φ𝑝,𝑠𝐵𝑝, 

      ∇= 1 − 𝐵,  ∇𝑠= 1 − 𝐵𝑠,   𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯− 𝜃𝑞𝐵𝑞, 

    Θ(𝐵𝑠) = 1 −Θ1,𝑠𝐵𝑠 − Θ2,𝑠𝐵2𝑠 − ⋯− Θ𝑄,𝑠𝐵𝑄𝑆, 

 𝑋𝑡  is the time series at period 𝑡,  𝜀𝑡  is the white noise process,  𝑠 is the season,  

 𝑝 is the order of autoregressive components, 

 𝑃 is the order of  seasonal autoregressive components, 

 𝑑 is the order of non-seasonal differencing, 𝐷 is the order of seasonal 

differencing, 

 𝑞 is the order of moving average component, 

 𝑄 is the order of seasonal moving average component.     

               
3.1.5  Autocorrelation   Function (acf) 

 This is covariance between 𝑋𝑡 and 𝑋𝑡+𝑘, seperated by k interval of time or  

𝑙𝑎𝑔 𝑘 and is given by 

                                   𝜌𝑘 = 𝐶𝑜𝑣(𝑋𝑡 𝑋𝑡+𝑘)
�𝑉𝑎𝑟(𝑋𝑡)𝑉𝑎𝑟(𝑋𝑡+𝑘)
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3.1.6  Partial Autocorrelation Function 

 This is the correlation between 𝑋𝑡 and 𝑋𝑡+𝑘  after mutual linear dependency 

in the intervening variable 𝑋𝑡+1,𝑋𝑡+2, … ,𝑋𝑡+𝑘 has been removed and is given by 

                  𝜙𝑘𝑘 = 𝐶𝑜𝑟𝑟(𝑋𝑡 𝑋𝑡+𝑘  /𝑋𝑡+1𝑋𝑡+3, … ,𝑋𝑡+𝑘−1)                                                  

 

 

3.2 Multivariate Time Series 

Multivariate time series is a time series that does not limit itself to the past or 

present of its previous information but also to the present and past information of 

other series.  

 

3.2.1 White Noise Process 

A white noise process 𝜀𝑡 = (𝜀1𝑡, … , 𝜀𝑛𝑡)′ is a continuous random vector 

satisfying 

𝐸(𝜀𝑡) = 0, Σ𝜀 = 𝐸(𝜀𝑡𝜀𝑡′ ) ,  𝜀𝑡 and 𝜀𝑠 are independent for 𝑠 ≠ 𝑡. 

 

 3.2.2 Vector Autoregressive (VAR) Model 

One of the models that describes the multivariate times series is the Vector 

Autoregressive (VAR) Model. VAR model is an independent reduced form 

dynamic model which involves constructing an equation that makes each 

endogenous variable a function of its own past values and past values of all other 

endogenous variables: The basic 𝑝-lag Vector autoregressive VAR(𝑝) model has 

the form. 

𝑦𝑡 = 𝑐 + Π1𝑦𝑡−1 + Π2𝑦𝑡−2 + ⋯+  Π𝑝𝑦𝑡−𝑝 + ε𝑡     ;  𝑡 = 0, ±1, ±2, …          (3) 

where 

    𝑦𝑡 = (𝑦1𝑡, … ,𝑦𝑛𝑡)′   is an (𝑛 × 1)  vector of time series variable, 

    𝛱𝑖  are fixed (𝑛 × 𝑛) coefficient matrices, 
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     𝑐  = (𝑐1, … , 𝑐𝑛)′ is a fixed (𝑛 × 1)  vector of intercept terms allowing for the 

              possibility of non zero mean 𝐸(𝑦𝑡), 

    𝜀𝑡 = (𝜀1𝑡, … , 𝜀𝑛𝑡)′ is an (𝑛 × 1)    white noise process or innovation  

               process. That is,  

                    𝐸(𝜀𝑡) =  0,𝐸(𝜀𝑡𝜀𝑡′ ) =  Σ𝜀 and 𝐸(𝜀𝑡𝜀𝑠′ ) = 0 for 𝑠 ≠ 𝑡 

    Σ𝜀 =  covariance matrix which is assume to be non singular if not otherwise 

stated. 

The model can be written in the matrix form as 

⎝

⎜
⎛

𝑦1𝑡
𝑦2𝑡

.

.
𝑦𝑛𝑡⎠

⎟
⎞

  = 

⎝

⎜
⎛

𝑐1
𝑐2
.
.
𝑐𝑛⎠

⎟
⎞

+  

⎝

⎜
⎛

𝜋111

𝜋211
.
.

𝜋𝑛11

     

𝜋121

𝜋221
.
.

𝜋𝑛21

         

.

.

.

.

.

      

.

.

.

.

.

    

𝜋1𝑛1

𝜋2𝑛1
.
.

𝜋𝑛𝑛1

  

⎠

⎟
⎞

⎝

⎜
⎛

𝑦1𝑡−1
𝑦2𝑡−1

.

.
𝑦𝑛𝑡−1⎠

⎟
⎞

+  

⎝

⎜
⎛

𝜋112

𝜋212
.
.

𝜋𝑛12

     

𝜋122

𝜋222
.
.

𝜋𝑛22

         

.

.

.

.

.

      

.

.

.

.

.

    

𝜋1𝑛2

𝜋2𝑛2
.
.

𝜋𝑛𝑛2

  

⎠

⎟
⎞

⎝

⎜
⎛

𝑦1𝑡−2
𝑦2𝑡−2

.

.
𝑦𝑛𝑡−2⎠

⎟
⎞

  

+⋯+

⎝

⎜⎜
⎛
𝜋11
𝑝

𝜋21
𝑝

.

.
𝜋𝑛1
𝑝

     

𝜋12
𝑝

𝜋22
𝑝

.

.
𝜋𝑛2
𝑝

         

.

.

.

.

.

      

.

.

.

.

.

    

𝜋1𝑛
𝑝

𝜋2𝑛
𝑝

.

.
𝜋𝑛𝑛
𝑝

  

⎠

⎟⎟
⎞

⎝

⎜
⎛

𝑦1𝑡−𝑝
𝑦2𝑡−𝑝

.

.
𝑦𝑛𝑡−𝑝⎠

⎟
⎞

+

⎝

⎜
⎛

𝜀1𝑡
𝜀2𝑡

.

.
𝜀𝑛𝑡⎠

⎟
⎞

                       (4) 

           

                                                            

3.2.3  Stationary  Process 

A stochastic process is said to be stationary if its first and second moments are 

time invariant. In other words, a stochastic process 𝑦𝑡 is stationary, if 

 𝐸(𝑦𝑡) = µ  for all 𝑡 

 and 

 𝐸[(𝑦𝑡 − µ)(𝑦𝑡−𝑘 − µ)′] = Γy(k) = Γy(−k)′  for all 𝑡 and 𝑘 = 0,1,2 … 
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3.2.4 Stable VAR (𝐩) Processes 

The process (3) is stable if its reverse characteristic polynomial of the VAR(𝑝) 

has no roots in and on the complex unit circle.  Formally yt is stable if   

  det (𝐼𝑛 − 𝛱1𝑧 − ⋯− 𝛱𝑝𝑧𝑝) ≠ 0  for   │𝑧│ ≤ 1.                                                  (5) 

A stable VAR(𝑝) process 𝑦𝑡, 𝑡 = 0, ±1, ±2, …, is stationary. 

 

3.2.5       Autocovariances of a Stable VAR(p) Process 

For a vector autoregressive process of order 𝑝 [𝑉𝐴𝑅(𝑝)], we have 

        𝑦𝑡 − 𝜇 = 𝜋1(𝑦𝑡−1 − 𝜇) + ⋯+ 𝜋𝑝�𝑦𝑡−𝑝 − 𝜇� + 𝜀𝑡  ,                                       (6) 

Post multiplying both sides by (𝑦𝑡−𝑘 − 𝜇)′  and taking expectation, we have for 

k= 0 using Γy(𝑖) =  Γy(−𝑖)′ 

        Γy(0) = 𝜋1(𝑦𝑡−1 − 𝜇) + ⋯+ 𝜋𝑝�𝑦𝑡−𝑝 − 𝜇� + Σ𝜀 

                    =  𝜋1Γy(1)′ + ⋯+ 𝜋𝑝Γy(𝑝)′ + Σ𝜀                                                     (7) 

  If ℎ > 0 

           Γy(𝑘) = 𝜋1Γy(𝑘 − 1) + ⋯+ 𝜋𝑝Γy(𝑘 − 𝑝)                                                (8) 

These equations can be used to compute the autocovariance functions Γy(k)  for 

𝑘 ≥ 𝑝,  if 𝜋1, … ,𝜋𝑝 and Γy(p − 1), … ,Γy(0) are known. 

 

3.2.6 Autocorrelation  of a Stable VAR(p) Process 

For a stable VAR (𝑝) process, the autocorrelations are given by 

                                 𝑅𝑦(𝑘) = 𝐷−1Γy(k)𝐷−1                                                          (9) 

Here 𝐷 is a diagonal matrix with the standard deviation of the component of 𝑦𝑡 on 

the main diagonal. Thus, 
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          𝐷−1 =

⎣
⎢
⎢
⎡

1
�𝛾11(0)

⋯ 0

⋮ ⋱ ⋮
0 ⋯ 1

�𝛾𝑛𝑛(0)⎦
⎥
⎥
⎤
                                                                     (10) 

 and the correlation between  𝑦𝑖,𝑡 and 𝑦𝑗,𝑡−𝑘 is  

          𝜌𝑖𝑗(𝑘) = 𝛾𝑖𝑗(𝑘) 

�𝛾𝑖𝑖(0) �𝛾𝑗𝑗(0) 
                                                                                (11) 

 which is just the 𝑖𝑗 − th element  of  𝑅𝑦(𝑘). 

 

3.2.7 VAR Order Selection 

This work considers three basic ways usually called model selection criteria 

for determining the order p of the VAR process. The criteria are: 

        (i)  Akaike Information Criterion 

This is given by 

 𝐴𝐼𝐶(𝑝) = 𝐼𝑛│Σ�𝜀(𝑝)│+ 2
𝑁

(number of estimated parameter) 

                 = 𝐼𝑛│Σ�𝜀(𝑝)│+ 2𝑝𝑛2

𝑁
 

The estimate (𝐴𝐼𝐶)�  for p is chosen so that this criterion is minimized.  

      (ii)  Hannan-Quin Criterion 

 This  is given as  

 𝐻𝑄(𝑝) = 𝐼𝑛│Σ�𝜀(𝑝)│+ 2𝐼𝑛𝐼𝑛
𝑁

(𝑓𝑟𝑒𝑒𝑙𝑦 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

                 = 𝐼𝑛│Σ�𝜀(𝑝)│+ 2𝐼𝑛𝐼𝑛𝑁
𝑁

 𝑝𝑛2 

 The estimate (𝐻𝑄)�  is the order that minimizes 𝐻𝑄 (𝑝) for  𝑝 = 0,1, … ,𝑃 

(iii)  Schwarz Criterion 

 This is given by 

 𝑆𝐶(𝑝) = 𝐼𝑛│Σ�𝜀(𝑝)│+ 𝐼𝑛𝑁
𝑁

(𝑓𝑟𝑒𝑒𝑙𝑦 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) 

                 = 𝐼𝑛│Σ�𝜀(𝑝)│+ 2𝐼𝑛𝑁
𝑁

 𝑝𝑛2 

 The estimate (𝑆𝐶)�  is chosen so as to minimize the value of the criterion; 
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where 𝑝 is the VAR order, 

 Σ�𝜀 is the estimate of white noise covariance matrix Σ𝜀 

 𝑛 is the number of time series components of the vector time series 

 𝑁 is the sample size.  

 

 

3.3 Diagnostic Checks 

After fitting the model, we need to examine whether the model is adequate or 

not.  One of the ways of checking the adequacy of the model is by examining the 

behaviour of the residuals matrices. This is simply to examine whether it follows a 

white noise process or not. According to [6] ; if 𝜌𝑢𝑣(𝑖) is the true correlation 

coefficients corresponding to the 𝑟𝑢𝑣(𝑖), then we have the following hypothesis 

test at 5% level to check whether or not a given multivariate series follows a white 

noise process or not. The hypothesis states: 

                          𝐻0: 𝜌𝑢𝑣(𝑖) = 0 

Against 

                         𝐻1: 𝜌𝑢𝑣(𝑖) ≠ 0 

 Decision 

                     Reject  𝐻0 if  │√𝑁𝑟𝑢𝑣,𝑖 │ > 2  or 

Equivalently 

                            │𝑟𝑢𝑣,𝑖│ > 2
√𝑁

 

Thus in practical sense, we compute the correlation of the series to be tested 

(possibly after some stationary transformation) and compare their absolute value 

with 2
√𝑁

. 
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3.4 Forecasting 

Suppose that  𝑦𝑡 = (𝑦1𝑡, … ,𝑦𝑛𝑡)′ is an 𝑛 − dimensional stable process 

𝑉𝐴𝑅(𝑝). Then the minimum  𝑀𝑆𝐸 predictor for forecast  ℎ at forecast origin time 

𝑡 is the conditional expected value given as:    

𝐸(𝑦𝑡+ℎ) =  𝐸�𝑦𝑡+ℎ│Ω𝑡� = 𝐸�𝑦𝑡+ℎ│{𝑦𝑠│𝑠 ≤ 𝑡}� ; 

and by recursion,  𝑉𝐴𝑅(1) process gives 

𝐸𝑡(𝑦𝑡+ℎ) = �𝐼𝑛 + 𝜋1 + ⋯+ 𝜋1ℎ−1�𝑐 + 𝜋1ℎ𝑦𝑡 . 

 

 

4  Data Analysis and Results 

The data used in this work is a quarterly data obtained from Nigerian National 

bureau of Statistics (NNBS) for the period of 1981-2013. The five GDP variables 

of interest are Agriculture (𝑦1𝑡), Industry (𝑦2𝑡), Building & Construction (𝑦3𝑡), 

Wholesale & Retail (𝑦4𝑡),  and Services (𝑦5𝑡).   

 

 

4.1 Raw Data Plots 
The raw data plots of the five variables are shown below in Figure 1 below. 

The above plots reveal that the series are not stationary and were all differenced to 

obtain stationarity.  

 

 

4.2 Modeling of the Univariate component 

Figure 1 clearly shows that each component series exhibits seasonal 

behaviour. Since the major aim of this work is to build a multivariate (vector) 

model, we might not delve deep into univariate preambles. However, employing 
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the univariate techniques in section 3.1, the following seasonal ARIMA models 

were fitted and found adequate for the five variables representing the sectors of 

Nigeria’s Gross domestic products and the residuals were obtained for further 

analysis. 

 

 
                        Figure 1: Series plots of the sectors in Nigeria’s GDP 

  

(i) Agriculture (𝑦1𝑡) :   SARIMA (1,1,1)(1,0,1)4 

(ii) Industry (𝑦2𝑡) : SARIMA (0,1,1)(1,0,1)4 

(iii) Building & Const. (𝑦3𝑡): SARIMA (1,1,1)(1,0,1)4 

(iv) Wholesale & Retail (𝑦4𝑡) : SARIMA (1,1,0)(2,0,1)4 

(v) Services (𝑦5𝑡): SARIMA (1,1,1)(2,0,1)4 

 

 

4.3 Residual Correlation and Cross Correlation 

The residual correlations and cross correlations of the fitted univariate 

components are shown in the tables below: 
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Table 1: Residual Correlation Table of the Differenced Series 

   𝑦1𝑡. 𝑦2𝑡 𝑦3𝑡 𝑦4𝑡 𝑦5𝑡 

𝑦𝑖𝑡. 1 

     𝑦2𝑡 0.954784 1 

    𝑦3𝑡 0.666825 0.664304 1 

   𝑦4𝑡 0.767769 0.864995 0.695682 1 

  𝑦5𝑡 0.682775 0.667073 0.794183 0.892509 1 

 

Table 2:  Residual Cross Correlation Table of the Differenced Series 

   𝑦1𝑡. 𝑦2𝑡 𝑦3𝑡 𝑦4𝑡 𝑦5𝑡 

 𝑦1𝑡. 

 

  0.855 0.767 0.768 0.683 

 𝑦2𝑡 

  

0.764 0.765 0.667 

 𝑦3𝑡 

   

0.696 0.794 

 𝑦4𝑡 

    

0.993 

 𝑦5𝑡 

      

           As seen above, the raw correlations and cross correlations are quite high; 

suggesting strong relationship among the variables. Thus, multivariate 

consideration is obvious. 

 

 

4.4  VAR Order Selection 

Using the obtained data for this work, the values of the three model selection 

criteria were computed using gretl software and are displayed in Table 3. It is 

clearly seen in the table that the three model selection criteria attain their 

minimum at lag 1 as indicated by the values with the asterisk. Thus, the selected 

model is 𝑉𝐴𝑅(1). 
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Table 3:  Model selection criteria table 

𝑙𝑎𝑔𝑠 𝑙𝑜𝑔𝑙𝑖𝑘 𝑝(𝐿𝑅) 𝐴𝐼𝐶 𝐵𝐼𝐶 HQC 
1 464.07333  −11.2345553∗ −12.53768∗ −12.951552∗ 

2 531.21692 0.00000 -10.936949 -10.659348 -10.418109 

3 589.49804 0.00000 -8.491634 -6.633306 -7.736958 

4 674.85161 0.00000 -9.497527 -7.058472 -8.507015 

5 768.61450 0.00000 -10.643575 -7.623792 -9.417227 

6 788.63349 0.02890 -10.560558 -6.960048 -9.098374 

7 802.20315 0.34896 -10.370052 -6.188815 -8.672033 

8 819.69297 0.08857 -10.244883 -5.482918 -8.311027 

9 858.89334 0.00000 -10.481556 -5.138863 8.311863 

10 881.00490 0.01024 -10.433415 -4.509995 -8.027887 

11 896.66187 0.17883 -10.277696 -3.773550 -7.636334 

12 918.5338 0.01158 -10.225564 -3.140689 -7.348363 

      
 

 

4.5 Final model with the significant parameters 

Examining Table 4 below, we observe that some parameters of the above 

model (4) are not significant and thus have to be removed from the expression. 

Hence, the final model of the 𝑉𝐴𝑅(1) process becomes: 
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1

2

3

4

5

18.2057
32.4675
0.0272
3.2784
1.51173

0.6268 0.0125 0.3028 2.0804 3.1373
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−
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− −
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t t
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ε
ε
ε
ε

−

−

−

−

−

    
    
    
     +
    
    

    −    

This can be expressed explicitely as: 

𝑦1𝑡 = 18.2057 + 0.6268𝑦1𝑡−1 − 0.0125𝑦2𝑡−2 + 13.3028𝑦3𝑡−1 + 2.0804𝑦4𝑡−1
− 3.1373𝑦5𝑡−1 

  𝑦2𝑡 = 32.4675 + 0.0106𝑦1𝑡−1 + 0.7796𝑦2𝑡−2 − 0.8521𝑦5𝑡−1 

  𝑦3𝑡 = 0.0272 + 0.007𝑦1𝑡−1 + 0.0051𝑦2𝑡−2 + 0.5229𝑦3𝑡−1 + 0.0127𝑦4𝑡−1 +

0.0044𝑦5𝑡−1 

  𝑦4𝑡 = −3.2784 − 0.0143𝑦1𝑡−1 + 0.0636𝑦2𝑡−1 − 0.917𝑦3𝑡−1 + 0.627𝑦4𝑡−1 

  𝑦5𝑡 = −1.51173 + 0.0217𝑦2𝑡−2 − 0.1356𝑦3𝑡−1 + 0.2351𝑦5𝑡−1 

 

Table 4:  Estimated Parameters for the VAR(1)  model 

𝑀𝑜𝑑𝑒𝑙  𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 (𝑃 − 𝑣𝑎𝑙𝑢𝑒𝑠)  𝑆𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡  
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠  

𝑦1𝑡 𝑐1 = 18.2052(0.0311) 
          𝜋11 = 18.2052(0.0020) 

𝜋12 = −0.0125(0.0010 
𝜋13 = 0.3028(0.00410) 
𝜋14 = −3.1373(0.00010) 

𝜋15 = (0.00002) 

𝜋11, 𝜋12, 𝜋13,𝜋14, 𝜋15 
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𝑦2𝑡        𝑐2= 32.475 (0.16139) 
𝜋21 = 0.1064(0.0045) 
𝜋22 = 0.7796(0.00001) 
𝜋23 = −0.1223(0.98150) 
𝜋24 = −0.2514(0.48450) 
𝜋25 = 0.8521(0.00091) 

 

 𝜋21,𝜋22, 𝜋25 

𝑦3𝑡              𝑐3= 0.0272 (0.9704) 
𝜋31 = 0.007(0.00450) 
𝜋32 = 0.0051(0.00001) 
𝜋33 = 0.5229(0.00030) 
𝜋34 = 0.0127(0.00221) 
𝜋35 = 0.044(0.00251)) 

 

𝜋31, 𝜋32, 𝜋33,𝜋34, 𝜋35 

𝑦4𝑡            𝑐4= -3.2784 (0.65485) 
𝜋41 = −0.0143(0.00450) 
𝜋42 = 0.0636(0.00001) 
𝜋43 = −0.9170(0.00030) 
𝜋44 = 0.6270(0.00221) 
𝜋45 = 0.4784(0.00681)) 

 

   𝜋11, 𝜋12, 𝜋13,𝜋14 

𝑦5𝑡              𝑐5= -1.51173 (0.75384) 
 𝜋51 = 0.0668(0.04610) 

 𝜋52 = 0.00217(0.00362) 
𝜋53 = 0.1356(0.00081) 
𝜋54 = 0.6270(0.03501) 
𝜋55 = 0.2351(0.0041)) 

𝜋52, 𝜋53, 𝜋55 

 

   

4.6 Stability of the VAR (1) Process 

  Using expression (5), the roots of  𝐼𝑛 − 𝛱1𝑧 − ⋯− 𝛱𝑝𝑧𝑝 = 0    are 

𝑧1 = 5.23, 𝑧2 = −7.41, 𝑧3 = −1.57, 𝑧4 = 11.2, 𝑧5 = 8.11. 
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 Since �𝑧𝑗� > 1   ∀ 𝑗, the process is stable. In other words, it is stable since all the 

roots of    𝐼𝑛 − 𝛱1𝑧 − ⋯− 𝛱𝑝𝑧𝑝 = 0   lie outside the unit circle. 

 

 

5  Diagnosis 

After obtaining the above model, the next step is to carry out diagnostic 

checks to ascertain whether the above VAR(1) model is adequate or not. This is 

achieved by following the hypothesis stated in section 3.3 of the methodology. 

Thus we have  

                                    𝐻0: 𝜌𝑢𝑣(𝑖) = 0 

                Against 

                                      𝐻1: 𝜌𝑢𝑣(𝑖) ≠ 0 

Since  

                 𝑁 = 132 ⇒ 2
√132

= 0.1741 

Then 

              𝐻0 is rejected if  │𝑟𝑢𝑣,𝑖│ > 2
√𝑁

= 0.1741. 

  Now, examining the residual correlation matrices at different lags in Appendix 

A; it clearly shows that none of the residual autocorrelations │𝑟𝑢𝑣,𝑖│is greater than 

0.1741. In other words, the residuals follow a white noise process. This shows that 

the fitted model is adequate. 

 

 

6  Forecasts 

 Since the obtained model is adequate, it can now be used for prediction. The 

quarterly forecasts generated for the next seven years are displayed in Table 5.  
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Table 5: Forecasts 

𝑌𝑒𝑎𝑟 𝑦1𝑡 𝑦2𝑡        𝑦3𝑡 𝑦4𝑡 𝑦5𝑡 
2014 4472.11 3761.21 172.03 1922.23 1612.56 
 5112.28 3928.16 181.35 1969.35 1689.63 
 5321.27 4110.23 193.42 1023.44 1813.69 
 5621.88 4203.21 209.12 1213.99 2005.23 
2015 4235.21 3845.15 175.44 1434.23 2100.43 
 4623.44 3925.23 198.11 1623.19 2325.92 
 4324.92 4070.53 232.52 1925.32 2372.14 
 4428.10 4061.29 275.17 1710.92 2410.11 
2016 4312.43 4010.53 297.26 1525.20 2472.43 
 4305.25 4100.20 310.19 1395.5 2602.42 
 4295.92 4325.19 390.75 2010.59 2825.59 
 5100.52 4591.75 400.2 2125.52 3617.29 
2017 5105.29 4479.56 426.79 2159.70 3721.52 
 5279.22 4505.62 446.26 2295.44 3961.28 
 5295.59 4579.16 487.15 2515.66 3995.21 
 5362.61 4756.49 425.96 3385.18 4509.17 
2018 5235.77 4778.21 451.34 3481.42 4762.17 
 5305.60 4942.26 467.86 3976.33 5162.32 
 5385.62 5100.29 440.96 4222.76 5351.86 
 5499.02 5202.49 439.56 4317.28 5561.78 
2019 5602.88 5293.62 459.67 5526.86 5418.66 
 5756.24 5372.66 486.34 5716.37 5321.75 
 5861.16 5511.17 495.05 5962.73 4930.86 
 5802.74 5434.67 498.67 5612.34 4741.97 
2020 5995.78 5657.14 501.34 5534.78 5601.46 
 6100.56 5854.67 520.58 5345.77 5695.90 
 6025.89 5802.46 540.67 5788.91 5789.62 
 6378.43 6002.31 598.62 6100.09 5886.67 
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7  Discussion and Conclusion 

 This research focused on building a multivariate time series model for the 

variables representing the different sectors of the Nigeria’s Gross Domestic 

products (Agriculture, Industries, Building & Construction, wholesale & Retail 

and Services). It is interesting to note that modeling a univariate time series 

without considering the influence of other variables could be misleading. This was 

noted by [10]. In line with [10], this work has covered a more general case where 

five variables are interrelated. Besides; unlike [7], this work has also addressed a 

situation where the multivariate components exhibit seasonal behavior. Hence, 

multivariate approach can also be applied to series with periodic nature. 
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Appendix A 

Residual Correlation Matrices( 𝑹𝒊 Matrix  for 𝒊 = 𝟎,𝟏,𝟐, … ,𝟏𝟎 ) 

𝑅0 = 























−
−−

000.1110.0054.0023.0074.0
000.1012.0033.0137.0

000.1130.0144.0
000.1012.0

000.1

 

  𝑅1 = 























−
−−
−−

−−−
−

005.0113.0054.0131.0074.0
112.0011.0012.0025.0137.0
151.0003.0071.0008.0042.0
102.0038.0005.0134.0021.0
007.0124.0061.0024.0112.0

 

𝑅2 = 























−
−−
−
−

−

071.0110.0054.0131.0074.0
112.0011.0012.0033.0137.0
151.0003.0026.0002.0019.0
042.0004.0005.0214.0012.0
113.0013.0003.0031.0152.0

 

 𝑅3 = 























−
−−
−
−

−

009.0041.0113.0016.0135.0
115.0006.0021.0164.0155.0

122.0161.0141.0132.0004.0
136.0041.0034.0009.0023.0
143.0090.0014.0024.0016.0

 

𝑅4 = 























−
−−
−
−

−

071.0110.0008.0146.0074.0
112.0011.0012.0033.0013.0

002.0005.0121.0121.0138.0
139.0061.0119.0143.0003.0
134.0001.0143.0007.0130.0
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𝑅5 = 























−
−−
−
−

−

121.0154.0160.0007.0132.0
006.0053.0022.0043.0080.0
010.0090.0019.0146.0004.0
120.0128.0144.0214.0001.0
116.0006.0163.0141.0150.0

 

𝑅6 = 























−−
−−
−
−

103.0110.0054.0118.0074.0
112.0111.0012.0033.0137.0
151.0003.0002.0130.0034.0
042.0004.0005.0214.0012.0

031.0146.0002.0043.0025.0

 

𝑅7 = 























−
−−
−

−

071.0107.0008.0071.0113.0
112.0011.0012.0033.0155.0

160.0158.0135.0135.0122.0
014.0088.0019.0038.0047.0
031.0146.0002.0005.0110.0

 

𝑅8 = 























−
−−
−−

−−−
−

159.0128.0099.0073.0062.0
052.0119.0101.0002.0153.0
051.0119.0101.0002.0153.0
142.0153.0118.0132.0009.0

124.0031.0142.0138.0004.0

 

𝑅9 = 























−
−−
−
−

−

026.0117.0133.0008.0030.0
112.0011.0012.0118.0037.0

129.0153.0005.0023.0160.0
110.0122.0136.0132.0031.0
123.0003.0012.0052.0150.0

 

𝑅10 = 























−
−−
−
−

−

003.0160.0054.0138.0116.0
124.0053.0022.0131.0136.0
110.0010.0116.0109.0136.0
120.0128.0144.0017.0022.0
116.0006.0163.0103.0151.0

 
 

 
 


